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Abstract—As data analysis methods, hypothesis testing and re-
gression analysis are famous. However, the hypothesis testing can
only detect significant differences between two groups divided by
some characteristic or some empirical threshold, and the regres-
sion analysis can only construct one averaged model whose infor-
mation is limited. Quantile regression is a robust and flexible anal-
ysis method, and can construct multilevel models, e.g., the median
and the first and third quartiles. To make the most of the quantile
regression, existing papers employed spline regression models as
generalizations of polynomial regression models, but the regres-
sion of each level was individually executed. In this paper, we pro-
pose simultaneous spline quantile regression which considers the
similarity between the adjacent quantiles. Further, the proposed
method enforces the non-crossing and one shape (non-decreasing/
non-increasing/convex/concave) constraints. Experiments demon-
strate that the proposed method recovers harmonious quantiles.

Index Terms—Quantile regression, spline function, simultane-
ous regression, shape constraint, convex optimization.

I. INTRODUCTION

Data analysis [1] is becoming more and more important in
the big data era. In the simplest case, we analyze a pair of ran-
dom variables from bivariate observations. One famous analy-
sis method is hypothesis testing [2]–[4]. In this approach, we
first divide the observations into two groups by using a certain
empirically determined threshold on one random variable, and
then we check whether or not the distributions of the other ran-
dom variable are significantly different between the two groups.
However, the hypothesis testing cannot detect small differences
between the two groups and any difference within one group.

Another famous method is regression analysis [1], [2], [5]–
[7]. In this approach, we create a univariate continuous func-
tion which maps one random variable to the other one. Thus,
we can analyze the continuous relation between the two ran-
dom variables. This regression function is often constructed as
a low-order polynomial having the least square errors due to
the simplicity. In robust statistics [4], [8]–[11], a polynomial
having the least absolute errors, which leads to the regression
of the median, is used for suppressing the influence of outliers.

Quantile regression [12]–[15], which is seen as a general-
ization of the median regression, enables robust and flexible
analysis. In this approach, by minimizing certain asymmetric
absolute errors, we can construct multiple quantile lines, i.e.,
percentile lines. Therefore, we can realize continuous and two-
dimensional analysis using the multilevel regression results.
Although the quantile regression is an effective analysis meth-
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od, there is a possibility that a simple regression model such as
a polynomial cannot approximate the true quantiles enough. To
make the most of the quantile regression, a spline regression
model is adopted [16]–[22]. Splines are defined as piecewise
polynomials and have been widely utilized for construction of
smooth functions, including regression analysis, due to their
flexibility and optimality [16]. However, in the existing meth-
ods [14], [15], [22], the quantile of each level was individually
estimated even though all the quantiles are defined from only
one conditional probability density function (see Sect. II-B).

In this paper, we propose a novel spline quantile regression
technique. Differently from the methods in [14], [15], [22], we
simultaneously estimate multilevel quantiles while considering
the smoothness of the conditional probability density function,
which makes the first derivatives of the adjacent quantiles sim-
ilar. Further, we enforce the non-crossing condition [23]–[26],
which the true quantiles always satisfy, and an optional shape
constraint such as non-decreasing, non-increasing, convex, or
concave property [27]–[30], which linear or quadratic polyno-
mials have. Numerical experiments demonstrate that the pro-
posed quantiles are more harmonious than the previous ones.

II. PRELIMINARIES

Let R and N be the sets of all real numbers and nonnegative
integers, respectively. For ρ ∈ N ∪ {∞} and any open interval
(a, b) ⊆ R, Cρ(a, b) stands for the set of all ρ-times contin-
uously differentiable real-valued functions on (a, b). For any
d ∈ N, Pd (( C∞(R)) denotes the set of all univariate real
polynomials of degree d at most, i.e., Pd := {u : R → R :
x 7→

∑d
k=0 ckx

k | ck ∈ R}. Boldface small and capital letters
express vectors and matrices, respectively.

