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Abstract—We propose a distortion stomp box modeling method
using a deep neural network. A state-of-the-art method exploits a
feedforward variant of the original autoregressive WaveNet. The
modified WaveNet is trained so as to minimize a loss function
defined by the normalized mean squared error between the high-
pass filtered outputs. This method works well for stomp boxes
with low distortion, but not for those with high distortion. To solve
this problem, we propose a method using the same WaveNet, but a
new loss function, which is defined by a weighted sum of errors in
the time and frequency domains. The error in the time domain is
the mean squared error without high-pass filtering. The error in
the frequency domain is the generalized Kullback–Leibler (KL)
divergence between spectrograms, which are given with a short-
time Fourier transform (STFT) and a Mel filter bank. Numerical
experiments using a stomp box with high distortion, the Ibanez
SD9, show that the proposed method is capable of reproducing
high-quality sounds compared with the state-of-the-art method
especially for high-frequency components.

I. INTRODUCTION

When one plays an electric guitar, the sound is sometimes
distorted using a stomp box or amplifier. Players carefully
choose particular ones from many different types of stomp
boxes and amplifiers to create their intended tone. Note
that certain sounds can be produced only by ones so-called
“vintage” or ones whose production have already finished.
Those products are in great demand and hard to obtain. Digital
modeling to reproduce the sound of such devices is one good
alternative to meet the demand.

Digital modeling techniques can be classified into two types.
Methods of the first type convert all electronic circuits in the
devices into mathematical models [1], [2]. This circuit-based
approach is capable of generating high-quality results. Such
modelings, however, require not only the circuit diagram of
the target device but also characteristic curves of all nonlinear
circuit parts including transistors, diodes, and vacuum tubes.
Even worse, if the circuit diagram is not available, huge efforts
for reverse engineering are required.

Methods of the second type are machine learning [3]–[12].
Using pairs of clean input and distorted output sounds of the
target device, the mapping from the input to output is learned.
Cost to collect such data is much lower than that for the circuit-
based approach, as long as the target device is available.

Methods of the second type are further classified into
two subgroups. Those in the first subgroup are called block-
oriented models and use a little information about the electric
circuits in the device, which typically consist of linear filtering
blocks followed by a nonlinear block. Thus, the block-oriented

models use the same block structure. The pairs of the clean
input and distorted output sounds of the target device are used
to adjust the parameters in the blocks [3]–[7].

On the other hand, methods in the second subgroup use no
information about the electric circuits in the device. Instead,
these methods exploit deep learning. Since guitar sounds are
temporal sequences, recurrent neural networks (RNNs) are fit
for the modeling of the stomp boxes. Indeed, long short-term
memory (LSTM) networks [13], which is one of the RNNs, are
used in [8] and [9]. These methods are capable of modeling
with high accuracy. It takes, however, a long time to train the
LSTM networks due to their recursive structures.

For faster training, Damskägg et al. proposed a modeling
method based on a feedforward variant of WaveNet [10]–[12],
which was originally proposed to synthesize audio waveforms,
including human voice and music, using a nonlinear autore-
gressive structure [14]. WaveNet does not use recursive struc-
tures and hence training is fast. Further, the so-called dilated
causal convolution enables WaveNet to reproduce high-quality
sounds with low computational cost. The modified WaveNet
is trained so as to minimize the error-to-signal ratio (ESR)
loss function, defined by the normalized mean squared error
between high-pass filtered target and modeling sounds in the
time domain. This method achieved better results with faster
training than the LSTM methods. Nevertheless, low-frequency
components are attenuated by the side effect of the high-pass
filter and the reproduction of the high-frequency components
is not enough. Thus, stomp boxes with high distortion are not
well modeled by this method.

To solve the above problems, we propose a novel modeling
method, in which the same modified WaveNet is used as in
[11]. On the other hand, the loss function is differently defined
by a weighted sum of errors in the time and frequency do-
mains. The error in the time domain is the mean squared error
without high-pass filtering to avoid the attenuation of the low-
frequency components. The error in the frequency domain is
defined by the generalized Kullback–Leibler (KL) divergence
between spectrograms of target and modeling sounds. As the
spectrograms, we use the Mel-frequency power spectrograms
defined by the squared absolute values of a short-time Fourier
transform (STFT) followed by a Mel filter bank. Numerical ex-
periments using a high distortion stomp box, the Ibanez SD9,
show that the proposed method reproduces the high-frequency
components well without the attenuation of the low-frequency
components compared with the conventional method [11].



