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ABSTRACT

Speech and audio signal processing frequently requires to recover a
time-domain signal from the magnitude of a spectrogram. Conven-
tional methods inversely transform the magnitude spectrogram with
a phase spectrogram recovered by the Griffin–Lim algorithm or its
accelerated versions. The short-time Fourier transform (STFT) per-
fectly matches this framework, while other useful spectrogram trans-
forms, such as the constant-Q transform (CQT), do not, because their
inverses cannot be computed easily. To make the best of such useful
spectrogram transforms, we propose an algorithm which recovers the
time-domain signal without the inverse spectrogram transforms. We
formulate the signal recovery as a nonconvex optimization problem,
which is difficult to solve exactly. To approximately solve the prob-
lem, we exploit a stochastic convex optimization technique. A well-
organized block selection enables us both to avoid local minimums
and to achieve fast convergence. Numerical experiments show the
effectiveness of the proposed method for both STFT and CQT cases.

Index Terms— Spectrogram, signal recovery, Griffin–Lim algo-
rithm, constant-Q transform, nonconvex stochastic optimization.

1. INTRODUCTION

Spectrogram is a useful expression for analysis of speech and audio
signals. Many applications, including sound source separation [1]–
[3] and automatic music transcription [4], [5], are performed in the
spectral-domain using spectrograms rather than in the original time-
domain. A spectrogram is typically defined as a complex matrix and
can be divided into magnitude and phase spectrograms. Even though
both components constitute the original spectrogram, only the mag-
nitude spectrogram is manipulated in some applications [6]–[9]. For
example, to extract a specific target sound from a mixed sound, the
magnitude spectrogram of the target sound is estimated from that of
the mixed sound by applying a well-designed time-frequency mask.
Then, a time-domain signal, which is an estimate of the target sound,
is recovered through the inverse transform from the estimated magni-
tude spectrogram with the observed mixed phase spectrogram [10].

However, the magnitude spectrogram of the recovered signal us-
ing the mixed phase will be different from the estimated magnitude.
To bring the magnitude spectrogram of the recovered signal closer to
the estimated one, we have to find a more appropriate phase spectro-
gram. This problem is often called phase recovery or phase retrieval.
In general, the size of a sound signal is relatively large, and thus the
PhaseLift approach [11]–[13] is difficult to use since it requires huge
memory resources. A well-known method for the phase recovery of
the sound signal is the Griffin–Lim algorithm (GLA) [14], which per-
forms alternating projections. Since its convergence is slow, acceler-
ated versions are proposed [15], [16]. Particularly, the method in [16]
uses the alternating direction method of multipliers (ADMM) [17].
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In the above Griffin–Lim (GL) type approach [14]–[16], the in-
verse of the spectrogram transform has to be computed both for up-
date of the phase spectrogram and for the post-processing to recover
a time-domain signal from the estimated complex spectrogram. The
short-time Fourier transform (STFT), the most commonly used spec-
trogram transform, perfectly matches this framework because its in-
verse is computed easily thanks to the nature of the discrete Fourier
transform. However, other useful spectrogram transforms such as the
constant-Q transform (CQT) [18], [19] and wavelet transforms [20],
which are often used for analysis of overtone components, are not fit
for this framework because their inverses cannot be computed easily.

To make the best of such useful spectrogram transforms, we pro-
pose an algorithm which can directly recover a time-domain signal
from the magnitude spectrogram without computing the inverse of
the spectrogram transform. To this end, we first formulate the time-
domain signal recovery using the time-domain signal itself while GL
type algorithms [14]–[16] used a complex spectrogram as a variable
to describe the problem. The formulated problem is nonconvex and
difficult to solve exactly. Instead, we approximately solve the prob-
lem by applying a stochastic convex optimization technique to avoid
local minimums and achieve fast convergence. Specifically, we use
the stochastic dual coordinate ascent ADMM (SDCA-ADMM) [21],
which exploits an inexact augmented Lagrangian and thus can avoid
the inverse computation for any spectrogram transform. In the pro-
posed method, the spectrogram is divided into several blocks because
of the stochastic optimization. By randomly choosing multiple blocks
in a well-organized novel manner, the proposed method can recover
the time-domain signal with the same convergence performance as in
[16]. Numerical experiments show the effectiveness of the proposed
non-GL type signal recovery for STFT and CQT spectrograms.

