MRI
磁気共鳴画像法 (Magnetic Resonance Imaging: MRI)は強力な磁力を利用して生体の内部構造を画像化する装置である.
コンピュータ断層撮影法 (Computed Tomography: CT) と比較して,X 線で被曝しないという利点がある一方で,検査にかかる時間が長いという欠点がある.
臨床現場における MRI 検査では,放射線科医が適切な診断を下すのに十分な情報を得るために,一度の検査で繰り返し時間 (TR) とエコー時間 (TE) の設定を変えて複数種類の MR 画像を取得している.取得頻度が高い画像として,解剖学的構造の描出に長けた T1 強調画像と,病変の描出に長けた T2 強調画像があり,どちらも撮像には 2 分から 3 分程度の時間を必要とする.
CT は数十秒で撮像を終えることから,患者の負担を考慮して,MRI の撮像時間を短縮することが求められている.
MRI では,観測データを時間軸上で順次取得するため,取得データ数を減らすことで撮像時間を短縮できる.削減された観測データに対して通常の画像再構成手法である逆フーリエ変換を適用すると,アーチファクトを含んだ不鮮明な画像が再構成されてしまう.削減されたデータからも鮮明な画像を再構成するために,圧縮センシング(Compressed Sensing: CS) 理論が利用されている.
※圧縮センシング とは,未知の対象信号が適切な表現空間においてスパースになることを利用して,少数の観測信号から対象信号を高精度に復元する技術である.
エッジ情報とLiGMEモデルを用いたマルチコントラスト圧縮センシングMRI
MRI は検査に時間がかかるため,取得データ数を減らして撮像時間を短縮した上で,なるべく高精度な画像再構成を目指す,圧縮センシング MRI が研究されている.
臨床現場では一度の検査で複数種類の MR 画像を撮像するが,Ehrhardt らは 1 種類の MR 画像のみ全データを取得してそのエッジ情報を活用する,マルチコントラスト圧縮センシング MRI を提案した.他の種類の画像は,共通のエッジ情報に基づき少数の観測データから高精度に再構成
される.
Ehrhardt らの手法を近年提案されたLiGME モデルに変更することを提案することで,エッジ情報を考慮した全変動がグループℓ0 擬ノルムに近づくため,大きなエッジを復元しやすくなる.実データを用いた実験で,提案法の有効性を示す
北原 大地, 加藤 里佳子, 黒田 大貴, 平林 晃,
“エッジ情報とLiGMEモデルを用いたマルチコントラスト圧縮センシングMRI,”
第35回信号処理シンポジウム, 高知, Nov. 2020, pp. 95–100.
[Medical Image Processing, Convex Optimization] pdf (preprint)
柴田 基, 北原 大地, 平林 晃,
“レベル集合制約を用いた圧縮センシングMRI,”
第8回横幹連合コンファレンス, 京都, Dec. 2017, 6 pages.
[Medical Image Processing, Convex Optimization] official access / pdf (preprint)