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ABSTRACT

In this paper, we propose an over-determined sound source separation
method considering the sparsity of impulse responses. Conventional
methods, including independent low-rank matrix analysis (ILRMA),
have mainly focused on design of realistic sound generation models,
but the separation performance is sometimes not improved due to the
incorrectness of the generation models and convergence to some poor
local minimum. In the proposed method, we utilize a prior informa-
tion on the mixing process, i.e., the sparsity of impulse responses, to
determine the demixing matrices. Numerical experiments using pub-
licly available impulse responses demonstrate that the proposed me-
thod based on ILRMA with supervised bases can robustly obtain bet-
ter results compared to the standard and the supervised ILRMAs.

Index Terms— Over-determined source separation, independent
low-rank matrix analysis, impulse response, supervised learning.

1. INTRODUCTION

Source separation is an estimation problem of source signals from
observed mixed signals. In particular, if information on each source
signal and the mixing process is almost none, this problem is called
blind source separation (BSS) [1]–[7]. This paper supposes the situa-
tion that signals are sounds and the mixing process is the convolution
of unknown impulse responses. In this situation, most existing works
convert the convolution in the time domain into the multiplication in
the frequency domain due to easier handling of the later model. In the
over-determined cases (i.e., the number of microphones ≥ the num-
ber of sources), major BSS methods such as frequency-domain inde-
pendent component analysis (FDICA) [3], independent vector analy-
sis (IVA) [4], and independent low-rank matrix analysis (ILRMA) [5]
estimate each source sound by applying the demixing matrix, which
is the inverse mapping of the mixing process, to the observed sounds.
In these methods, the demixing matrix is computed on the basis of a
carefully designed sound generation model considering the statistical
independence and the super-Gaussianity. For example in ILRMA [5],
a time-varying complex Gaussian distribution is adopted, where the
variance is adaptively updated with nonnegative matrix factorization
(NMF) [8]–[11], as a sound generation model. ILRMA obtains bet-
ter separation results compared to FDICA and IVA for audio signals.

As mentioned above, the major BSS methods try to improve the
separation performance by changing the sound generation model, but
the separation performance is sometimes not improved due to the in-
correctness of the model and convergence to a poor local minimum.
On the other hand, if a microphone array is used for the observation
and the direction of arrival of each source sound is known, then we
can estimate the mixing process and obtain good separation results
[12]–[14]. However, this technique is not available if the microphone
array is not used or the direction of arrival of each sound is unknown.
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In this paper, we propose to use the property that the energy of
the impulse response gathers in the early part of the time domain, i.e.,
each impulse response is sparse in a wide sense [15], [16], as a prior
information on the mixing process. The proposed method computes
the demixing matrices and the impulse responses alternately, and ob-
tains better demixing matrices by considering the consistency for the
estimated sparse impulse responses. In addition, by assuming that all
sources are known musical instruments, we extend the proposed me-
thod to a supervised version based on the supervised NMF [17]–[19].
Numerical experiments show that the proposed method can improve
the performance of ILRMA both in blind and supervised situations.

2. OVER-DETERMINED BLIND SOURCE SEPARATION

2.1. Problem Formulation

Let N (≥ 2) and M (≥ N ) be the numbers of sources and micro-
phones, respectively. sn[t] and xm[t] denote sounds generated from
the nth source and observed by themth microphone at time t. By let-
ting hm,n[τ ] be an impulse response of length T from the nth source
to the mth microphone, the observed sound xm[t] is expressed as

xm[t] =

N∑
n=1

(hm,n ∗ sn)[t] =

N∑
n=1

T−1∑
τ=0

hm,n[τ ]sn[t− τ ], (1)

where ∗ denotes the convolution operator. We define ŝi,j,n ∈ C by
applying a short-time Fourier transform (STFT) to the sound sn[t] as

ŝi,j,n :=

L−1∑
τ=0

ψ[τ ]sn[(j − 1)η + τ ] exp

(
−ı2π(i− 1)τ

L

)
(2)

and similarly define x̂i,j,m ∈ C, whereL is the frame length, η is the
frame shift, ψ[τ ] is a window function, ı ∈ C is the imaginary unit,
i = 1, 2, . . . , L is the frequency index, and j = 1, 2, . . . , J is the
frame index. We define âi,m,n ∈ C as a sample, atωi := 2π(i−1)