A. Regression Analysis

Suppose that we have finite observations (xi, yi) ∈ R2 (i =
1, 2, . . . , n) of a pair of real-valued random variables (X,Y ),
where the joint probability density function fX,Y (x, y) satisfies∫∫

Ω
fX,Y (x, y) dxdy = 1 and fX,Y (x, y) > 0 for all (x, y) in

a certain rectangular domain Ω := (xinf , xsup)×(yinf , ysup) ⊆
R2. Therefore, the conditional probability density function of
Y given X is defined by fY |X(y |x) := fX,Y (x, y)/fX(x) :=
fX,Y (x, y)/

∫ ysup
yinf

fX,Y (x, y) dy > 0 for all (x, y) ∈ Ω.
When we want to analyze a continuous relation between the

two random variables X and Y , the least squares regression

minimize
θ

n∑
i=1

|yi − rθ(xi)|2 (1)



is often used due to its low computational cost [1], [2], [5]–[7],
where the function rθ(x) is some regression model such as a
polynomial and the vector θ denotes adjustable parameters to
be optimized. The optimal solution rθ∗(x) of (1) expresses one
average relation because, as n approaches infinity, rθ∗(x) con-
verges to the conditional mean µY (x) of Y given X = x:

rθ∗(x)→ µY (x) := E[Y |X = x] =

∫ ysup

yinf

yfY |X(y |x) dy

under the assumption that rθ(x) can exactly express µY (x) if
we choose the appropriate θ (see, e.g., [1] for proof).

It is well-known that the square error as in (1) is sensitive to
outliers and hence the reliability of the optimal solution rθ∗(x)
of (1) significantly decreases for long-tailed data [4], [8]–[11].
In such situations, the least absolute deviations regression

minimize
θ

n∑
i=1

|yi − rθ(xi)| (2)

is utilized [10], [11]. Since the absolute error as in (2) does not
over-evaluate the outliers differently from the square error, this
regression is robust for long-tailed data even if n is not large.
As n approaches infinity, the optimal solution rθ∗(x) of (2)
converges to the conditional medianmY (x) of Y givenX = x:

rθ∗(x)→ mY (x) satisfying
∫ mY (x)

yinf

fY |X(y |x) dy = 0.5

under the assumption that rθ(x) can exactly express mY (x) if
we choose the appropriate θ (see, e.g., [10] for proof).

B. Quantile Regression

By generalizing the fact that the least absolute deviations re-
gression leads to the conditional median as shown in Sect. II-A,
we can estimate any quantile line as follows. Define the condi-
tional cumulative distribution function of Y given X = x by

FY |x(y) :=

∫ y

yinf

fY |X(t |x) dt for y ∈ (yinf , ysup).

FY |x(y) becomes a strictly increasing function due to the pos-
itivity of fY |X(y |x), and its inverse function F−1

Y |x(p) is well-
defined for p ∈ (0, 1). Actually, the conditional quantile func-
tion of Y given X = x is equivalent to F−1

Y |x(p) [2], [31]:

QY |x(p) := F−1
Y |x(p) for p ∈ (0, 1).

The value of qp,Y (x) := QY |x(p) s.t. x ∈ (xinf , xsup) is called
the pth conditional quantile of Y given X = x. Note that the
pth quantile qp,Y (x) is also called the 100pth percentile or cen-
tile, e.g., in [32]–[34]. When p = 0.5, the quantile qp,Y (x) is
equivalent to the conditional medianmY (x) of Y givenX = x.

For p ∈ (0, 1), define an asymmetric absolute value function

Jp(t) :=

{
pt if t ≥ 0,
−(1− p)t if t < 0,

and consider the following optimization problem [12]–[15]

minimize
θ

n∑
i=1

Jp(yi − rθ(xi)). (3)

Then, as n approaches infinity, the optimal solution rθ∗(x) of
(3) converges to the pth conditional quantile qp,Y (x) of Y :

rθ∗(x)→ qp,Y (x) satisfying
∫ qp,Y (x)

yinf

fY |X(y |x) dy = p

under the assumption that rθ(x) can exactly express qp,Y (x) if
we choose the appropriate θ (see, e.g., [14] for proof). This is
because the solution rθ∗(x) of (3) yields lower-side errors ei =
yi − rθ(xi) < 0 and upper-side errors ei = yi − rθ(xi) > 0,
at a ratio of p : 1− p. Therefore, we can easily estimate any
quantile line qp,Y (x) only by changing p in (3).