II. PRELIMINARIES

A. Neural Network Model for Distortion Stomp Box

Let x[n] and y[n] respectively be the input and the output
signals of the distortion stomp box at discrete time instant n ∈
{1, 2, . . . , N}. As a black box model of the distortion stomp
box, we adopt a state-of-the-art deep neural network (DNN)
model based on WaveNet [10]–[12]. WaveNet is originally
proposed in [14] as an autoregressive model which predicts a
future sample from past samples, and is modified in [10]–[12]
as a feedforward model which computes an output signal from
input signals.

The overall structure of the neural network used in this paper
is shown in Fig. 1. At time n, the network fϑ computes the
modeling sound ŷ[n] from R input signals, i.e.,

ŷ[n] = fϑ(x[n−R+ 1], x[n−R+ 2], . . . , x[n]), (1)

where ϑ denotes the parameters of the network to be trained so
that the target sound y[n] is approximated well by ŷ[n]. Note
that R is set to a large enough value so that fϑ can approximate
well the characteristic of the distortion stomp box.

The detail of each layer of the network is as follows. The
pre-processing layer converts the single-channel input signal
x[n] to an L channel signal as

x0[n] = w0x[n] + b0, (2)

where w0 ∈ RL represents a convolutional filter, b0 ∈ RL is
a bias term.

Then, the L channel signal x0[n] passes K residual blocks,
which are connected in a sequence. For k = 1, 2, . . . ,K,
the kth residual block computes two outputs xk[n] and sk[n]
from the input xk−1[n]. To this end, each residual block first
computes two dilated causal (DC) convolutions as

uk,1[n] =

M∑
m=0

Wk,1[m]xk−1[n−mdk] + bk,1,

uk,2[n] =

M∑
m=0

Wk,2[m]xk−1[n−mdk] + bk,2,

(3)

where Wk,1[m],Wk,2[m] ∈ RL×L (m = 0, 1, . . . ,M) are
convolutional filters of size M+1, dk is the dilation factor, and
bk,1, bk,2 ∈ RL are bias terms. DC convolution is employed
to enlarge the number R of input signals used by the network
while maintaining low computational complexity (see Fig. 2
for an illustration). The value of the dilation factor is doubled
as the layer progresses, and is reset to 1 when exceeds 256, i.e.,
(d1, d2, . . . , d9, d10, d11, . . .) = (1, 2, . . . , 256, 1, 2, . . .). Since
R is given by R = M

(∑K
k=1 dk

)
+ 1, we can enlarge the

number R of inputs while keeping the filter size M +1 small.
After the DC convolutional layer, the gated activation unit

computes

vk[n] = g (uk,1[n])� g (uk,2[n]) , (4)

where � denotes the component-wise multiplication, and g is
the component-wise soft-sign activation function u

1+|u| . The
output xk[n] of the kth residual block is obtained by mixing

Fig. 1. Neural network model for distortion stomp box.
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Fig. 2. Dilated causal convolution (K = 4 and M = 1).

the output of the activation unit and the input of this block:

xk[n] = Wk,3vk[n] + bk,3 + xk−1[n], (5)

where Wk,3 ∈ RL×L is a convolutional filter and bk,3 ∈ RL
is a bias term. The other output sk[n] is computed as

sk[n] = Wk,4vk[n] + bk,4, (6)

where Wk,4 ∈ RL×L and bk,4 ∈ RL.
The outputs s1[n], s2[n], . . . , sK [n] of the residual blocks

are merged by the so-called skip connections, and then pro-
cessed through the rectified linear unit (ReLU):

z[n] = ReLU

(
K∑
k=1

sk[n]

)
, (7)

where ReLU computes max(0, s) component-wisely. Finally,
a single channel modeling sound ŷ[n] is obtained by applying
a convolution:

ŷ[n] = w>K+1z[n], (8)

where wK+1 ∈ RL. Note that learnable parameters of the net-
work are w0, b0, Wk,j , bk,j (k = 1, 2, . . . ,K; j = 1, 2, 3, 4),
and wK+1. Totally, the network has 2K{L2(M +2)+2L}−
L2+2L parameters. In general, the expressiveness of the net-
work is enhanced by increasing the number of parameters, at
the cost of the computational complexity. In the modeling of
the distortion stomp boxes, low latency is very important, and
thus fewer parameters are preferable.