L
, of

the discrete-time Fourier transform of the impulse response hm,n[τ ]

âi,m,n :=

T−1∑
τ=0

hm,n[τ ] exp

(
−ı2π(i− 1)τ

L

)
. (3)

If the frame length L is sufficiently longer than the impulse response
length T , the convolution of (1) in the time domain can be approxi-
mated, for each frame, by the multiplication in the frequency domain

xi,j = Aisi,j + εi,j (i = 1, 2, . . . , I; j = 1, 2, . . . , J), (4)

where vectors si,j , xi,j , εi,j and matrices Ai are defined by

si,j := (ŝi,j,1, ŝi,j,2, . . . , ŝi,j,N )> ∈ CN

xi,j := (x̂i,j,1, x̂i,j,2, . . . , x̂i,j,M )> ∈ CM

εi,j := (ε̂i,j,1, ε̂i,j,2, . . . , ε̂i,j,M )> ∈ CM

ai,n := (âi,1,n, âi,2,n, . . . , âi,M,n)> ∈ CM

Ai := (ai,1,ai,2, . . . ,ai,N ) ∈ CM×N



and ε̂i,j,m ∈ C denotes the model error whose value becomes larger
as the impulse response length T becomes longer. Note that in (4) we
consider the frequency index i only from 1 to I := bL+2

2
c because

ŝL−i+2,j,n = ŝ∗i,j,n, x̂L−i+2,j,m = x̂∗i,j,m, âL−i+2,m,n = â∗i,m,n,
and ε̂L−i+2,j,m = ε̂∗i,j,m hold for i = 2, 3, . . . , I , where ŝ∗i,j,n de-
notes the complex conjugate of ŝi,j,n. Blind source separation (BSS)
is an estimation problem1 of si,j from xi,j in the situation where in-
formation on the sound si,j and the mixing matrixAi is almost none.

In the over-determined cases where M ≥ N holds,2 major BSS
methods [3]–[5] estimate si,j by applying the demixing matrix

Wi := (wi,1,wi,2, . . . ,wi,N )H := (AH
i Ai)

−1AH
i ∈ CN×M , (5)

which is the pseudo-inverse A†i of Ai, to the observed vector xi,j as

si,j ≈ yi,j := (ŷi,j,1, ŷi,j,2, . . . , ŷi,j,N )> ∈ CN

:= (wH
i,1xi,j ,w

H
i,2xi,j , . . . ,w

H
i,Nxi,j)

> = Wixi,j .

Especially in case of εi,j = 0 (although this situation never happens),
si,j = yi,j holds if we can apply the true demixing matrix to xi,j .

2.2. BSS Using Independent Super-Gaussian Sound Generation

Conventional methods such as frequency-domain independent com-
ponent analysis (FDICA) [3], independent vector analysis (IVA) [4],
and independent low-rank matrix analysis (ILRMA) [5] assume that
the complex spectrogram Sn := (ŝi,j,n) ∈ CI×J of each sound sn[t]
is independently generated from a super-Gaussian3 distribution. We
define S := (Sn) ∈ CI×J×N and X := (Xm) ∈ CI×J×M and as-
sume εi,j = 0 in (4), then the mixing matrices Ai (i = 1, 2, . . . , I)
become a one-to-one complex linear mapping from S to X . Hence,
by letting ps and px be probability densities of S and X , we have

px(X ) =
ps(S)∏I

i=1(det(AH
i Ai))

J
=

I∏
i=1

(det(WiW
H
i ))J

N∏
n=1

pn(Sn)

from (4), (5), and the independence of each Sn, where pn is a certain
carefully designed super-Gaussian generation model4 of Sn. By sub-
stituting ŝi,j,n = ŷi,j,n = wH

i,nxi,j in the above equation, px is seen
as the likelihood px(X |W) of parameter W := (Wi) ∈ CN×M×I .

