4階テンソル構造を利用したライトフィールドノイズ除去 Light Field Denoising Based on the Fourth-Order Tensor Structure

北原 大地

小川 佳瑚金銅 美陽立命館大学 情報理工学部

平林 晃

Daichi KITAHARAKako OGAWAMiharu KONDOAkira HIRABAYASHICollege of Information Science and Engineering, Ritsumeikan University

1 はじめに

空間内の各点における各方向の光線の強度分布を ライトフィールドという[1].通常の静止画カメラは, イメージセンサ前方から来る無数の光線が合成され た際の輝度値を記録する.合成前の各方向から来る 光線の輝度値を記録すれば,図1のように被写体を 異なる視点から眺めた複数枚の画像(多視点画像群 と呼ぶ)が得られる.他にも,深度推定,デジタルリ フォーカス,全焦点画像の作成など[2],ライトフィー ルドを利用することで様々な視覚効果を実現できる.

ライトフィールドの取得には、カメラを複数用いる 方法とカメラを1つのみ用いる方法がある.前者で は、複数のカメラを格子状に並べてカメラアレイを 構成することで、同一被写体を異なる視点から同時 に撮像する[3].この方法は、カメラアレイが大規模 となるため、製造コストや持ち運びの観点であまり 実用的ではない.一方、後者には符号化撮像を用い る方法[4]とマイクロレンズアレイを用いる方法[5] の2種類がある.符号化撮像では、主レンズ(開口面) に光線の透過率を制御するマスクを被せて被写体を 撮像し、得られた複数枚の画像から多視点画像群= ライトフィールドを復元する.この方法では、符号化 マスクを取り替えながら被写体を視点数以上の回数 撮像する必要があるため、撮像時間全体が長くなり、 被写体も静止物体に限定されるという問題がある.

本論文では、マイクロレンズアレイを用いる撮像 方法に注目する.マイクロレンズアレイを用いる撮像 方法に注目する.マイクロレンズアレイを利用した ライトフィールドカメラには、例えば米国 Lytro 社の Lytro Light Field Camera があり、図2に示すような 光学系が用いられる [5].図2では、一般的なカメラ におけるセンサ位置(主レンズの焦点面)にマイクロ レンズアレイが、更にその後ろにイメージセンサが 設置されている.結果として、イメージセンサの各 素子には特定方向から到来する光線の輝度値のみが

図 1: ライトフィールドの多視点画像群としての表現

図 2: マイクロレンズアレイを用いた撮像の模式図

記録されるようになる.各視点の画像は主レンズの 同一箇所を通過した光線の輝度値から得られるため, 単一カメラ・単一撮像でのライトフィールドの取得 が可能となる.ただし,視点数を増やすほど1視点 あたりのイメージセンサ素子数が減る,つまり画像 解像度が低下するというトレードオフの関係がある. 深度推定やデジタルリフォーカスなどを高精度に 行うためには,前処理として取得したライトフィー ルドに含まれているノイズを除去する必要がある[5]. Liuらは3階テンソルを用いたノイズ除去手法を提案 した[6]. この手法では,マルチスペクトル画像用に 開発された既存のノイズ除去手法[7]のアイディアを, ライトフィールド用に修正して用いている.しかし, ライトフィールドが持つ特性を十分に考慮しきれて おらず,特にマイクロレンズアレイを用いて撮像を 行った際には端の視点でノイズ除去性能が大きく劣化 してしまう.他にも,グレースケールのライトフィー ルドのみにしか対応していないという欠点もあった.