2. GRIFFIN–LIM TYPE PHASE RECOVERY

Let R, R+, and C be the sets of all real, nonnegative real, and com-
plex numbers, respectively. The imaginary unit is denoted by ı ∈ C.
For any c ∈ C, c̄, |c| ∈ R+, and ∠c ∈ (−π, π] stand for the complex
conjugate, magnitude, and phase of c, respectively. We write vectors
with boldface small letters and matrices with capital letters. We de-
note the transpose, adjoint, and inverse operators by (·)T, (·)H, and
(·)−1, respectively. The composition of mappings and the Hadamard
product are denoted by ◦ and�. The floor function is denoted by b·c.

2.1. Griffin–Lim Algorithm

Given a discrete-time signal x[t], let X := (x̂i,j) ∈ CL×Jl be the
spectrogram defined by the short-time Fourier transform (STFT), as

x̂i,j :=

L−1∑
τ=0

w[τ ]x[(j − 1)ξ + τ ]e−ı
2π(i−1)τ

L ,

where L is the frame length, J is the number of frames, ξ (< L) is
the shift of a window functionw[τ ], and CL×Jl := {(x̂i,j) ∈ CL×J |
x̂1,j ∈ R (∀j) and x̂i,j = x̂L−i+2,j (∀j and i = 2, 3, . . . , bL+2

2
c)}



stands for the spectrogram space. We denote STFT by a linear map-
ping S : R(J−1)ξ+L 3 x 7→ S(x) = X ∈ CL×Jl . Note that, in this
definition, the spectrogram X includes x̂i,j s.t. i ∈ [bL+2

2
c+ 1, L].

Since ξ < L, the dimension JL of the spectrogram space CL×Jl
is greater than that of the time signal space given by (J − 1)ξ + L.
Therefore the range of STFTRS := {X ∈ CL×Jl | ∃xX = S(x)}
is a low-dimensional subspace of CL×Jl . By exploiting this property,
GLA finds a spectrogramX ∈ CL×Jl which has an appropriate phase
for a given magnitude spectrogramM ∈ RL×J+,l (⊂ CL×Jl ) in the in-
tersection of RS andM := {X ∈ CL×Jl | |X| := (|x̂i,j |) = M}.
More specifically, GLA solves the following feasibility problem [14]:

find X ∈M∩RS (1)

by alternating projections

X(l+1) = PRS (PM(X(l))), (2)

where PM is the projection ontoM given by

PM(X) = M �ΘX (3)

with the phase matrix ΘX := (eı∠ x̂i,j ) ∈ CL×Jl of X , and PRS is
the projection ontoRS given by

PRS (X) = S ◦ (SH ◦ S)−1 ◦ SH(X). (4)

The computation of PM in (3) is very easy since we only have
to replace the magnitude of X with M . In the right-hand side of (4),
(SH ◦ S)−1 ◦ SH is equivalent to the inverse STFT (ISTFT). Note
that SH ◦ S for STFT becomes a diagonal matrix, and its inverse is
computed simply by the reciprocal of each diagonal component. The
corresponding matrix for CQT does not, however, become diagonal.
Hence, GLA is executable for STFT, but not for CQT (see Sect. 2.3).