For example, in ILRMA, the negative log-likelihood is given by

− log(px(X |W)) :=

N∑
n=1

I∑
i=1

J∑
j=1

[
wH
i,nxi,jx

H
i,jwi,n∑Kn

k=1 bi,k,nck,j,n

+ log

Kn∑
k=1

bi,k,nck,j,n + log π

]
− J

I∑
i=1

log det(WiW
H
i ). (6)

1In fact, we estimate ŝi,j,nai,n ∈ CM (n = 1, 2, . . . , N ) in most cases.
2Strictly, ∀i rank(Ai) = N and each condition number is not so large.
3For a zero-mean complex-valued random variable Z, the kurtosis of Z

is defined by κ := E[|Z|4]/σ4 − |E[Z2]/σ2|2 − 2, where σ2 := E[|Z|2]
[20]. Z is called super-Gaussian if κ > 0, and called sub-Gaussian if κ < 0.

4For example, the sound generation model pn is designed as

pn(Sn) :=



I∏
i=1

J∏
j=1

1

2πσ2
n

exp

(
−
|ŝi,j,n|
σn

)
in FDICA,

J∏
j=1

2I−1(I − 1)!

(2πσ2
n)I(2I − 1)!

exp

(
−
‖s̄j,n‖2
σn

)
in IVA,

I∏
i=1

J∏
j=1

1

πσ2
i,j,n

exp

(
−
|ŝi,j,n|2

σ2
i,j,n

)
in ILRMA,

where σn > 0, σi,j,n > 0 and s̄j,n := (ŝ1,j,n, ŝ2,j,n, . . . , ŝI,j,n)>∈ CI .

In (6), pn is designed as a time-varying complex Gaussian distribu-
tion of variance σ2

i,j,n :=
∑Kn
k=1 bi,k,nck,j,n as shown in Footnote 4

from the idea that the power spectrogram |Sn|2 := (|ŝi,j,n|2)∈RI×J+

can be approximated, with the multiplication of a nonnegative basis
matrix Bn := (bi,k,n) ∈ RI×Kn

+ and a nonnegative coefficient ma-
trix Cn := (ck,j,n) ∈ RKn×J

+ , as a low-rank matrix BnCn, where
Kn (� min(I, J)) is the number of basis vectors for the nth source.
Based on the maximum likelihood estimation, to determine W , the
conventional methods [3]–[5] minimize the negative log-likelihood

minimize
W,(B),(C)

− log(px(X |W)) (subject to ∀n ‖Yn‖2F = IJ). (7)

In (7), the two matricesB := (B1, B2, . . . , BN ) ∈ RI×K+ andC :=

(C>1 , C
>
2 , . . . , C

>
N )> ∈ RK×J+ are needed in ILRMA, and the con-

straint for Yn := (ŷi,j,n) ∈ CI×J is added in ILRMA to avoid the
numerical instability caused by the scale ambiguity of si,j and Ai.

To solve the nonconvex problem of (7), the conventional meth-
ods often use a majorization-minimization technique called the aux-
iliary function method [21], and each row vector ofWi is updated5 as

U
(l+1)
i,n =

1

J

J∑
j=1

xi,jx
H
i,j

ρ
(l+1)
i,j,n

v
(l+1)
i,n =

(
W

(l)
i U

(l+1)
i,n

)†
en =

(
U

(l+1)
i,n

)−1
a
(l)
i,n

w
(l+1)
i,n =

v
(l+1)
i,n√

v
(l+1)H
i,n U

(l+1)
i,n v

(l+1)
i,n

(8)

where l is the update index, ρ(l+1)
i,j,n is computed for each method by

ρ
(l+1)
i,j,n :=


2σn|ŷ(l)i,j,n| in FDICA,

2σn‖ȳ(l)
j,n‖2 in IVA,∑Kn

k=1 b
(l+1)
i,k,n c

(l+1)
k,j,n in ILRMA,

en ∈ RN is the nth standard basis vector, and a(l)
i,n is the nth column

vector of A(l)
i = W

(l)H
i (W

(l)
i W

(l)H
i )−1. Then, if needed, the scale

of each variable is adjusted to satisfy the constraint for Yn. After re-
peating the above updates certain times, finally by using the projec-
tion back (PB) (ˆ̂yi,j,1,n, ˆ̂yi,j,2,n, . . . , ˆ̂yi,j,M,n)> := ŷi,j,nW

†
i en =

ŷi,j,nai,n ∈ CM [22] and applying the inverse STFT (ISTFT) [23] to
Ŷm,n := (ˆ̂yi,j,m,n) ∈ CI×J , estimates of (hm,n ∗ sn)[t] are given.