本論文では、Liuらの手法[6]を改良して、4階テン ソルを用いたカラーライトフィールドのノイズ除去 手法を提案する.提案法ではライトフィールドの2つ の特性を新たに考慮する. 第1に、マイクロレンズ アレイを用いて取得した多視点画像群は視点ごとに ノイズレベルが異なる点である. イメージセンサに 対する光の入射角の違いにより端の視点ほどノイズ レベルが大きくなる.この性質をデータ整合性に関 する制約として表現することで、視点ごとに適切に ノイズ除去を行う. 第2に, 類似パッチを集めて構成 される4階テンソルは垂直,水平,視点(パッチ番号), 色(RGB)の4つのモードを持つが,視点方向のモード 展開で得られる行列のランク(またはその近似値)が, 垂直および水平方向のモード展開と比較して小さく なる点である.この性質に基づいて,各方向のモード 展開行列の低ランク性を,重みを付けて評価するよう に変更する.提案法は非凸最適化問題として定式化 されるが、Liuらの手法 [6] と同様に交互方向乗数法 (Alternating Direction Method of Multipliers: ADMM) [8]を形式的に用いてアルゴリズムを導出する.数値 実験により、ノイズレベルが大きい端の視点の画像 において提案法が特に有効に機能することを示す.

2 3階テンソルに基づくライトフィールドノイズ除去

2.1 多視点グレースケール画像群のノイズ除去

グレースケールのライトフィールドは、3 階テン ソル $\mathcal{Z} \in \mathbb{R}^{H \times W \times ST}$ で表すことができる.ここで、 H と W は縦と横の総画素数、S と T は上下と左右 の総視点数を表す.ライトフィールドノイズ除去は、 ノイズ $\mathcal{N} \in \mathbb{R}^{H \times W \times ST}$ を含んだ観測値 $\mathcal{Y} = \mathcal{Z} + \mathcal{N}$ から \mathcal{Z} を復元する問題である.Liu らは、ノイズ \mathcal{N} の性質として、各成分の平均が 0、分散が σ^2 となる 白色ガウス性を仮定した上で、3 階テンソル構造を 利用したノイズ除去手法を提案した [6].この手法は、 マルチスペクトル画像のノイズ除去手法 [7] をライト フィールドに応用したものであり、画像内の局所的 類似性と異なる視点間に渡る類似性を利用している.

Liu らの手法の枠組みを図 3 に示す.まず \mathcal{Y} の各 視点の画像をオーバーラップ有りでサイズ $p \times p$ の パッチ $Y_{(h,w)}^{(s,t)} \in \mathbb{R}^{p \times p}$ に分割する.ここで,(s,t) は 視点座標を,(h,w) はパッチの中心に位置する画素 座標を表す.参照パッチ $Y_{\text{ref}} = Y_{(h_1,w_1)}^{(s_1,t_1)}$ を決定し,第 (s_1,t_1) 視点からだけでなく,全ての視点から (N-1)枚の類似パッチを検索する.検索ウィンドウのサイズ はパッチより一回り大きく,中心座標は参照パッチ と同じ (h_1,w_1) である.これにより,空間的に遠く に位置するパッチが類似パッチとして選ばれること を防ぐ.参照パッチと全視点から検索した (N-1) 枚 の類似パッチを重ねることで,ノイズ除去の対象と なる 3 階テンソル $\mathcal{Y}_{\text{sim}} = (Y_n) \in \mathbb{R}^{p \times p \times N}$ を構成する. ここで, Y_1 は参照パッチ, Y_2, Y_3, \ldots, Y_N は (N-1)枚の類似パッチである.そして,以下の最適化問題

$$\begin{array}{l} \underset{\mathcal{X},\mathcal{C},(U_i)_{i=1}^3}{\text{minimize}} \ \frac{\lambda}{2} \|\mathcal{X} - \mathcal{Y}_{\text{sim}}\|_{\text{F}}^2 + \|\mathcal{C}\|_0 + \kappa \prod_{i=1}^3 \operatorname{rank}(X_{(i)}) \\ \text{s.t.} \ \mathcal{X} = \mathcal{C} \times_1 U_1 \times_2 U_2 \times_3 U_3 \text{ and } \forall i \ U_i^\top U_i = I \ (1) \end{array}$$

図 3: テンソルベースのライトフィールドノイズ除去の枠組み [6]

