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Abstract—In this paper, we propose a simple but powerful idea
to improve super-resolution (SR) methods based on convolutional
neural networks (CNNs). We consider a linear manifold, which is
the set of all SR images whose downsampling results are the same
as the input image, and apply the orthogonal projection onto this
linear manifold in the output layers of the CNNs. The proposed
method can guarantee the consistency between the SR image and
the input image and reduce the mean square error. The proposed
method is especially effective for SR methods based on generative
adversarial networks (GANs), composed of one generator and one
discriminator, since the generator can learn high-frequency com-
ponents while maintaining low-frequency ones. Experiments show
the effectiveness of the proposed technique for a GAN-based SR
method. Finally we introduce an idea of extension to noisy images.

Index Terms—Single image super-resolution, generative adver-
sarial network, orthogonal projection, constrained learning.

I. INTRODUCTION

Super-resolution (SR) is a reconstruction problem of high-
resolution (HR) images including various high-frequency com-
ponents from low-resolution (LR) images including only low-
frequency components [1]–[13]. In SR, it is important not only
to increase the number of pixels but also to recover the original
high-frequency components. In this paper, we focus on single
image SR, which is an under-determined inverse problem since
we have to recover an HR image from a single LR image having
a smaller number of pixels. The simplest ways to increase the
number of pixels are algebraic interpolations, e.g., the nearest-
neighbor, bilinear, and bicubic interpolations. Although these
algebraic methods are very fast, they cannot recover the high-
frequency components at all. Therefore, SR results, called SR
images in this paper, of the algebraic methods are very blurred.

To accurately recover the high-frequency components, most
SR methods learn the transform from LR images to HR images
by using training data. SR methods based on dictionary learn-
ing [2], [3] were studied before, but recently SR methods based
on convolutional neural networks (CNNs) [4]–[11] are mainly
used in terms of both reconstruction accuracy and processing
time. Dong et al. proposed the first end-to-end CNN for SR,
named SRCNN [4]. SRCNN transforms interpolated LR im-
ages, which are enlarged to the HR image size by the bicubic
interpolation, into SR images through three convolution layers.
There exist many improved versions of SRCNN [5]–[11]. For
example, VDSR [6] increased the number of the convolution
layers by introducing the residual learning to avoid the gradi-
ent vanishing. ESPCN [7] proposed the sub-pixel convolution
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layer called pixel shuffler, which enlarges LR images at various
magnification ratios and removes the bicubic interpolation uti-
lized in the input layer of SRCNN. In each SR method [5]–[11],
a single CNN, generator, is trained by minimizing mainly the
mean square error (MSE) or the mean absolute error (MAE)
between the true HR images and the generated SR ones.

It is well-known that SR images generated from the CNNs
based on MSE or MAE are over-smoothed yet, i.e., recovery of
high-frequency components is still insufficient, since the high-
frequency components hardly contribute to the values of MSE
and MAE. Therefore, Ledig et al. proposed SRGAN [12] that
uses a generative adversarial network (GAN) [14]. SRGAN is
composed of two CNNs, i.e., a generator and a discriminator.
The discriminator is trained to judge whether the input image
is a true HR image or a generated SR one. Since the generator
tries to induce the discriminator’s misjudgment, SR images in-
cluding realistic high-frequency components can be generated.
However, the generated SR images have some artifacts which
do not exist in true HR images, and values of PSNR decrease.

In this paper, we consider the set of all SR images whose
downsampling results correspond to the input LR image. This
set becomes a linear manifold, and the orthogonal projection
onto this set can be easily computed as in [15] under a simple
downsampling model in (1) (see Sect. II.A). We propose to use
the orthogonal projection in the output layer of the generator.
The proposed method can be applied to any generator and SR
images having the perfect consistency with the input images
are always generated. Therefore, the generator can learn high-
frequency components while keeping true low-frequency ones.
Numerical experiments show that the proposed method signifi-
cantly reduces the artifacts of SR images generated by a GAN-
based method while reconstructing high-frequency components
at high accuracy. Finally, we conclude this paper and introduce
an extension of the proposed method to noisy LR images.