3. BSS USING THE SPARSITY OF IMPULSE RESPONSES

The conventional methods in Section 2 assumed that the number of
dominant components of Sn is not so large, and they tried to improve
the separation performance by design of some super-Gaussian sound
generation model pn which properly expresses the true sound distri-
bution. Hence, they constructed the optimization problem of (7) by
utilizing a prior information on the sound sources. Furthermore, if a
microphone array is used for the observation in (1) and the direction

5In ILRMA, before updates ofWi in (8), entries ofB andC are updated as

b
(l+1)
i,k,n = b

(l)
i,k,n

√√√√√∑J
j=1 |ŷ

(l)
i,j,n|2 c

(l)
k,j,n

(∑Kn
k′=1

b
(l)
i,k′,nc

(l)
k′,j,n

)−2∑J
j=1 c

(l)
k,j,n

(∑Kn
k′=1

b
(l)
i,k′,nc

(l)
k′,j,n

)−1

c
(l+1)
k,j,n = c

(l)
k,j,n

√√√√√∑I
i=1 |ŷ

(l)
i,j,n|2 b

(l+1)
i,k,n

(∑Kn
k′=1

b
(l+1)
i,k′,nc

(l)
k′,j,n

)−2∑I
i=1 b

(l+1)
i,k,n

(∑Kn
k′=1

b
(l+1)
i,k′,nc

(l)
k′,j,n

)−1

which are called multiplicative updates in nonnegative matrix factorization.



of arrival of each sound sn[t] is known, then we can estimate the col-
umn vectors ai,n, called the steering vectors in this situation, of the
mixing matricesAi. By using the pseudo-inverse of the estimatedAi
to determine the demixing matrices Wi, some methods achieve high
separation performance [12]–[14]. However, if the microphone array
is not used or the direction of sn[t] is unknown, we cannot use them.

In this paper, we propose to use the sparsity of impulse responses
as a more general prior information on the mixing process in BSS.
Figure 1 shows an impulse response in RWCP database [24], and we
find that the energy of the impulse response gathers in the early part,
i.e., the impulse response is approximately sparse [15], [16]. Define

hm,n := (hm,n[0], hm,n[1], . . . , hm,n[T − 1])> ∈ RT ,

and we estimate not only W but also H := (hm,n) ∈ RT×M×N by
newly using the prior information on impulse responses. Let Ai :=
W †i = WH

i (WiW
H
i )−1 be mixing matrices computed fromWi, and

define âL−i+2,m,n := â∗i,m,n for i = 2, 3, . . . , I from entries âi,m,n
ofAi. By letting ām,n := (â1,m,n, â2,m,n, . . . , âL,m,n)>∈CL, we
propose to solve the following nonconvex optimization problem

minimize
W,H,(B),(C)

− log(px(X |W)) + λJ [F(W,H) + LG(H)]

subject to ∀n
M∑
m=1

‖ām,n‖22 = L and ∀n
M∑
m=1

‖hm,n‖22 = 1. (9)

In (9), λ > 0, the function F evaluates the consistency between W
andH, the functionG evaluates the sparsity ofH, and the constraints∑M
m=1‖ām,n‖

2
2 = L and

∑M
m=1‖hm,n‖

2
2 = 1 are added to remove

the scale ambiguity. B and C are needed if we use− log(px) in (6).