の最適解 $\hat{X}_{sim} \in \mathbb{R}^{p \times p \times N}$ を \mathcal{Y}_{sim} のノイズ除去結果 とする.式(1)の問題において,損失関数の第1項は データ整合性を評価するフロベニウスノルムである. 第2項,第3項および制約は,テンソル構造の単純 性を評価する,Intrinsic Tensor Sparsity (ITS) Measure [7] という指標である.具体的には,コアテンソル $C \in \mathbb{R}^{r_1 \times r_2 \times r_3}$ と直交行列 U_i (i = 1, 2, 3)によって \mathcal{X} を Tucker 分解 (\times_i は第 $i \in - \mathbb{F}$ 積)した際の, $C \circ \ell_0$ ノルムと, \mathcal{X} の第 $i \in -\mathbb{F}$ 展開行列 $X_{(i)}$ のランクの 積を評価する. $\lambda > 0 \ge \kappa > 0$ は各項の重みである. ノイズ除去結果 \hat{X}_{sim} の各パッチをライトフィールド 内の元の位置に戻し,一連の操作を参照パッチ Y_{ref} を変えて繰り返す.最後に,複数のパッチに渡る結果 を画素ごとに平均化することで,ライトフィールド 全体のノイズ除去結果 $\hat{\mathcal{Z}} \in \mathbb{R}^{H \times W \times ST}$ が出力される.

2.2 多視点カラー画像群のノイズ除去

第2.1 節でLiuらはグレースケールのライトフィー ルドを想定していたが、実際のライトフィールドは RGB チャネルを持つ4階テンソル $\boldsymbol{Z} \in \mathbb{R}^{H \times W \times ST \times 3}$ である場合が多い.同様に、ノイズ $\boldsymbol{\mathcal{N}}$ や観測値 $\boldsymbol{\mathcal{Y}} =$ $\boldsymbol{\mathcal{Z}} + \boldsymbol{\mathcal{N}}$ も4階テンソルとなる.式(1)をカラーライト フィールドのノイズ除去に適用する場合には、複数の 方法が考えられるが、代表的な3つを以下で説明する.

輝度値のみをノイズ除去:RGB 成分を YCbCr 成分 に変換し,輝度値を表す Y 成分のみに対して,式(1) によるノイズ除去を行う.ノイズを除去した Y 成分 と元の CbCr 成分を結合した後に RGB 成分に逆変換 することで最終的なノイズ除去結果が得られる.人間 の視覚は Y 成分の変化に鋭敏であるため,視覚的に は良好な結果が安定して得られる.しかし,主に G 成分のノイズを除去することになるため,R 成分や B 成分に含まれるノイズはあまり除去されず,深度 推定などの一部の応用では精度劣化の恐れがある.

YCbCr 成分それぞれをノイズ除去:RGB 成分を YCbCr 成分に変換し,YCbCr 成分それぞれに対して, 式(1)によるノイズ除去を行い,最後にYCbCr 成分 をRGB 成分に逆変換する.類似パッチの選び方には YCbCr 成分で独立に選択する方法や,C-BM3D [9] のようにY成分で選択した類似パッチの座標をCbCr 成分にも用いる方法などが考えられる.しかし,RGB 成分からYCbCr 成分への変換は直交変換ではないの でノイズの性質を変えてしまう問題や,YCbCr 成分 ごとで式(1)の最適なパラメータが異なる問題がある.

RGB 成分それぞれをノイズ除去: RGB 成分それ ぞれに対して,式(1)によるノイズ除去を行う.類似

(c): (a) の正規化画像

(d): (b) の正規化画像

図 4: Lytro Light Field Camera の raw 画像と正規化画像

パッチの選び方には RGB 成分で独立に選択する方法 や,カラー画像のまま類似パッチを選択する方法など が考えられる.しかし, RGB 成分同士の高い相関が 失われてしまい,画像内に色ムラが発生してしまう.