Fig. 3. Frequency response of H(z) (sampling frequency 44.1 kHz).

B. Existing Strategy for Network Training

To improve the modeling quality for high-frequency com-
ponents, the existing methods [10]–[12] train the network with
high-pass filtered target and output sounds. More precisely, the
network is trained by minimizing the error-to-signal ratio (ESR)

ESR =

∑N
n=1 (ŷf [n]− yf [n])

2∑N
n=1 yf [n]

2
, (9)

where ŷf [n] and yf [n] are filtered modeling sounds and target
sounds with a high-pass filter H(z) = 1−0.95z−1 (see Fig. 3
on the frequency response of H(z)). Because of the high-pass
filtering, the network trained by this strategy tends to disregard
low-frequency components. In addition, simply applying the
high-pass filtering is still insufficient for precise modeling of
the high-frequency components (see Table II in Section IV for
the modeling quality for the high-frequency components).

III. PROPOSED METHOD

A. Design of Spectral Features

To reproduce the high-frequency components more faithfully
without sacrificing the accuracy of the low-frequency compo-
nents, we propose to combine the frequency-domain error with
the time-domain error. As spectral features, we use the power
spectrogram (PS) and the Mel-frequency power spectrogram
(MFS). The proposed methods using PS and MFS are referred
to as Method PS and Method MFS, respectively.

The power spectrograms Ypow ∈ RI×J+ and Ŷpow ∈ RI×J+

are respectively computed from the target sound y[n] and the
modeling sound ŷ[n] by a short-time Fourier transform (STFT),
where R+ denotes the set of all nonnegative real numbers, I is
the number of frequency bins, and J is the number of frames.
We also utilize the Mel-frequency power spectrograms Ymel ∈
RĨ×J+ and Ŷmel ∈RĨ×J+ computed by applying a Mel filter bank
to the power spectrograms Ypow and Ŷpow, respectively, where
Ĩ is the number of Mel-frequency bins.

B. Proposed Loss Function

The error between two spectrograms Y = (Yi,j) and Ŷ =
(Ŷi,j) is normally measured by the Euclidean distance, gen-
eralized Kullback–Leibler (KL) divergence, and Itakura–Saito

Fig. 4. Three error measures for spectrograms.

(IS) divergence, which are defined by

EUC(Y ‖Ŷ ) =

I∑
i=1

J∑
j=1

(
Ŷi,j − Yi,j

)2
, (10)

KL(Y ‖Ŷ ) =

I∑
i=1

J∑
j=1

(
Yi,j log

Yi,j

Ŷi,j
− (Yi,j − Ŷi,j)

)
, (11)

and

IS(Y ‖Ŷ ) =

I∑
i=1

J∑
j=1

(
Yi,j

Ŷi,j
− log

Yi,j

Ŷi,j
− 1

)
, (12)

respectively. For the case of I = J = 1, the values of these
functions in terms of Ŷ > 0 with Y = 1 are shown in Fig. 4.
The Euclidean distance is symmetric with respect to Y = 1.
On the other hand, the generalized KL and IS divergences are
asymmetric and penalize more for Ŷ < 0.3 and less for Ŷ > 1
than the Euclidean distance. From our experience, the modified
WaveNet [11] tends to have small output values. Thus, the two
asymmetric lower-more-penalizing divergences are expected to
train the network more accurately than the symmetric Euclid-
ean distance. Based on the results shown in Tables I to III
in Section IV, we adopt the generalized KL divergence for
evaluation of the spectrograms, because it showed the best
performance in average. In contrast to our expectation, the IS
divergence performed worse than the Euclidean distance.