3.1. Updates of the Demixing Matrices

Let Ãi (i = 1, 2, . . . , L) be mixing matrices computed from H by
using (3), and let W̃i := Ã†i = (ÃH

i Ãi)
−1ÃH

i be the corresponding
demixing matrices. When we update W , H is fixed to the current
estimate H(l), i.e., W̃i are fixed, and the function F is defined as

F(W,H) :=

I∑
i=1

∥∥Wi−W̃i

∥∥2
F

=

I∑
i=1

N∑
n=1

‖wi,n− w̃i,n‖22. (10)

By ignoring the constraint
∑M
m=1‖ām,n‖

2
2 = L and utilizing the

auxiliary function method if needed, the problem of (9) is reduced to

minimize
Wi

N∑
n=1

(
wH
i,nU

(l+1)
i,n wi,n + λ ‖wi,n − w̃(l)

i,n‖
2
2

)
− log det(WiW

H
i ), (11)

where U (l+1)
i,n is defined as in (8) according to pn. Define Ũ (l+1)

i,n :=

U
(l+1)
i,n +λEM with the identity matrixEM ∈ RM×M and let δp,q ∈
{0, 1} be the Kronecker delta. Then, the minimizer of (11) satisfies
wH
i,pŨ

(l+1)
i,q wi,q = δp,q + λwH

i,pw̃
(l)
i,q for p, q = 1, 2, . . . , N , and it

can be approximately obtained, for each row vector, by

v
(l+1)
i,n =

(
Ũ

(l+1)
i,n

)−1
a
(l)
i,n, ṽ

(l+1)
i,n = λ

(
Ũ

(l+1)
i,n

)−1
w̃

(l)
i,n

d
(l+1)
i,n = v

(l+1)H
i,n Ũ

(l+1)
i,n v

(l+1)
i,n , d̃

(l+1)
i,n = v

(l+1)H
i,n Ũ

(l+1)
i,n ṽ

(l+1)
i,n

w
(l+1)
i,n =



v
(l+1)
i,n√
d

(l+1)
i,n

+ ṽ
(l+1)
i,n if d̃ (l+1)

i,n = 0,

d̃
(l+1)
i,n

2d
(l+1)
i,n

(√
1 +

4d
(l+1)
i,n

|d̃ (l+1)
i,n |2

− 1

)
v
(l+1)
i,n + ṽ

(l+1)
i,n

otherwise.
(12)

Fig. 1. Example of E2A impulse responses h[τ ] in RWCP database
[24], where sampling frequency is 16 [kHz], distance from a sound
source to a microphone is 6 [m], and reverberation time is 900 [ms].

The update of (12) was originally derived in [14] as a general-
ization of (8). Since we ignored the constraint

∑M
m=1‖ām,n‖

2
2 = L,

we have to modify W(l+1) to satisfy the constraint. First, compute
A

(l+1)
i = W

(l+1)H
i (W

(l+1)
i W

(l+1)H
i )−1 for i = 1, 2, . . . , I from

W
(l+1)
i . Second, constructA(l+1)

L−i+2 for i = 2, 3, . . . , I from â∗i,m,n.

Third, define γ(l+1)
n :=

√∑M
m=1‖ā

(l+1)
m,n ‖22/L (n = 1, 2, . . . , N ),

and divide a(l+1)
i,n (i = 1, 2, . . . , L) by γ(l+1)

n , i.e., multiply w(l+1)
i,n

by γ(l+1)
n . Then, we can obtain W(l+1) satisfying the constraint.

3.2. Updates of the Impulse Responses

When we update H, W is fixed to W(l+1) and F is defined as6

F(W,H) :=

L∑
i=1

∥∥Ai − Ãi∥∥2F =

M∑
m=1

N∑
n=1

‖ām,n − Φhm,n‖22,

(13)
where the matrix Φ := (φ0,φ1, . . . ,φT−1) ∈ CL×T denotes the
discrete-time Fourier transform in (3), and each column vectorφτ :=
(φ1,τ , φ2,τ , . . . , φL,τ )> ∈ CL is defined from φi,τ := exp(ıωiτ).
We define G, to evaluate the sparsity of H, as a weighted `0 norm

G(H) :=

M∑
m=1

N∑
n=1

‖hm,n‖ν0 :=

M∑
m=1

N∑
n=1

T−1∑
τ=0

ν[τ ]Γ(hm,n[τ ]),

(14)
where we design weights ν[τ ] > 0 (τ = 0, 1, ..., T − 1) as a mono-
tonically increasing sequence by considering the fact that |hm,n[τ ]|
tends to gradually decrease as shown in Fig. 1. The binary function
Γ : R→ {0, 1} satisfies Γ(h) = 0 if h = 0 and Γ(h) = 1 if h 6= 0.