3 視点によるノイズレベルの差を考慮した4階テン ソルに基づくカラーライトフィールドノイズ除去

3.1 マイクロレンズアレイを用いた撮像時のノイズ

マイクロレンズアレイを用いてライトフィールド を取得する際に問題となるのが,センサに対する光の 入射角の違いにより各視点の raw 画像の画素値に差 があるということである.図4(a)から分かるように, 端の視点ほど光を取得しにくく,画素値が低くなる. 一方,図4(b)から分かるように,中心視点では光を 取得しやすく,画素値が高くなる.この時点ではどの 視点においてもノイズレベルは一様である.画素値 が大きく異なる画像群に対してはノイズ除去が機能 しないため,前処理として各 raw 画像の画素値の正規 化を行う.図4(c)は(a)の画素値を正規化した画像, 図4(d)は(b)の画素値を正規化した画像であり,これ ら正規化画像群に対してノイズ除去を行う.正規化 の際に端の視点の画像ほど画素値が拡大されるため, 結果として端の視点ほどノイズレベルが大きくなる.

以上から、本論文ではノイズ $\mathcal{N} \in \mathbb{R}^{H \times W \times ST \times 3}$ として、各成分の平均は0で、分散 $\sigma^2_{(s,t)}$ は視点(s,t)が端になるほど大きくなる白色ガウス雑音を仮定する.

3.2 視点依存制約付きライトフィールドノイズ除去

第2.2節で述べたように,式(1)の3階テンソルに 基づく手法をカラーライトフィールドのノイズ除去 に応用したとしても,RGB成分全てに渡ってノイズ を効率的に除去することは困難であった.そこで本 論文では,4階テンソルを用いてRGB成分の全ての ノイズを同時に除去する方法を提案する.提案法で は,カメラアレイや符号化撮像を用いた場合だけで なく,マイクロレンズアレイを用いた場合にも適用 できるように,視点ごとのノイズレベルも考慮する.

最初に**ソ**の各視点のカラー画像をパッチ $\mathcal{Y}_{(h,w)}^{(s,t)} = (Y_{(h,w),R}^{(s,t)}, Y_{(h,w),G}^{(s,t)}, Y_{(h,w),B}^{(s,t)}) \in \mathbb{R}^{p \times p \times 3}$ に分割する.次 に参照パッチ $\mathcal{Y}_{ref} = \mathcal{Y}_{(h_1,w_1)}^{(s_1,t_1)}$ を決定し,カラー画像の まま全ての視点から類似パッチを検索する.この際, ノイズレベルが大きい視点のパッチが選択されなく なってしまうことを避けるため,まず第 (s_1,t_1) 視点 から $(\tilde{N}-1)$ 枚の類似パッチを検索する.その後,第 (s_1,t_1) 視点以外の視点から,それぞれ \tilde{N} 枚ずつ類似 パッチを検索する.参照パッチと全視点から検索した $(\tilde{N}ST-1)$ 枚の類似パッチを重ねることで,ノイズ 除去対象の4階テンソル $\mathcal{Y}_{sim} = (\mathcal{Y}_n) \in \mathbb{R}^{p \times p \times N \times 3}$ を構成する.ここで, $N = \tilde{N}ST$ であり,第2.1節の \mathcal{Y}_{sim} のモード順は垂直,水平,パッチ番号,RGBとした.また, \mathcal{Y}_1 は参照パッチ, $\mathcal{Y}_2, \mathcal{Y}_3, \dots, \mathcal{Y}_N$ は類似パッチである.

式(1)のアイディアに基づいて **y**_{sim}のノイズ除去 を行うが,本論文では以下の2点を改良する.第1に, データ整合性を損失関数で評価するのではなく,視点 に依存する制約として表現するように変更する.これ により,視点ごとのノイズレベルを考慮できるだけ でなく,損失関数がITS Measure のみとなり,異なる ライトフィールドに対しても同一パラメータで頑健な ノイズ除去性能を発揮できるようになる.第2に,ITS Measure において各モード展開行列のランクを積では なく,重み付き和で評価するように変更する.これに より,垂直および水平方向と比べてパッチ番号方向の モード展開行列のランクが小さくなる傾向や,RGB 方向のモード展開行列が有するカラーライン[10]と いう性質の評価が可能になる.提案する最適化問題は