Based on these observations, the proposed method uses the
mean squared error without the high-pass filter for the time-
domain loss function ltime, and the generalized KL divergence
for the frequency-domain loss function lfreq. More precisely,
we define the loss function for the network fϑ by

Loss(ϑ) = ltime(ϑ) + λlfreq(ϑ), (13)

where

ltime(ϑ) =
1

N

N∑
n=1

(ŷ[n]− y[n])2, (14)

and
lfreq(ϑ) =

1

IJ
KL(Y ‖Ŷ ). (15)

Note that, for the sake of simplicity, we omit the dependency
on ϑ in the notations of ŷ[n] and Ŷi,j . The parameter λ > 0



controls the relative importance of the time-domain waveform
and the spectral features. In the loss function, the frequency-
domain term lfreq(ϑ) evaluates only the power of the spectro-
gram, but not the phase, while the time-domain term ltime(ϑ)
compensates it. Taking the balance between them by λ, the
proposed loss function accurately evaluates the error between
the network outputs and the target sounds. In the experiments
shown in Section IV, we use λ = 1 and λ = 0.1 respectively
for the cases of the power spectrogram Y = Ypow and the
Mel-frequency power spectrogram Y = Ymel.

The details of the spectral features used in the proposed me-
thod are as follows. From the target sounds y[1], y[2], . . . , y[N ],
we compute the target power spectrogram Ypow = (Y pow

i,j ) ∈
RI×J+ with the STFT as

Y pow
i,j =

∣∣∣∣∣
Nf∑
n=1

ψ[n]y[(j − 1)τ + n]e
−2
√
−1π (i−1)(n−1)

Nf

∣∣∣∣∣
2

, (16)

for i = 1, 2, . . . , I and j = 1, 2, . . . , J , where ψ[n] is a win-
dow function, τ is the frame shift, and Nf is the frame length.
Note that the number of frequencies is given as I =

⌈
Nf+1

2

⌉
and the number of frames is given as J =

⌈
N
τ

⌉
, where d·e is

the ceiling function, and zero padding is used for the outside
parts y[N +1], y[N +2], . . . , y[(J − 1)τ +Nf ]. The modeling
power spectrogram Ŷpow is also computed from the modeling
sounds ŷ[1], ŷ[2], . . . , ŷ[N ] in the same way. Next, the target
Mel-frequency power spectrogram Ymel = (Y mel

b,j ) ∈ RĨ×J+ is
computed from Ypow by using a Mel filter bank as

Y mel
b,j =

I∑
i=1

Hb[i]Y
pow
i,j , (17)

for b = 1, 2, . . . , Ĩ and j = 1, 2, . . . , J , where Hb[i] is the Mel-
scale band-pass filter [15, Section 6.5.2]. In the same way, the
modeling Mel-frequency power spectrogram Ŷmel is computed
from Ŷpow with the same Mel filter bank. In the following
simulations, we use the frequency band from 60 Hz to 22 kHz,
which is divided into Ĩ = 300 bins.

IV. NUMERICAL EXPERIMENTS

A. Experimental Setup

We used a high distortion stomp box, the Ibanez SD9, in this
experiment. The Ibanez SD9 has three knobs, each of which
corresponds to distortion, tone, and volume. They were set to
the direction of 12 o’clock, or the middle position.

The modified WaveNet structure as set as follows: channel
number L = 16, residual block number K = 18, and filter
size M + 1 = 3, thus M = 2. Hence, we have 2K{L2(M +
2)+ 2L}−L2 +2L = 37,792 adjustable parameters. Further,
dk = 2k−1 for 1 ≤ k ≤ 9, dk = 2k−10 for 10 ≤ k ≤ 18, and
R = M

(∑K
k=1 dk

)
+ 1 = 2,045, which approximately corre-

sponds to 46.4 ms when the sampling frequency is 44.1 kHz.
The training process was implemented with Keras in Python

3.7.3. The computational environment is Windows 10 Pro, Core
i9-7980X, 128 GB main memory, GeForce GTX1080Ti GPU.

B. Training and Test Data
For training data, we exploited the IDMT dataset [16], [17],

where the sampling frequency is 44.1 kHz and the bit depth
is 16 bits. A total of 5 minutes of data (150 seconds of guitar
sounds and 150 seconds of bass sounds) were randomly se-
lected from the dataset. They were used as clean input signals
and sent to the stomp box through a reamper (Radial ProRMP
[20]) to generate the corresponding distorted output signals.
These data were trimmed at every 100 ms so that D = 3,000

pairs {t(1)train, t
(2)
train, . . . , t

(D)
train} of N = 4,410 input and output

sequences were obtained. Each pair t(d)train is decomposed into
N elements {t(d,1)train, t

(d,2)
train, . . . , t

(d,N)
train }, where t(d,n)train consists of

a single output value y[n] and R input values x[n − R + 1],
x[n−R+2], . . . , x[n], from which ŷ[n] is computed. For n <
R, zeros were filled into x[n−R+1], x[n−R+2], . . . , x[0].