By ignoring the constraint
∑M
m=1‖hm,n‖

2
2 = 1, from φH

p φq =
Lδp,q for p, q = 0, 1, . . . , T − 1, each hm,n should be updated as

h(l+1)
m,n = argmin

hm,n

∥∥∥∥ ā(l+1)
m,n√
L
− Φhm,n√

L

∥∥∥∥2
2

+ ‖hm,n‖ν0

= argmin
hm,n

∥∥∥∥ΦHā
(l+1)
m,n

L
− hm,n

∥∥∥∥2
2

+ ‖hm,n‖ν0 . (15)

By letting h̃(l+1)
m,n := ΦHā

(l+1)
m,n /L ∈ RT be impulse responses com-

puted from W
(l+1)
i and h̃(l+1)

m,n [τ ] be the (τ + 1)th entry of h̃(l+1)
m,n ,

the solution of the problem of (15) can be given by the following hard
6For two matricesX and Y of the same size, ‖X−Y ‖2F 6= ‖X

†−Y †‖2F
holds in most cases. Therefore, the functions in (10) and (13) are different.
Nevertheless, we use (10) and (13) as the functions evaluating the consistency
between W and H since ‖X−Y ‖2F = ‖X†−Y †‖2F = 0 holds ifX = Y .



Fig. 2. Results for a bass sound arrived at 50◦. Fig. 3. Results for a piano sound arrived at 90◦. Fig. 4. Results for a drum sound arrived at 130◦.

thresholding

h(l+1)
m,n [τ ] =

{
h̃(l+1)
m,n [τ ] if

∣∣h̃(l+1)
m,n [τ ]

∣∣ ≥√ν[τ ],

0 if
∣∣h̃(l+1)
m,n [τ ]

∣∣ <√ν[τ ].
(16)

Since we ignored the constraint
∑M
m=1‖hm,n‖

2
2 = 1, we have

to modify H(l+1) to satisfy the constraint in a similar manner to W .

Define ξ(l+1)
n :=

√∑M
m=1‖h

(l+1)
m,n ‖22 (n = 1, 2, . . . , N ) and divide

h
(l+1)
m,n (m = 1, 2, . . . ,M ) by ξ(l+1)

n . Then, we can obtain H(l+1)

satisfying the constraint. After repeating (12) and (16) certain times,
by using PB and ISTFT, finally estimates of (hm,n∗sn)[t] are given.

3.3. Supervised Learning of the Nonnegative Basis Matrices

In BSS, since information on each sound and the mixing process is
almost unknown, it is very difficult to accurately separate each sound.
On the other hand, in supervised source separation, nonnegative ma-
trix factorization (NMF) methods and deep learning methods achieve
high separation performance, even in the under-determined cases in-
cluding M = 1, by using training data [17]–[19], [25], [26]. In this
paper, we focus on the fact that NMF is used in the sound genera-
tion model pn of ILRMA. Suppose that each sound sn[t] is an audio
signal from a known musical instrument. In such situations, we pro-
pose to construct the nonnegative basis matricesBn in advance from
training data. EachBn is learned, by the method in [27], from mono-
phonic power spectrograms of each musical instrument as follows.