minimize
$$\|\mathcal{C}\|_0 + \sum_{i=1}^4 \kappa_i \operatorname{rank}(X_{(i)})$$

s.t. $\forall n = 1, 2, \dots, N, \frac{1}{3p^2} \|\mathcal{X}_n - \mathcal{Y}_n\|_{\mathrm{F}}^2 \leq \delta \sigma_{(s_n, t_n)}^2,$
 $\mathcal{X} = \mathcal{C} \times_1 U_1 \times_2 U_2 \times_3 U_3 \times_4 U_4, \text{ and } \forall i \ U_i^\top U_i = I$
のように表される. ここで, $\delta > 0$ であり, (s_n, t_n) は

第n類似パッチ \mathcal{Y}_n の視点座標である.式(2)の問題の 最適解 $\hat{\mathcal{X}}_{sim} \in \mathbb{R}^{p \times p \times N \times 3}$ の各パッチをライトフィー ルド内の元の位置に戻し、一連の操作を参照パッチ \mathcal{Y}_{ref} を変えて繰り返す.最後に、複数のパッチに渡る 結果を画素ごとに平均化することにより、最終的な ノイズ除去結果 $\hat{\mathcal{Z}} \in \mathbb{R}^{H \times W \times ST \times 3}$ が出力される.

3.3 更新アルゴリズム

式(2)の ℓ_0 ノルムとランク関数はいずれも非負整数 値を返す関数であり、最適化が難しい.ランク関数 は、行列の特異値を並べたベクトルの ℓ_0 ノルム値と して表現可能なことから、 ℓ_0 ノルムを近似する連続 関数を利用して、式(2)の損失関数の連続的な近似値 を与えることができる. ℓ_0 ノルムの近似には、(重み 付き) ℓ_1 ノルム $\|x\|_{I}^{\mu} = \sum_i \nu_i |x_i| [11]$ や log-sum 罰則 関数 $L_{\epsilon}(x) = \sum_i \log \frac{|x_i| + \epsilon}{\epsilon} [12]$ が用いられる (ただし、 $\nu_i > 0$ であり、 $\epsilon > 0$ は小さな正定数).これら2つの 連続関数の近接写像 prox は容易に計算可能である.

Liu らの手法 [6] と同様に,損失関数の近似値を, 凸最適化手法の一種である ADMM [8] によって最小 化する.まず, $\mathcal{L} := \mathcal{C} \times_1 U_1 \times_2 U_2 \times_3 U_3 \times_4 U_4$ と 定義し,更に 4 つの補助テンソル $\mathcal{M}_i \in \mathbb{R}^{p \times p \times N \times 3}$ (*i* = 1,2,3,4)を導入する.そして,式 (2)の問題を

minimize $Q(\operatorname{core}(\mathcal{L})) + \sum_{i=1}^{4} \kappa_i R_i(\operatorname{unfold}_i(\mathcal{M}_i))$ s.t. $\frac{1}{3p^2} \|\mathcal{X}_n - \mathcal{Y}_n\|_{\mathrm{F}}^2 \leq \delta \sigma^2_{(s_n,t_n)}$ and $\mathcal{X} = \mathcal{L} = \mathcal{M}_i$ (3) のように近似する. ここで, core はコアテンソル $\mathcal{C} \in \mathbb{R}^{r_1 \times r_2 \times r_3 \times r_4}$ の抽出, unfold_i は第*i*モード展開, *Q* と R_i はそれぞれ ℓ_0 ノルムとランク関数を近似する連続 関数である. 式(3)の問題に対して, 形式的に ADMM を適用することで, 提案法の更新式が導出される.