II. IMAGE SUPER-RESOLUTION BY NEURAL NETWORKS

A. Formulation of Downsampling

Let Y := (Yi,j,c) ∈ RI×J×3 be a low-resolution (LR) RGB
color image to be enlarged, and Yi,j,c ∈ R be the (i, j)th pixel
value (i = 1, 2, . . . , I and j = 1, 2, . . . , J) of color channel c
(c = R,G,B). Suppose that Y is the downsampling result of a
high-resolution (HR) color image X := (Xi,j,c) ∈ RIK×JL×3
with slight anti-aliasing (i.e., non-overlapped slight blurring) as

Yi,j,c =

K∑
k=1

L∑
l=1

wk,lX(i−1)K+k,(j−1)L+l,c, (1)



Fig. 1. The proposed generator model based on EDSR. The inputs are LR images and the outputs are SR images projected onto the linear manifold A in (8).

where K and L are supposed to be integers lager than 1, and
wk,l ∈R are downsampling weights1 s.t.

∑K
k=1

∑L
l=1 wk,l =1.

Define y ∈ R3IJ and x ∈ R3IJKL as the vectorized versions
of the LR image Y and the HR image X , respectively. Then
by using a block-diagonal-like matrix A ∈ R3IJ×3IJKL, the
downsampling model in (1) is expressed as a matrix form2 by

y = Ax. (2)

B. Super-Resolution via Single Convolutional Neural Network

Image super-resolution (SR) based on a single convolutional
neural network (CNN) has been studied by many researchers
[4]–[11], after the work of SRCNN [4]. Especially, SRResNet
proposed by Ledig et al. as the generator of SRGAN [12] (see
also Sect. II.C below) is often adopted as a baseline. SRResNet
utilizes the architecture of ResNet [17], that is developed orig-
inally for the image recognition, and has many residual blocks
composed of two convolution layers, two batch normalization
layers, and one rectified linear unit (ReLU). At the end of each
residual block, the input of the residual block is added for the
residual learning which enables CNNs to avoid the gradient
vanishing. Lim et al. proposed EDSR [8] as an improved ver-
sion of SRResNet. In EDSR, the batch normalization layers are
removed because they decrease the flexibility of CNNs and use
a lot of memory. In the blue box of Fig. 1, the architecture of
EDSR is shown. In experiments of Sect. IV, we adopt EDSR,
instead of SRResNet, as a baseline and a generator of a GAN.
Besides the above methods, EUSR [9], RCAN [10], and SAN
[11] are proposed as single-CNN-based SR methods.

Let {(yn,xn)}Nn=1 be training data composed of N pairs of
LR and HR color images. Let x̂n ∈ R3IJKL be the outputs,
called SR images, of a certain SR network for the inputs yn ∈

1If downsampling is the nearest-neighbor interpolation or the bilinear inter-
polation, then (1) is always satisfied. If downsampling is the bicubic polyno-
mial interpolation and both K and L are equal to or larger than 4, then (1) is
also satisfied, but some weights are negative. However, if downsampling is the
bicubic polynomial interpolation and K or L is equal to or smaller than 3, then
(1) is not satisfied. If downsampling is the bicubic spline interpolation, then (1)
is never satisfied. If standard anti-aliasing, i.e., overlapped blurring as in [16],
is done right before interpolation, then (1) becomes an approximation model.

2Although most downsampling methods, including the bicubic polynomial
and spline interpolations, are expressed as linear operators A in (2), the condi-
tion in (1) is important to easily compute the orthogonal projection as in (10).

R3IJ . As a loss function to be minimized for training of the SR
network, the mean square error (MSE)

lMSE =
1

3IJKLN

N∑
n=1

‖x̂n − xn‖22 (3)

is usually adopted, where ‖·‖2 denotes the `2 norm of a vector.
Some papers claim that the mean absolute error (MAE)

lMAE =
1

3IJKLN

N∑
n=1

‖x̂n − xn‖1 (4)

leads to slightly better results, where ‖·‖1 is the `1 norm. The
difference between (3) and (4) has little effect on human eyes.

C. Super-Resolution via Generative Adversarial Network
Ledig et al. proposed an image SR method using a genera-

tive adversarial network (GAN) [14] for the first time, and it
was named SRGAN [12]. Conventional methods [4]–[11] train
a single CNN by minimizing (3) or (4), but they cannot suffi-
ciently recover high-frequency components of the HR images.
On the other hand, SRGAN is composed of two CNNs, i.e., a
generator and a discriminator, and can create high-frequency
components although they might differ from the original ones.