2.2. Griffin–Lim Like Phase Recovery via ADMM

GLA assumed thatM∩RS 6= ∅ on the problem of (1). In general,
the estimated magnitude spectrogram M includes some errors, and
thusM∩RS 6= ∅ is not guaranteed. To obtain an accurate phase
spectrogram even ifM∩RS = ∅, Masuyama et al. proposed an
algorithm which finds the spectrogram closest toRS among spectro-
grams belonging toM by the following optimization problem [16]:

minimize
X∈M

1

2
‖X − PRS (X)‖2F, (5)

where ‖·‖F denotes the Frobenius norm. To solve the problem of (5)
faster than GLA, they adopted ADMM [17], which is briefly summa-
rized as follows. For two proper lower-semicontinuous convex func-
tions f : Rm → R ∪ {∞} and g : Rk → R ∪ {∞}, let us

minimize
x∈Rm,z∈Rk

f(x) + g(z) subject to Ax +Bz = c, (6)

whereA ∈ Rn×m, B ∈ Rn×k, and c ∈ Rn. For the problem of (6),
an augmented Lagrangian function is constructed as

Lρ(x,z,u) := f(x) + g(z)− uT(Ax +Bz − c)

+
ρ

2
‖Ax +Bz − c‖22,

where u ∈ Rn is the dual variable and ρ > 0. By minimizing Lρ in
terms of x and z alternately, and by increasing Lρ in terms of u, the
following update formulas converging to the solution are given:


x(l+1) = argmin

x∈Rm
f(x) + ρ

2

∥∥Ax +Bz(l) − c− 1
ρ
u(l)

∥∥2
2
,

z(l+1) = argmin
z∈Rk

g(z) + ρ
2

∥∥Ax(l+1) +Bz − c− 1
ρ
u(l)

∥∥2
2
,

u(l+1) = u(l) − ρ(Ax(l+1) +Bz(l+1) − c).
(7)

When using ADMM, it is important to check whether or not argmin
in the first and second lines of (7) can be computed easily.

Although the problem of (5) is nonconvex due toM, Masuyama
et al. applied (7) and proposed the following GL like phase recovery:

X(l+1) = PM(Z(l) + 1
ρ
U (l)),

Z(l+1) = 1
ρ+1

[
ρX(l+1) − U (l) + PRS (X(l+1) − 1

ρ
U (l))

]
,

U (l+1) = U (l) − ρ(X(l+1) − Z(l+1)),
(8)

by defining x in (6) asX ∈CL×Jl , z asZ ∈CL×Jl , f as the indicator
function ofM, g as the cost function in (5),A as the identity matrix,
B as the negative identity matrix, and c as the zero matrix. This algo-
rithm achieved better convergence performance than GLA, but PRS
appears again in the second line. Thus this is not executable for CQT.

2.3. Constant-Q Transform

The constant-Q transform (CQT) [18], [19] is useful for analysis of
overtone components because it analyzes frequency components in
the following geometric progression with the common ratio 21/r:

fi := 2
i−1
r fmin > 0 (i = 1, 2, . . . , Imax),

where fmax := fImax < fs/2, fs is the sampling frequency, and r is
often set to 12 or 24. The name ‘CQT’ is from the fact a quality factor

Qi :=

s
q
fi
δfi

{
:=

s
q

fi
fi+1 − fi

{
=

s
q

1

21/r − 1

{
= Q

is constant independently of i, where q ∈ (0, 1] and J·K is the round-
ing function. For example, if r = 24 and q = 0.82, then Q = 28.

Components of a CQT spectrogram X := (x̂i,j) are defined by

x̂i,j :=
1√
Li

Li−1∑
τ=0

wi[τ ]x[(j − 1)ξi + τ ]e
−ı 2πQτ

Li ,

for i = 1, 2, . . . , Imax, where Li := JQfs/fiK is the frame length
and ξi (< Li) is the shift of a window function wi[τ ] for the ith fre-
quency. We also define x̂2Imax−i+1,j := x̂i,j for i = 1, 2, . . . , Imax

as components corresponding to −fi. Note that a CQT spectrogram
X is a matrix only if ∀i ξi = ξ < LImax holds, and in this case the
spectrogram space is defined as C2Imax×J

l := {(x̂i,j) ∈ C2Imax×J |
x̂i,j = x̂2Imax−i+1,j (∀j and i = 1, 2, . . . , Imax)}, where J is the
number of frames. If we denote CQT by a linear mapping S, SH ◦S
is not a diagonal matrix and ICQT (SH ◦S)−1 ◦SH is not available.