ルに関しては、まず中間更新値として

$$\boldsymbol{\mathcal{X}}^{(j+\frac{1}{2})} = \frac{1}{5} \left(\boldsymbol{\mathcal{L}}^{(j)} + \sum_{i=1}^{4} \boldsymbol{\mathcal{M}}_{i}^{(j)} + \frac{1}{\mu} \sum_{i=0}^{4} \boldsymbol{\mathcal{D}}_{i}^{(j)} \right)$$

を計算する.ここで,*j*は更新回数, $\mathcal{D}_i \in \mathbb{R}^{p \times p \times N \times 3}$ (*i* = 0,1,2,3,4) は双対変数, $\mu > 0$ は任意の定数で ある.各パッチで制約 $\frac{1}{3p^2} \|\mathcal{X}_n^{(j+\frac{1}{2})} - \mathcal{Y}_n\|_F^2 \le \delta \sigma^2_{(s_n,t_n)}$ が満たされるかどうかを確認し,満たされる場合は $\mathcal{X}_n^{(j+1)} = \mathcal{X}_n^{(j+\frac{1}{2})}$ と更新し,満たされない場合には

$$\mathcal{X}_{n}^{(j+1)} = \mathcal{Y}_{n} + \frac{\sqrt{3\delta p \sigma_{(s_{n},t_{n})}}}{\|\mathcal{X}_{n}^{(j+\frac{1}{2})} - \mathcal{Y}_{n}\|_{\mathrm{F}}} \left(\mathcal{X}_{n}^{(j+\frac{1}{2})} - \mathcal{Y}_{n}\right)$$

のように、 $\mathcal{X}_{n}^{(j+\frac{1}{2})}$ を制約集合へ射影することで更新 を行う.次に、直交行列 U_{i} (i = 1, 2, 3, 4)とコアテン ソル**C**を更新することで、間接的に**C**の更新を行う.

$$U_1^{(j+1)} = A_1^{(j)} B_1^{(j)}$$

と更新する. U_2, U_3, U_4 も同様に更新した後, $\tilde{\boldsymbol{\mathcal{G}}}^{(j)} := \boldsymbol{\mathcal{G}}^{(j)} \times_1 U_1^{(j+1)\top} \times_2 U_2^{(j+1)\top} \times_3 U_3^{(j+1)\top} \times_4 U_4^{(j+1)\top} \in \mathbb{R}^{r_1 \times r_2 \times r_3 \times r_4}$ を計算し, コアテンソル $\boldsymbol{\mathcal{C}}$ を

$$\mathcal{C}^{(j+1)} = \operatorname{prox}_{\frac{1}{\mu}Q} \left(\widetilde{\mathcal{G}}^{(j)} \right)$$

のように更新する.以上により $\mathcal{L}^{(j+1)}$ が得られる. $\mathcal{M}_i (i = 1, 2, 3, 4)$ は第 $i \in - \mathbb{K}$ 展開行列を介して $M_{i,(i)}^{(j+1)} = \operatorname{prox}_{\frac{1}{\mu}R_i} \left(X_{(i)}^{(j+1)} - \frac{1}{\mu} D_{i,(i)}^{(j)} \right) \quad (i = 1, 2, 3, 4)$ と更新され,最後に双対変数 $\mathcal{D}_i (i = 0, 1, 2, 3, 4)$ が $\left(\mathcal{D}_0^{(j+1)} = \mathcal{D}_0^{(j)} - \mu(\mathcal{X}^{(j+1)} - \mathcal{L}^{(j+1)}) \right)$

 $\begin{cases} \mathcal{D}_{0}^{(j+1)} = \mathcal{D}_{0}^{(j)} - \mu(\mathcal{X}^{(j+1)} - \mathcal{M}_{i}^{(j+1)}) \\ \mathcal{D}_{i}^{(j+1)} = \mathcal{D}_{i}^{(j)} - \mu(\mathcal{X}^{(j+1)} - \mathcal{M}_{i}^{(j+1)}) \\ i = 1, 2, 3, 4) \end{cases}$

と更新される.上記の計算を一定回数繰り返すこと で,提案法のノイズ除去結果 \hat{X}_{sim} が得られる.なお, 第3節はカラー画像を前提として議論を展開したが, 4階テンソルの第4モードを削除して第2.1節の3階 テンソルに戻せば,提案法のアルゴリズムはグレー スケールのライトフィールドにも適用可能である.