In SRGAN, the generator (SRResNet) G : R3IJ → R3IJKL

and the discriminator D : R3IJKL → (0, 1) are alternately up-
dated. The discriminator D judges whether the input image is
a true HR image or a generated SR one by maximizing

lD =
1

N

N∑
n=1

log(D(xn)) +
1

N

N∑
n=1

log(1−D(x̂n)), (5)

where x̂n = G(yn) is the SR image generated from the input
LR image yn by the current generator G. In GAN-based tech-
niques, the second term 1

N

∑N
n=1 log(1−D(x̂n)) in (5) is usu-

ally used as a loss function for G, but in the context of SR,

lA = − 1

N

N∑
n=1

log(D(x̂n)) (6)

is often used as the adversarial loss due to its better gradient
behavior [12]. As a result, the total loss function for G can be
expressed as

l = lC + κlA, (7)



where lC is the content loss evaluating the consistency between
x̂n and xn, and κ > 0 is a weight for the adversarial loss lA
in (6). In the simplest cases, the content loss lC is defined as
lMSE in (3) or lMAE in (4). In more complicated cases [12],
[13], the content loss lC is defined, for example, as MSE of the
VGG feature maps [18] or MAE of the differential images.

III. ORTHOGONAL PROJECTION IN THE OUTPUT LAYER

In the conventional loss function in (7), the content loss lC
mainly evaluates the differences between SR images x̂n and
true HR images xn. However, it is not considered whether re-
downsampling results Ax̂n are close to given LR images yn or
not. On the other hand, the true HR images xn always satisfy
Axn = yn. To make the most of training data, we should also
consider the re-downsampling results Ax̂n. In this paper, we
propose a modification technique which enables any generator
to generate SR images x̌n satisfying Ax̌n = yn. The proposed
technique is expected to be effective especially for GAN-based
SR methods because the generator learns high-frequency com-
ponents while maintaining the original low-frequency compo-
nents, i.e., information on the input LR images.

First, we define the set of all SR images matching the input
LR image by

An := {x ∈ R3IJKL |Ax = yn}
= {xn + z ∈ R3IJKL |Az = 0} = xn +N (A), (8)

where N (A) denotes the null space of A. From (8), it is found
that the set An is a linear manifold and the true HR image xn
always belongs to An. By applying the orthogonal projection
PAn onto An, in the output layer (see the red box of Fig. 1),
to the conventional SR image x̂n, we obtain the proposed SR
image x̌n := PAn(x̂n) which matches the input LR image yn.
The proposed SR image x̌n is concretely expressed as

x̌n = PAn(x̂n) = argmin
x∈An

‖x̂n − x‖2

= x̂n −AT(AAT)−1(Ax̂n − yn). (9)

In general, the exact computation of (AAT)−1 is difficult when
the image size becomes huge. In this paper, since we assumed
the blockwise downsampling model as in (1), AAT is always
a diagonal matrix and hence (9) is easily computed by

x̌n = PAn(x̂n) = x̂n −
1∑K

k=1

∑L
l=1 w

2
k,l

AT(Ax̂n − yn).

(10)
As shown in Fig. 2, MSE between x̂n and xn in (3) (brown

line) can be divided into vertical components to An (blue line)
and horizontal components to An (green line), and we have

‖x̂n − xn‖22 = ‖x̂n − PAn(x̂n)‖22 + ‖PAn(x̂n)− xn‖22
≥ ‖PAn(x̂n)− xn‖22 = ‖x̌n − xn‖22. (11)

From (11), if Ax̂n 6= yn, then MSE always becomes smaller,
i.e., PSNR always improves, by the orthogonal projection PAn .
Since the output image is changed from x̂n to PAn(x̂n), the

Fig. 2. Linear manifold An in (8) and errors of horizontal/vertical directions.