C. Spline Function

Let tb := {Ii := (ξi−1, ξi)}bi=1 be a set of b subintervals Ii
on an open interval I := (ξ0, ξb) (( R) s.t. ξi−ξi−1 =: hi > 0
(i = 1, 2, . . . , b). For tb and ρ, d ∈ N s.t. 0 ≤ ρ ≤ d, define

Sρd (tb) := {s ∈ Cρ(I) | s = ui ∈ Pd on Ii ∈ tb}

as the set of all univariate spline functions of degree d at most
and smoothness ρ on tb. In this paper, we express each spline
function s ∈ Sρd (tb) in the interval normalization form:

s(x) := ui(x) :=

d∑
k=0

c
〈i〉
k

(x− ξi−1

hi

)k
for x ∈ Ii, (4)

where c〈i〉k ∈ R (k = 0, 1, . . . , d) are coefficients of ui ∈ Pd.
Spline functions are widely utilized to construct smooth func-
tions, e.g., for interpolation, computer aided design, and re-
gression analysis [16]–[22], due to the following optimality.

Fact 1 (Spline as the unique solution of a variational prob-
lem): There exists the unique solution of the following problem

minimize
g∈C2(R)

n∑
i=1

|yi − g(xi)|2 + λ

∫
R
|g′′(x)|2 dx, (5)

and it is a natural cubic spline, which is a kind of spline func-
tion of degree 3 at most and smoothness 2 [16], where g′′(x) is
the second derivative of g(x). In the optimization problem of
(5), the smoothing parameter λ > 0 controls the trade-off be-
tween the data fidelity and the smoothness of the solution.

By using the coefficients c〈i〉k in (4), we can easily evaluate
the characteristics of spline functions as follows.

1) Quadratic Form of the Roughness Penalty Term: In (5),
if we restrict the domain of interest from R = (−∞,∞) to
I = (ξ0, ξb) (⊇ (xmin, xmax) := (min{xi},max{xi})) and
the function space from C2(R) to Sρd (tb) s.t. 2 ≤ ρ ≤ d, then
the roughness penalty term used in (5) can be decomposed as∫

I

|s′′(x)|2 dx =

b∑
i=1

∫
Ii

|s′′(x)|2 dx. (6)

By using the expression in (4), each roughness penalty on Ii
is expressed as the following quadratic form∫

Ii

|s′′(x)|2 dx =

d∑
k=2

d∑
j=2

k(k − 1)j(j − 1)

h3
i (k + j − 3)

c
〈i〉
k c
〈i〉
j . (7)



From (6) and (7), the total roughness penalty on I can be ex-
pressed as a certain quadratic form by

∫
I
|s′′(x)|2 dx = cTQc,

where c= (c
〈1〉
d , c

〈1〉
d−1, . . . , c

〈1〉
0 , c

〈2〉
d , c

〈2〉
d−1, . . . , c

〈2〉
0 , . . . , c

〈b〉
0 )T∈

Rb(d+1) is the coefficient vector of a spline s ∈ Sρd (tb) and
Q ∈ Rb(d+1)×b(d+1) is a positive semidefinite matrix.

2) Linear Equation for the ρ-Times Differentiability: For a
spline s ∈ Sρd (tb) in (4), to guarantee the ρ-times continuous
differentiability over I = (ξ0, ξb), i.e., s ∈ Cρ(I), every pair
of the coefficients of the adjacent polynomial pieces ui ∈ Pd
and ui+1 ∈ Pd has to satisfy the following linear equation

1

hji

d∑
k=j

k!