3. NON-GRIFFIN–LIM TYPE SIGNAL RECOVERY
WITHOUT THE INVERSE SPECTROGRAM TRANSFORM

To sum up the discussion in Sect. 2, the GL type phase recovery al-
gorithms [14]–[16] require the computation of (SH ◦S)−1, which is
easy for STFT because SH ◦ S is a simple diagonal matrix. How-
ever, when S stands for CQT, it is difficult to compute (SH ◦ S)−1,
and to apply the update formulas of (2) and (8). In addition, even if
the solution X̂ to the optimization problem such as (1) or (5) can be
obtained, the inverse transform (SH ◦S)−1 ◦SH has to be computed
as the post-processing to recover a time-domain signal x from X̂ .



To eliminate the inverse transform (SH ◦S)−1 ◦SH as the post-
processing, we reformulate the optimization problem of (5) as an es-
sentially equivalent problem using the time-domain signal itself:

minimize
x∈R(J−1)ξ+L

1

2

∥∥M − |S(x)|
∥∥2
F

. (9)

We propose a non-GL type signal recovery algorithm which recon-
structs x by solving (9) without computing (SH ◦S)−1. To this end,
we use a stochastic convex optimization technique SDCA-ADMM.

3.1. Stochastic Dual Coordinate Ascent ADMM

SDCA-ADMM exploits the characteristic that the dual variable u in
(7) converges to the optimal solution of the dual problem [21]. The
convex optimization problem to be considered is to

minimize
x∈Rm

n∑
i=1

fi(a
T
i x) + g(BTx), (10)

where A := (a1,a2, . . . ,an) ∈ Rm×n, B ∈ Rm×h, and f : Rn 3
u 7→

∑n
i=1 fi(ui) ∈ R ∪ {∞} and g : Rh → R ∪ {∞} are sup-

posed to be a data fidelity and a regularization term, respectively. The
dual problem for the primal problem of (10) is to

minimize
u∈Rn,v∈Rh

n∑
i=1

f∗i (ui) + g∗(v) subject to Au +Bv = 0, (11)

where f∗i and g∗ are the conjugate function of fi and g, respectively.
By solving (11) with the ADMM update formulas as in (7), the dual
variable x converges to the solution to the problem of (10), because
the relationship between x and u in (7) is reversed.

In many cases, however, it is difficult to directly adopt the above
idea because argmin in the first and second lines of (7) cannot be
computed easily. To overcome the difficulty, SDCA-ADMM uses an
inexact augmented Lagrangian function, which is defined by adding
two proximal terms as

L̂(l)
ρ (u,v,x) := f∗(u) + g∗(v)− xT(Au +Bv)

+
ρ

2
‖Au +Bv‖22 +

1

2
‖u− u(l)‖2GA +

1

2
‖v − v(l)‖2GB ,

where GA := ρ(ηAIn − ATA) and GB := ρ(ηBIh − BTB) are
positive semidefinite matrices to avoid the computation of (ATA)−1

and (BTB)−1. SDCA-ADMM minimizes L̂(l)
ρ in terms of u and v

alternately and increases it in terms of x. Note that the first term in
(11) is separated in terms of ui so that the stochastic optimization can
be easily introduced as follows. SDCA-ADMM splits the index set
I := {1, 2, . . . , n} for f∗i into b subsets {Id}bd=1 such that Id 6= ∅,⋃b
d=1 Id = I and Id ∩ Id′ = ∅ (d 6= d′). Then, SDCA-ADMM

updates the variables by

Choose one index d ∈ {1, 2, . . . , b} uniformly at random,

q(l+1) = v(l) + 1
ρηB

BT[x(l) − ρ(Au(l) +Bv(l))
]
,

v(l+1) = q(l+1) − 1
ρηB

proxρηBg(ρηBq
(l+1)),

p
(l+1)
Id = u

(l)
Id + 1

ρηAId
AT
Id

[
x(l) − ρ(Au(l) +Bv(l+1))