4 数值実験

スタンフォード大学コンピュータグラフィックス 研究室が公開しているライトフィールド [13] から, "Tarot Cards and Crystal Ball (small angular extent)" を 利用して数値実験を行った.このライトフィールドは, 17×17視点の各1024×1024画素の画像群から構成 され, 第(1,1), (1,9), (1,17), (9,1), (9,9), (9,17), (17,1),(17,9),(17,17)視点を抜き出した後に画像を 縮小することで、カラー画像群 $\mathcal{Z} \in [0,1]^{129 \times 129 \times 9 \times 3}$ を作成した.マイクロレンズアレイを用いて取得した ライトフィールドを模倣するために,加法ノイズ ∧ の分散は端の4視点で0.092,中間の4視点で0.072, 中心視点で0.05²とした.ノイズを加えた後に、0以下 と1以上の画素値をそれぞれ0と1に置き換えること で Уを作成した. Уに対して、カラー画像用の手法 である C-BM3D [9] と, ライトフィールド用の手法 である Liu らの手法 [6] および提案法を適用し、それ ぞれのノイズ除去結果を視点ごとに比較する. Liu ら の手法では式(1)をY成分のみに適用し、提案法では 式(2)をRGB成分に適用する以外にも,比較のために

表 1: 各手法の視点ごとのノイズ除去結果 (PSNR)

視点	従来法		提案法	
座標	C-BM3D	Liuらの	3 階テン	4 階テン
(s,t)	(YCbCr)	手法 (Y)	ソル(Y)	ソル (RGB)
(1, 1)	28.54	27.97	29.37	29.73
(1,9)	30.18	30.28	30.92	31.08
(1, 17)	28.55	28.01	29.37	29.70
(9, 1)	30.17	30.43	31.23	31.37
(9,9)	32.61	32.64	32.53	32.70
(9, 17)	30.16	30.36	30.91	31.08
(17, 1)	28.52	27.90	29.37	29.61
(17, 9)	30.16	30.22	30.83	30.83
(17, 17)	28.48	28.06	29.29	29.67

式 (2) を 3 階テンソルにして Y 成分のみに適用する. パッチサイズは 9×9,検索ウィンドウは 17×17 とし て、参照パッチは中心視点のパッチを 4 画素ずつずら して決定した.参照パッチも含めて各視点から $\tilde{N} = 3$ 枚ずつ選び,計 N = 27 枚の類似パッチごとにノイズ 除去を行った.各パラメータの値は、Liu らの手法で (r_1, r_2, r_3) = (6,6,6), $\lambda = 5000, \kappa = 0.0047$,提案法 の 3 階テンソルで (r_1, r_2, r_3) = (9,9,15), $\delta = 0.7225$, ($\kappa_1, \kappa_2, \kappa_3$) = (3,3,90) として、 ℓ_0 ノルムの近似には 全て log-sum 罰則関数 ($\epsilon = 2.2204 \times 10^{-16}$)を用いた. 4 階テンソルでは、(r_1, r_2, r_3, r_4) = (9,9,15,3), $\delta =$ 0.81, ($\kappa_1, \kappa_2, \kappa_3, \kappa_4$) = 1000 × (1,1,10,1) とし、第4 モード展開行列 $X_{(4)}$ のランク関数の近似のみ、重み 付き ℓ_1 ノルム ((ν_1, ν_2, ν_3) = (0.1,0.9,0.9))を用いた. 各手法で $\mu = 275$ として、30 回の更新を行った.

表1に各手法の視点ごとの PSNR 値 [9] を, 図 5, 6, 7 に第 (1,1), (9,1), (9,9) 視点の (a) 元画像, (b) 観測 画像, (c)–(f) 結果画像を示す.表1から分かるように, 4 階テンソルを用いた提案法が全視点で最も高精度 にノイズを除去できている.一方, Liu らの手法は端 の視点で C-BM3D よりも精度が低くなっている.2つ の提案法の比較から,4階テンソルを用いて RGB 成分 全域で適切にノイズを除去できていることが分かる.