(k − j)!
c
〈i〉
k −

j!

hji+1

c
〈i+1〉
j = 0 (j = 0, 1, . . . , ρ)

⇔ s ∈ Cρ(ξi−1, ξi+1). (8)

From (8), there exists some matrix H ∈ R(b−1)(ρ+1)×b(d+1)

satisfying Hc = 0⇔ s ∈ Cρ(I).
3) Linear Inequality for the Nonnegativity: In [35] and [36],

the first author estimated probability density functions by spline
smoothing. It was very difficult to give a useful necessary and
sufficient condition for the nonnegativity of s ∈ Sρd (tb) over
each Ii. Instead, the first author used a sufficient condition in
[37], which can be expressed as the following linear inequality

j∑
k=0

(d− k)!

(j − k)!(d− j)!
c
〈i〉
k ≥ 0 (j = 0, 1, . . . , d)

⇒ s(x) ≥ 0 for all x ∈ Ii. (9)

From (9), there exists some matrix G ∈ Rb(d+1)×b(d+1) satis-
fying Gc ≥ 0⇒ s(x) ≥ 0 for all x ∈ I .

D. Quantile Regression via Spline Smoothing
In the problems of (1), (2), and (3), the most commonly used

regression model is a polynomial rθ(x) =
∑d
k=0 ckx

k of de-
gree d = 1 or d = 2 [1], [2], [5]–[7]. In this situation, coeffi-
cients of the polynomial are adjustable parameters, i.e., θ =
(cd, cd−1, . . . , c0)T ∈ Rd+1. However, there is a high proba-
bility that such a simple model cannot approximate the true
conditional quantile lines qp,Y (x) enough.

To deal with quantiles of various shapes flexibly, we employ
a spline regression model rθ = s ∈ Sρd (tb) as a generalization
of the polynomial regression model [14], [15], [22]. In this sit-
uation, the adjustable parameters become the coefficient vector
θ = c ∈ Rb(d+1) of s ∈ Sρd (tb) in Sect. II-C-1. Although the
spline regression model is really flexible, overfitting will arise
when the number n of observations is not enough. Therefore,
by assuming that the energy of local change of qp,Y (x) is small
and using the roughness penalty as a regularization term as in
(5), we solve, instead of (3), the following problem

minimize
s∈Sρd(tb)

n∑
i=1

Jp(yi − s(xi)) + λ

∫
I

|s′′(x)|2 dx, (10)

where λ > 0. Note that when ρ = d and λ approaches +0
in (10), the solution s∗(x) converges to the optimal polynomial
regression model in (3). By repeatedly solving the problem of
(10) for different p = pl (s.t. p1 < p2 < · · · < pL), we can
estimate and construct the quantiles of L levels.

III. SIMULTANEOUS QUANTILE REGRESSION
WITH SHAPE-CONSTRAINED SPLINES

In the basic spline quantile regression [14], [15], [22] of (10),
the non-crossing conditions as ∀x qpl+1,Y (x) > qpl,Y (x) (l =
1, 2, . . . , L−1) are ignored. Although these conditions are sat-
isfied automatically when hi is small or pl+1−pl is not small,
some papers incorporated them into constraints and guaranteed
the non-crossing regression results [23]–[26]. Other papers en-
forced the non-decreasing, non-increasing, convex, or concave
property on each spline regression model sl(x) [27]–[30] since
the polynomial regression model of degree 1 is non-decreasing
or non-increasing, and that of degree 2 is convex or concave.

In the conventional methods [14], [15], [22]–[30], the quan-
tile qpl,Y (x) of each level was individually estimated by solv-
ing a problem similar to (10), even though all the quantiles are
defined from only one conditional probability density function
fY |X(y |x) as mentioned in Sect. II-B. Hence, estimates s∗l (x)
of qpl,Y (x) (l = 1, 2, . . . , L) do not consider the smoothness of
fY |X(y |x) along the y-axis while the smoothness along the x-
axis is considered implicitly by the roughness penalty term in
(6). As a result, the similarity of the adjacent quantiles are lost
(see, e.g., Fig. 2 in this paper and Fig. 2(a) in [24]).