MSE content loss is changed to

lC′ =
1

3IJKLN

N∑
n=1

‖PAn(x̂n)− xn‖22, (12)

where we use not MAE but MSE as the content loss for stable
training. When we only consider a weighted sum of lC′ in (12)
and lA in (6) as the total loss function l for the generator G,
actually SR results are not good because error information of
the vertical components to An is lost. Hence, to generate SR
images as close as possible to the linear manifold An before
the orthogonal projection, we further propose to consider MSE
of the vertical components to An as the projection loss

lP =
1

3IJKLN

N∑
n=1

‖x̂n − PAn(x̂n)‖22. (13)

Note that, under the downsampling model in (1), the projection
loss lP is also expressed as

lP =
1

3IJKLN(
∑K
k=1

∑L
l=1 w

2
k,l)

2

N∑
n=1

‖AT(Ax̂n − yn)‖22

=
1

3IJKLN
∑K
k=1

∑L
l=1 w

2
k,l

N∑
n=1

‖Ax̂n − yn‖22. (14)

From (14), the projection loss is essentially equivalent to MSE
between the re-downsampling results Ax̂n and the LR images
yn.3 Finally the proposed total loss function for G is defined as

l = lC′ + λlP + κlA, (15)

where λ > 0 and κ > 0. Since the content loss lC′ in (12) is
more important than the projection loss lP in (13), we recom-
mend to use λ which is smaller than 1. In (15), we evaluate the
horizontal and vertical MSEs at a ratio of 1 : λ while in (7) the
conventional methods evaluated them at a ratio of 1 : 1.

3Some downsampling losses similar to (14) have been proposed in [19]–[21].
Differently from [19]–[21], we applied the orthogonal projection in the output
layer and clarified the equivalence of the projection and downsampling losses.



IV. NUMERICAL EXPERIMENTS

We compare SR results of EDSR, EDSR-Projection, EDSR-
GAN, and EDSR-GAN-Projection, where ‘Projection’ means
that the orthogonal projection is added in the output layer of
the generator and the content loss lC = lMSE is replaced with
lC′+λlP, and ‘GAN’ means that the discriminator of SRGAN
[12] is trained and used in the adversarial loss lA. We set the
weights λ = 10−3 and κ = 10−3. DIV2K dataset is adopted as
training data. We set the size of training HR patches as 96×96
for ×2 scale (i.e., K = L = 2) and 144×144 for ×3 scale. For
each scale, all LR patches of size 48× 48 are given by down-
sampling of the HR patches with the arithmetic mean matrixA.
We evaluate the SR performance of each method for four test
datasets, Set5, Set14, BSD100 and Urban100. We prepare two
kinds of test LR images. One is downsampled with the matrix
A, and the other is given with the bicubic spline interpolation.

We utilize Adam [22] as the optimizer, where we set α =
10−4 in the training of the CNNs, α = 10−5 in the training of
the GANs, and β = 0.9. For stable GAN training, a pre-trained
EDSR is used as the initial value of the generator. We set the
minibatch size as 96 to speed up training, and use PSNR and
FSIMC [23] as image quality indices for comparison. It takes
about 2 days to train the networks with GeForce GTX 1080ti.

Tables I and II summarize the SR results for the two kinds of
the LR images. Among the single-CNN-based methods, there
are no significant differences, which means that a MSE-based
CNN almost satisfies Ax̂n=yn without the orthogonal projec-
tion. On the other hand, among the GAN-based methods, the
proposed method improves PSNR by the orthogonal projection
in Tables I and II. Moreover, the proposed method improves
FSIMC mainly for ×3 scale in Table I, and for the both scales
in Table II (though the downsampling is different from training
data), which means that the proposed method has a certain ro-
bustness against the different downsampling. Figures 3 and 4
show two SR results. The SR images of the MSE-based CNNs
are over-smoothed, and those of EDSR-GAN seem clearer but
include some artifacts. On the other hand, the proposed GAN-
based SR (EDSR-GAN-Projection) generates high-frequency
components accurately while greatly reducing the artifacts.

V. CONCLUSION AND FUTURE WORK

In this paper, for image SR using CNNs, we proposed to use
an orthogonal projection in the output layer for generating SR
images having the perfect consistency with the input LR im-
ages. In particular, the proposed method is effective for GAN-
based SR methods since generators learn high-frequency com-
ponents while keeping the original low-frequency ones. Note
that the proposed method can be applied to another constrained
learning if the projection onto the constraint is available.