For each training pair t
(d)
train, we compute the spectral fea-

tures used in the proposed loss function as follows. From the
target sounds y[1], y[2], . . . , y[N ] in t

(d)
train, we compute the tar-

get power spectrogram Ypow ∈ RI×J+ as (16), where we set the
frame shift to τ = 256, and the frame length to Nf = 1,024.
Note that this setting implies that the number I of frequency
bins is 513 and the number J of frames is 18. In (16), we use
the hann window

ψ[n] =
1

2
− 1

2
cos

(
2π

n− 1

Nf − 1

)
(n = 1, 2, . . . , Nf ). (18)

Similarly, we obtain the modeling power spectrogram Ŷpow

from the modeling sound ŷ[1], ŷ[2], . . . , ŷ[N ] computed from
the input values in t

(d)
train. The Mel-frequency power spectro-

grams Ypow and Ŷmel are computed as (17).
Since the amount of data is huge (DN ≈ 1.3 × 107), it

is difficult to compute the value and the gradient of the loss
function for the overall training data {t(1)train, t

(2)
train, . . . , t

(D)
train}.

Thus, we utilize the so-called mini-batch training. The overall
training data is randomly divided into P = 16 mini-batch data
{t(dp[1])train , t

(dp[2])
train , . . . , t

(dp[Dp])
train } (p = 1, 2, . . . , P ). The value

and the gradient of the loss function are computed for each
mini-batch data. We say that an “epoch” is completed when
all of P mini-batch data are used for training. An iterative
optimization algorithm, Adam [18], is applied to minimize the
loss function. The iteration is repeated for 1,000 epochs, or
until an early stopping condition is met, where the condition
is evaluated by other two 300 pairs of guitar and bass signals
randomly selected from the IDMT dataset.

To evaluate the trained networks, we prepared original four
sound sources.1 In sound source 1, a B[add9 chord was played
with high attacks. In sound source 2, a Dsus2 chord was played
with low attacks. In sound source 3, a chromatic scale from
E2 to A[3 was played with high attacks. In sound source 4,
two tones of D3 and D4 were played with low attacks.

C. Experimental Results
Figure 5 shows simulation results for sound source 1. Fig-

ures (a) and (b) are the power spectrograms of the clean input

1You have access to the sound sources from our web site [19].



(a) Power spectrogram of the input sound x[n] (b) Power spectrogram of the target sound y[n]

(c) Waveform generated by Method PS-KL (d) Power spectrogram of the waveform in (c)

(e) Waveform generated by Method MFS-KL (f) Power spectrogram of the waveform in (e)

(g) Waveform generated by the conventional method in [11] (h) Power spectrograms of the waveform in (g)

Fig. 5. Simulation results for the Ibanez SD9 with sound source 1.



TABLE I
ESR WITHOUT THE HIGH-PASS FILTER.

Method Sound 1 Sound 2 Sound 3 Sound 4 average
PS-EUC 2.71% 0.79% 0.77% 0.59% 1.21%
PS-KL 1.41% 0.60% 0.67% 0.38% 0.76%
PS-IS 11.71% 7.93% 6.20% 5.17% 5.77%
MFS-EUC 2.57% 0.90% 0.76% 0.74% 1.24%
MFS-KL 1.21% 0.60% 0.53% 0.45% 0.70%
MFS-IS 2.76% 1.25% 1.67% 0.91% 1.65%
Conv. [11] 1.62% 0.69% 0.95% 0.55% 0.95%

TABLE II
ESR WITH THE HIGH-PASS FILTER.