5 おわりに

マイクロレンズアレイを用いて取得されたカラー ライトフィールドのための高精度なノイズ除去手法 を提案した.3階テンソルに基づく従来法では,RGB 成分全域に渡るノイズ除去が困難であり,各視点の ノイズレベルの差も考慮されていなかった.提案法は 4階テンソルと視点依存のデータ整合性制約を利用 することで,各視点でRGB成分全域に渡った適切な ノイズ除去を実現する.数値実験において,全視点で 提案法が従来法より優れたノイズ除去性能を示した.

(a): 元画像
(b): 観測画像
(c): C-BM3D
(d): Liu らの手法
(e): 提案法 (3 階)
(f): 提案法 (4 階)
図 5: 第 (1,1) 視点におけるノイズ除去結果 (ノイズの標準偏差 σ_(1,1) = 0.09)

(a): 元画像
(b): 観測画像
(c): C-BM3D
(d): Liu らの手法
(e): 提案法 (3 階)
(f): 提案法 (4 階)
図 6: 第 (9,1) 視点におけるノイズ除去結果 (ノイズの標準偏差 σ_(9,1) = 0.07)

(a): 元画像
(b): 観測画像
(c): C-BM3D
(d): Liu らの手法
(e): 提案法 (3 階)
(f): 提案法 (4 階)
図 7: 第 (9,9) 視点におけるノイズ除去結果 (ノイズの標準偏差 σ_(9,9) = 0.05)

参考文献

- E. H. Adelson and J. R. Bergen, "The plenoptic function and the elements of early vision," in *Computational Models of Visual Processing*, M. Landy and J. A. Movshon, Eds. Cambridge, MA: MIT Press, 1991, pp. 3–20.
- [2] 日浦 慎作, "コンピュテーショナルフォトグラフィ: 画 像獲得の再定義," 情報処理学会研究報告, vol. 2010-CG-141, no. 4, pp. 1–6, 2010.
- [3] 蚊野浩, "ライトフィールドカメラによる三次元計測: 原理・現状・将来," 第25回三次元工学シンポジウム, 5 pages, 2015.
- [4] 八木 祐亮, 高橋 桂太, 藤井 俊彰, 園田 聡葵, 長原 一, "主成分分析を用いた符号化撮影による光線空間取得 の検討," 信学技報, vol. 117, no. 48, pp. 75–79, 2017.
- [5] 藤井 俊彰, "ライトフィールドイメージングの基礎と その応用," 光学, vol. 46, no. 10, pp. 398–402, 2017.
- [6] Y. Liu, N. Qi, Z. Cheng, D. Liu, Q. Ling, and Z. Xiong, "Tensor-based light field denoising by integrating super-resolution," in *Proceedings of IEEE International Conference on Image Processing (ICIP)*, Athens, Greece, 2018, pp. 3209–3213.
- [7] Q. Xie, Q. Zhao, D. Meng, Z. Xu, S. Gu, W. Zuo, and L. Zhang, "Multispectral images denoising by intrinsic

tensor sparsity regularization," in *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Las Vegas, NV, 2016, pp. 1692–1700.

- [8] D. Gabay and B. Mercier, "A dual algorithm for the solution of nonlinear variational problems via finite element approximation," *Computers & Mathematics with Applications*, vol. 2, no. 1, pp. 17–40, 1976.
- [9] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-D transform-domain collaborative filtering," *IEEE Transactions on Image Processing*, vol. 16, no. 8, pp. 2080–2095, 2007.
- [10] I. Omer and M. Werman, "Color lines: Image specific color representation," in *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition* (*CVPR*), Washington, DC, 2004, 8 pages.
- [11] K. Hosono, S. Ono, and T. Miyata, "Weighted tensor nuclear norm minimization for color image restoration," *IEEE Access*, vol. 7, pp. 88768–88776, 2019.
- [12] E. J. Candès, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted *l*₁ minimization," *J. Fourier Analysis and Applications*, vol. 14, pp. 877–905, 2008.
- [13] *The (New) Stanford Light Field Archive*, available online at: http://lightfield.stanford.edu/lfs.html