As future work, by considering noise and model error of A,
we plan to use the set of all images of noise level under ε > 0:

Aεn := {x ∈ R3IJKL | ‖Ax− yn‖2 ≤ ε}.

Under the condition in (1), the projection onto Aεn is given by

PAεn(x̂n) = x̂n −
δεn(x̂n)∑K

k=1

∑L
l=1 w

2
k,l

AT(Ax̂n − yn),

where δεn : R3IJKL → R is a differentiable function defined as

δεn(x̂n) :=


0 if ‖Ax̂n − yn‖2 ≤ ε,
‖Ax̂n − yn‖2 − ε
‖Ax̂n − yn‖2

otherwise.
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TABLE I
SR RESULTS (PSNR / FSIMC ) FOR SET5, SET14, BSD100 AND URBAN100. TEST IMAGES ARE DOWNSAMPLED BY THE MATRIX A USED IN TRAINING.

Dataset Scale EDSR EDSR- EDSR-GAN EDSR-GAN-
Projection Projection

Set5 ×2 36.31 / 0.9728 36.31 / 0.9726 34.02 / 0.9664 35.01 / 0.9625
×3 34.27 / 0.9416 34.26 / 0.9376 33.02 / 0.9251 33.33 / 0.9300

Set14 ×2 33.91 / 0.9538 33.93 / 0.9540 32.70 / 0.9436 32.98 / 0.9418
×3 32.59 / 0.9065 32.58 / 0.9059 31.59 / 0.8890 31.88 / 0.8969

BSD100 ×2 33.76 / 0.9396 33.76 / 0.9399 32.38 / 0.9275 32.84 / 0.9285
×3 32.47 / 0.8807 32.47 / 0.8810 31.50 / 0.8685 31.71 / 0.8743

Urban100 ×2 33.71 / 0.9468 33.73 / 0.9464 32.50 / 0.9332 32.91 / 0.9325
×3 32.29 / 0.8854 32.29 / 0.8856 31.30 / 0.8657 31.55 / 0.8729

TABLE II
SR RESULTS (PSNR / FSIMC ) FOR SET5, SET14, BSD100 AND URBAN100. TEST IMAGES ARE DOWNSAMPLED BY THE BICUBIC SPLINE INTERPOLATION.

Dataset Scale EDSR EDSR- EDSR-GAN EDSR-GAN-
Projection Projection

Set5 ×2 35.97 / 0.9697 35.98 / 0.9697 33.69 / 0.9637 35.15 / 0.9644
×3 33.88 / 0.9340 33.87 / 0.9339 33.21 / 0.9250 33.36 / 0.9285

Set14 ×2 33.45 / 0.9370 33.48 / 0.9378 32.49 / 0.9302 32.98 / 0.9314
×3 32.40 / 0.8961 32.39 / 0.8957 31.83 / 0.8885 32.02 / 0.8939

BSD100 ×2 33.60 / 0.9360 33.59 / 0.9361 32.41 / 0.9238 33.08 / 0.9306
×3 32.33 / 0.8704 32.33 / 0.8706 31.79 / 0.8671 31.92 / 0.8708

Urban100 ×2 33.10 / 0.9336 33.11 / 0.9337 32.25 / 0.9241 32.70 / 0.9272
×3 31.94 / 0.8636 31.94 / 0.8636 31.48 / 0.8576 31.63 / 0.8624

(a) HR image (a’) HR image

(b) EDSR
(32.38 / 0.9091)

(c) EDSR-Projection
(32.37 / 0.9092)

(d) EDSR-GAN
(31.64 / 0.8969)

(e) EDSR-GAN-Projection
(31.78 / 0.9017)

Fig. 3. SR results of ‘head’ in Set5 for ×3 scale (PSNR / FSIMC ).

(a) HR image (a’) HR image

(b) EDSR
(30.55 / 0.8582)

(c) EDSR-Projection
(30.55 / 0.8568)

(d) EDSR-GAN
(29.74 / 0.8349)

(e) EDSR-GAN-Projection
(29.96 / 0.8452)

Fig. 4. SR results of ‘img003’ in Urban100 for ×3 scale (PSNR / FSIMC ).