]
,

u
(l+1)
Id = p

(l+1)
Id − 1

ρηAId
proxρηAId

fId
(ρηAIdp

(l+1)
Id ),

x(l+1) = x(l) − γρ
[
Au(l+1) +Bv(l+1)

− (1− φ)(Au(l) +Bv(l))
]
,

(12)
where γ > 0, ηAId ≥ ‖AId‖

2
op, ηB ≥ ‖B‖2op, ‖·‖op is the operator

norm, φ = 1/b is the probability that each ui is chosen, and prox de-
notes the proximity operator. When the proximity operators of fi and
g are computed easily, the update formulas of (12) can be executed.

3.2. Signal Recovery via SDCA-ADMM

We solve the nonconvex optimization problem of (9) via the SDCA-
ADMM update formulas. Define f(u) =

∑
i fi(ui) in (10) as∑

i,j

fi,j(ûi,j) :=
∑
i,j

1

2
(mi,j − |ûi,j |)2 =

1

2

∥∥M − |U |∥∥2
F

,

g as the zero function, A as SH, and B as the zero matrix. Then, the
dual problem of (9) is given by

minimize
U∈CL×Jl

∑
i,j

f∗i,j(ûi,j) subject to SH(U) = 0. (13)

To solve the problem of (13) using SDCA-ADMM, we have to care-
fully choose the index set Id ⊂ I := {(i, j)}i=1,2,...,L

j=1,2,...,J . In the con-
ventional method, only one index set out of the b index sets was ran-
domly chosen as in (12). This strategy not only prevents acceleration
but also may get stuck in a local minimum due to the nonconvexity.

To overcome this difficulty, it should be noted that the conver-
gence of (12) is guaranteed if the parameter φ agrees with the prob-
ability that each component ui is chosen from u. Therefore, instead
of updating one of the b non-overlapping index sets, we propose to
update multiple index sets with a probability φ ∈ (0, 1], where φ = 1
means the non-stochastic optimization. Based on these discussions,
we propose the following update formulas for solving (13):

Choose multiple indices D ∈ 2{1,2,...,b} with a probability φ,

P
(l+1)
ID = U

(l)
ID + 1

ρη
SID

(
x(l) − ρSH(U (l))

)
,

U
(l+1)
ID = 1

ρη+1

(
ρηP

(l+1)
ID −MID �Θ

P
(l+1)
ID

)
,

x(l+1) = x(l) − γρSH(U (l+1) − (1− φ)U (l)),
(14)

where ρ > 0, γ > 0, and η ≥ ‖S‖2op. Note that there is no com-
putation of the inverse spectrogram transform (SH ◦ S)−1 ◦ SH in
the formulas of (14). Hence, the proposed algorithm is non-GL type
and can be applied not only to STFT but also to CQT. As shown in
Sect. 4.2, we propose to divide the index set along the frequency axis,
as {(1, j)}Jj=1 and {(i, j), (L− i+2, j)}Jj=1 (i = 2, 3 . . . , bL+2

2
c).

4. NUMERICAL EXPERIMENTS

To confirm the convergence performance of the proposed algorithm
and the validity of the stochastic optimization, we conducted numer-
ical experiments of time-domain signal recovery from a STFT mag-
nitude spectrogram in Sects. 4.1 & 4.2 and from a CQT magnitude
spectrogram in Sect. 4.3. Each recovered time-domain signal x was
evaluated by the normalized error 100 ‖M−|S(x)|‖F

‖M‖F
[%] of the mag-

nitude spectrogram because it corresponds to the cost function in (9)
and phase errors have less effect on human ears. An open source pi-
ano sound of 7,000 ms and the Hanning window were used with sam-
pling frequency 16 kHz, frame length 64 ms, and frame shift 32 ms.
In all methods (2), (8) and (14), the number of iterations was 10,000.