In this paper, we simultaneously estimate the multiple quan-
tiles by considering the smoothness of fY |X(y |x) along the y-
axis, i.e., the similarity of the adjacent quantiles. Thus we solve

minimize
(sl∈Sρd(tb))Ll=1

L∑
l=1

n∑
i=1

wiJpl(yi − sl(xi))

+ λ

L∑
l=1

∫
I

|s′′l (x)|2 dx+ κ

L−1∑
l=1

∫
I

|s′l+1(x)− s′l(x)|2 dx

subject to ∀x sl+1(x) ≥ sl(x) (l = 1, 2, . . . , L− 1)
(and ∀l ∀x s′l(x) ≥ 0, s′l(x) ≤ 0, s′′l (x) ≥ 0, or s′′l (x) ≤ 0),

(11)

where λ > 0, κ > 0, and wi > 0 is often set to a value similar
to fX(xi). On the first term, sl(xi) can be expressed as aT

i cl
with the coefficient vector cl = (c

〈1〉
l,d , . . . , c

〈1〉
l,0 , c

〈2〉
l,d , . . . , c

〈b〉
l,0)T∈

Rb(d+1) of sl ∈ Sρd (tb) and a certain vector ai ∈ Rb(d+1). The
second term is expressed as λ

∑L
l=1 c

T
l Qcl = λ c̄TQ1c̄, from

(6) and (7), by using the concatenated coefficient vector c̄ :=
(cT

1 , c
T
2 , . . . , c

T
L)T ∈ Rb(d+1)L and some block diagonal matrix

Q1 := diag(Q,Q, . . . ,Q) ∈ Rb(d+1)L×b(d+1)L. From (6) and∫
Ii

|s′l+1(x)− s′l(x)|2 dx =

d∑
k=1

d∑
j=1

kj

hi(k + j − 1)

·
(
c
〈i〉
l+1,kc

〈i〉
l+1,j − c

〈i〉
l+1,kc

〈i〉
l,j − c

〈i〉
l,kc
〈i〉
l+1,j + c

〈i〉
l,kc
〈i〉
l,j

)
, (12)

the third term is expressed as κ c̄TQ2c̄ with c̄ and some pos-
itive semidefinite matrix Q2 ∈ Rb(d+1)L×b(d+1)L. From (9), a
sufficient condition for the non-crossing constraints is given by

j∑
k=0

(d− k)!

(j − k)!(d− j)!
(c
〈i〉
l+1,k − c

〈i〉
l,k) ≥ 0 (j = 0, 1, . . . , d)

⇒ sl+1(x) ≥ sl(x) for all x ∈ Ii, (13)



that for the non-decreasing property is
j∑

k=0

(d− k − 1)!(k + 1)

(j − k)!(d− j − 1)!
c
〈i〉
l,k+1 ≥ 0 (j = 0, 1, . . . , d− 1)

⇒ s′l(x) ≥ 0 for all x ∈ Ii, (14)

and that for the convex property is
j∑

k=0

(d−k−2)!(k+2)(k+1)

(j − k)!(d− j − 2)!
c
〈i〉
l,k+2≥ 0 (j = 0, 1, . . . , d−2)

⇒ s′′l (x) ≥ 0 for all x ∈ Ii. (15)

The above sufficient conditions in (13), (14), and (15) can be
expressed asG1c̄ ≥ 0,G2cl ≥ 0, andG3cl ≥ 0, respectively,
where G1 ∈ Rb(d+1)(L−1)×b(d+1)L, G2 ∈ Rbd×b(d+1), and
G3 ∈ Rb(d−1)×b(d+1) are appropriately defined matrices, and 0
is the zero vector. Sufficient conditions for the non-increasing
and concave properties are given by G2cl ≤ 0 and G3cl ≤ 0.