Let |Smono|2 ∈ RI×J+ be some monophonic power spectrogram
of a musical instrument. In the simplest learning method, we create
one basis vector b̃mono from |Smono|2 by the rank-1 approximation

(b̃mono, c̃mono) = argmin
b̃∈RI

+,c̃∈R
J
+

∥∥|Smono|2 − b̃ c̃>
∥∥
F

. (17)

b̃mono is computed as the first left singular vector of |Smono|2 with
the singular value decomposition (SVD). On the other hand, in [27],
we create multiple basis vectors (b̃1, b̃2, . . . , b̃r∗) =: B̃r∗ ∈ RI×r∗+

from |Smono|2 to express sound segments such as attack and sustain
in detail. The number r∗ of basis vectors is the smallest r satisfying

∃B̃r ∈ RI×r+ such that min
C̃r∈Rr×J

+

∥∥|Smono|2 − B̃rC̃r
∥∥
F
≤ ε, (18)

where ε > 0 is the acceptable error. B̃r∗ is computed, with SVD and
a greedy algorithm, by choosing r∗ column vectors of the rank-r∗
approximation |Smono|2r∗ for |Smono|2 (see [27] for more detail).

4. NUMERICAL EXPERIMENTS

We show the effectiveness of the proposed method by numerical ex-
periments where the numbers of sound sources and microphones are
N = M = 3. As sounds sn[t] of sampling frequency 16 [kHz], we
used three audio signals (bass, piano, and drum sounds) which were

created with the musical instrument digital interface by the third au-
thor. As real impulse responses hm,n[τ ], we used E2A of reverbera-
tion time 900 [ms], as shown in Fig. 1, in RWCP database [24], where
we used microphones of numbers 17, 23, and 30. In STFT of (2), we
set L = 8192, η = 2048, and ψ[τ ] = 0.54− 0.46 cos(2πτ/L). We
compared ILRMA to the proposed method with (6) (ILRMA + Sp) as
blind methods. We compared ILRMA with supervised bases of (17)
(SILRMA (rank-1)) & (18) (SILRMA (rank-r)) to the corresponding
proposed ones (SILRMA (rank-1) + Sp) & (SILRMA (rank-r) + Sp)
as supervised methods, where ε = 0.1‖|Smono|2‖F in (18). We set
Kn = 30 in ILRMA and ILRMA + Sp. In ILRMA + Sp, we set T =
4096, λ= 0.075 in (9), and ν[τ ] =− log10(1−exp(−432/(τ+1)))
in (14). In SILRMA + Sp, we only changed the parameter λ = 0.02.

All the methods updated variables 100 times from the same ini-
tial values, where W (0)

i = E3, h(0)
m,n = 0, entries of B(0)

n and C(0)
n

were generated from the uniform distribution between [0, 1]. We used
source-to-distortion ratio (SDR), source-to-interferences ratio (SIR),
and sources-to-artifacts ratio (SAR) defined in [28] as evaluation in-
dices, and we compared the average of each index in 10 experiments.

Figures 2, 3, and 4 show the separation results of each method
for the bass, piano, and drum sounds, respectively. Among the blind
methods, ILRMA + Sp improved the standard ILRMA by averagely
3.78 [dB] in SDR that represents the overall separation performance,
3.67 [dB] in SIR that represents the removal performance of the non-
target sounds, and 3.07 [dB] in SAR that represents the suppression
performance of artifacts. By listening to the sounds, we found that the
assignment of each musical instrument was relatively difficult for the
results of ILRMA while it was easy for those of ILRMA + Sp though
its overall separation performance was also not high yet. Among the
supervised methods, both SILRMA and SILRMA + Sp achieved high
separation performance for the bass and piano sounds. However, for
the drum sound, the results of SILRMA were very bad, i.e., the drum
sound almost disappeared, since we might fail to learn the basis ma-
trices due to the difficulty for percussion instruments. In spite of the
failure of the learning, SILRMA + Sp obtained very good results for
the drum sound by newly using the sparsity of the impulse responses.
Among the all methods, SILRMA (rank-1) + Sp achieved the highest
separation performance, and its separation sounds were very clear.7

5. CONCLUSION

In this paper, we proposed an over-determined sound source separa-
tion method using the sparsity of impulse responses as a prior infor-
mation on the mixing process. In the proposed method, we estimate
not only the demixing matrices but also the impulse responses while
considering the consistency with each other. We extended the pro-
posed method to a supervised one by creating the nonnegative basis
matrices in advance. The experiments showed that the proposed me-
thod improves the conventional methods and leads to clearer sounds.

7See the results (https://mediasensinglab.bitbucket.io/SoundSource.html).
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