Method Sound 1 Sound 2 Sound 3 Sound 4 average
PS-EUC 17.69% 9.99% 7.09% 13.25% 12.01%
PS-KL 11.68% 7.36% 5.19% 9.86% 8.52%
PS-IS 50.49% 50.45% 39.32% 54.99% 48.81%
MFS-EUC 17.93% 8.41% 6.23% 12.23% 11.20%
MFS-KL 9.01% 4.51% 2.57% 6.65% 5.69%
MFS-IS 22.38% 14.42% 9.90% 18.57% 16.31%
Conv. [11] 16.86% 7.29% 5.03% 7.15% 9.08%

TABLE III
NMSE OF THE POWER SPECTROGRAM.

Method Sound 1 Sound 2 Sound 3 Sound 4 average
PS-EUC 0.40% 0.20% 0.35% 0.09% 0.26%
PS-KL 0.33% 0.17% 0.36% 0.10% 0.24%
PS-IS 3.32% 2.93% 5.82% 2.87% 3.74%
MFS-EUC 0.48% 0.25% 3.33% 0.15% 0.30%
MFS-KL 0.28% 0.16% 0.26% 0.10% 0.20%
MFS-IS 0.92% 0.58% 1.63% 0.33% 0.87%
Conv. [11] 0.77% 0.50% 1.01% 0.42% 0.68%

sound and the distorted target sound. The modeling waveform
generated by Method PS-KL is indicated in Figure (c) by
a red line with the target waveform indicated by a blue
line. Figure (d) shows the corresponding power spectrogram.
Figure (e) shows the modeling waveform generated by Method
MFS-KL with red as well as the target waveform with blue.
Figure (f) shows the corresponding power spectrogram. Fig-
ures (g) and (h) indicates the modeling waveform generated by
the conventional method in [11] and the corresponding power
spectrogram, respectively. By comparing the parts indicated
by the circles in Figs. (c), (e), and (g), we can see that the
proposed methods, Methods PS-KL and MFS-KL, reproduced
the target sound more accurately than the method in [11].

To compare these results objectively, we computed the ESR
in (9) for each method and each sound source. Each value
computed not using the high-pass filter is shown in Table
I. We can see that Methods PS-KL and MFS-KL improved
the ESR by 20.0% and 26.3%, respectively, in average. ESR
computed using the high-pass filter is shown in Table II.
We can see that Methods PS-KL and MFS-KL improved
the ESR by 6.2% and 37.3%, respectively, in average. It is
interesting that our methods outperformed the method in [11]
in the sense of the ESR with the high-pass filter, which is
the loss function for the conventional method. It is difficult
to see the difference of the spectrograms in Figs. (d), (f),
and (h). Nevertheless, we can clarify the difference from the

normalized mean squared error (NMSE) shown in Table III,
which indicates that Methods PS-KL and MFS-KL improved
NMSE by 64.7% and 70.6%. These results mean that the high-
frequency components are reproduced more precisely using
the frequency-domain evaluation than using a high-pass filter.
Finally, it was shown that the proposed loss function works
more effectively with the Mel-frequency power spectrogram
than with the power spectrogram. Thus, in conclusion, Method
MFS-KL performed the best among the methods compared in
this paper.

V. CONCLUSIONS

We proposed a modeling method for stomp boxes with high
distortion using the modified WaveNet. We exploited the same
network structure as the conventional method [11]. To train the
network, we proposed a new loss function, which is defined by
a weighted sum of errors in the time and frequency domains.
The error in time domain is the mean squared error without
high-pass filtering. The error in the frequency domain is the
generalized Kullback–Leibler (KL) divergence between Mel-
frequency power spectrograms of target and modeling sounds.
Numerical experiments using a stomp box with high distortion,
the Ibanez SD9, showed that the proposed method can repro-
duce high-quality sounds more than the conventional method
especially for high-frequency components.
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modeling of high-order nonlinear audio systems using swept-sine and
principal component analysis,” in Proc. AES Int. Conf. Appl. Time-Freq.
Process. Audio, Helsinki, Finland, Mar. 2012, 10 pages.

[5] F. Eichas and U. Zölzer, “Black-box modeling of distortion circuits with
block-oriented models,” in Proc. Int. Conf. Digital Audio Effects (DAFx),
Brno, Czech Republic, Sep. 2016, pp. 39–45.
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