From (6), (7), (8), (12), (13), (14) and (15), the problem of
(11) is reduced to the following convex optimization problem

minimize
c̄∈Rb(d+1)L

L∑
l=1

n∑
i=1

wiJpl(yi − aT
i cl) + λ c̄TQ1c̄+ κ c̄TQ2c̄

subject to ∀l Hcl = 0 and G1c̄ ≥ 0

(and ∀l G2cl ≥ 0, G2cl ≤ 0, G3cl ≥ 0, or G3cl ≤ 0).

The optimal solution c̄∗ can be obtained, e.g., by the alternating
direction method of multipliers (ADMM) [38]. Note that the
proximity operator of the data fidelity term is computed by

proxwJp(y−· )(z) =


z + pw if y − z ≥ pw,
z − (1− p)w if y − z ≤ −(1− p)w,
y otherwise.

IV. NUMERICAL EXPERIMENTS

To show the effectiveness of the proposed method, we es-
timate L = 51 quantiles of a conditional probability density

fY |X(y |x) :=
1√

2πσ̂y
e−

(log y−µ̂(x))2

2σ̂2 for y ∈ (0,∞) (16)

from n = 1000 observations (xi, yi) by the conventional and
proposed methods in (10) and in (11), respectively, where σ̂ =
1, pl = 0.01(l−1)+0.25 (l = 1, 2, . . . , 51), d = 5, ρ = 2, b =
40, I = (−1, 1), hi = 2

b = 1
20 (i = 1, 2, . . . , 40), and xi ∈ I

(i = 1, 2, . . . , 1000) are generated from a probability density

fX(x) :=
0.3√
2πσ1

e
−

(x−µ1)2

2σ2
1 +

0.7√
2πσ2

e
−

(x−µ2)2

2σ2
2

with (µ1, µ2, σ1, σ2) = (−0.7, 0.4, 0.3, 0.45). First, we define

µ̂(x) := 0.5 sin(πx) + 0.5

in (16), and estimate the quantiles qpl,Y (x) (l = 1, 2, . . . , 51)
by (10) with λ = 0.04 and by (11) with wi = fX(xi), λ =
0.0075 and κ = 25. Figure 1 shows only 11 quantiles qpl,Y (x)
(pl ∈{0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75}),
where blue circles denote the observations (xi, yi), the darkest
solid line is the median q0.5,Y (x), and the top and bottom lines

are the first and third quartiles q0.25,Y (x), q0.75,Y (x). Figures 2
and 3 shows estimates by (10) and those by (11), respectively.
From Figs. 1–3, we observe that some estimates by the conven-
tional method are too close to or too far from each other while
those by the proposed method become harmonious like the true
quantiles by utilizing the similarity of the adjacent quantiles.

Next, for estimation of convex quantiles, we define

µ̂(x) :=


(x+ 0.15)2 + 0.25 if x ∈ (−1,−0.15],
0.25 if x ∈ (−0.15, 0.15],

0.5(x− 0.15)2 + 0.25 if x ∈ (0.15, 1),

in (16), and estimate qpl,Y (x) (l = 1, 2, . . . , 51) by (11) with
wi = fX(xi), λ = 0.0025 and κ = 15 under the convex con-
straint in (15). Figure 4 shows the convex quantiles qpl,Y (x)
(pl ∈{0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75}),
which are black lines, and estimates by the proposed method,
which are red lines. From Fig. 4, we can see that the proposed
method reconstructs the harmonious convex quantiles well.

V. CONCLUSION

In this paper, we proposed a novel spline smoothing tech-
nique for simultaneous quantile regression. Differently from the
other methods, we estimated multiple quantiles simultaneously
by considering the smoothness of a conditional probability den-
sity function along the y-axis, i.e., the similarity of the adjacent
quantiles. We also considered the non-crossing conditions and
a shape (non-decreasing, non-increasing, convex, or concave)
constraint. Numerical experiments demonstrated that the pro-
posed method reconstructs multilevel harmonious quantiles.
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