4.1. Performance Evaluation of the Proposed Method in STFT

We compared the performance of the proposed method and the ex-
isting methods [14], [16] under the ideal situation ofM∩RS 6= ∅.
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Fig. 1. Normalized error curves for 3 methods (STFT case).

The piano sound was recovered by each method and the normalized
error was computed. The parameter in the ADMM method [16] was
ρ = 0.08 and those in the proposed method were γ = 1, ρ = 0.01,
η = 1.001L, and φ = 0.75. The index set I = {(i, j)}i=1,2,...,L

j=1,2,...,J

was divided along the frequency axis as mentioned in Sect. 3.2. The
parameter values were empirically adjusted for the best results. Fig-
ure 1 shows the normalized error curve in terms of the iteration for
each method. We can see that the ADMM method and the proposed
method indicate faster convergence speed than GLA. We emphasize
that the proposed method achieves mostly the same convergence per-
formance as the ADMM method without ISTFT (SH ◦ S)−1 ◦ SH.

4.2. Validity Evaluation of the Stochastic Optimization in STFT

We prepared three types of divisions of the index set I: (a) primal
division {(1, j)} (j = 1, 2, . . . , J) and {(i, j), (L− i+ 2, j)} (i =
2, 3 . . . , bL+2

2
c; j = 1, 2, . . . , J) (b = JbL+2

2
c), (b) frame division

{(i, j)}Li=1 (j = 1, 2, . . . , J) (b = J), and (c) frequency division
{(1, j)}Jj=1 and {(i, j), (L − i + 2, j)}Jj=1 (i = 2, 3 . . . , bL+2

2
c)

(b = bL+2
2
c). We also prepared the selection probability φ for each

division as φ = 0.5 and φ = 0.75. In addition, φ = 1 was also used
for comparison to the non-stochastic optimization scenario. Figure 2
shows the normalized error curves in terms of the iteration.1 All the
curves except for that of the frame division with φ = 0.75 are lower
than that for φ = 1. Therefore, we can confirm the effectiveness of
the stochastic optimization. The best performance was given by the
frequency division with φ = 0.75.

4.3. Validity Evaluation of the Stochastic Optimization in CQT

We also conducted numerical experiments of time-domain signal re-
covery from a CQT magnitude spectrogram by the proposed method.
We set the parameters of CQT to r = 24, q = 0.82, fmin = 60 Hz,
fmax = 5,922 Hz (i.e., Imax = 160), and ξi = ξ = LImax/2. Since
we cannot use the frame division if ξi 6= ξi′ (i 6= i′), we used only
the primal division and the frequency division. Figure 3 shows the
normalized magnitude error curves in terms of the iteration for the
proposed method. The lowest normalized error converged to 0.63 %,
which means that the proposed method enables time-domain signal

1Strictly speaking, the ten point moving average filter is used to make the
curves more visible.
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Fig. 3. Normalized error curves for 2 index set divisions (CQT case).

recovery from the CQT magnitude spectrogram. In each type of di-
vision of the index set I, there was a trade-off between the conver-
gence speed and the normalized error according to the probability φ.
When φ = 0.5, the normalized error was lower than when φ = 0.75.
On the other hand, when φ = 0.75, the convergence was faster than
when φ = 0.5. Since the proposed method makes the stochastic op-
timization more flexible, it would be best to use relatively large φ in
the early part and then to use relatively small φ in the latter part.

5. CONCLUSION

In this paper, we proposed a time-domain signal recovery algorithm
which does not require the computation of the inverse of the spectro-
gram transform. We first reformulated the signal recovery problem as
a nonconvex optimization problem using the time-domain signal it-
self. To solve this problem, we used a stochastic optimization tech-
nique SDCA-ADMM for fast convergence without the inverse trans-
form. Numerical experiments showed that the proposed method with
a well-organized division of a cost function along the frequency axis
achieves the same excellent convergence performance as the GL type
algorithms for a STFT magnitude spectrogram. We also showed that
the proposed method is effective for a CQT magnitude spectrogram.
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