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Abstract As data analysis methods, hypothesis testing and
regression analysis are famous. However, hypothesis testing
can only detect significant differences between two groups
divided by some threshold, and regression analysis can only
construct an averaged model, whose information is limited.
Quantile regression is a robust and flexible analysis method,
and it can construct multilevel models. To make the most of
quantile regression, we propose multilevel spline smoothing
which considers the similarity between the adjacent quantile
lines and can enforce non-crossing and monotone properties.

1 INTRODUCTION

Data analysis [1] is becoming more important in the big
data era. In the simplest case, we analyze a pair of random
variables from its observations. One famous analysis method
is hypothesis testing [2]–[4]. In this approach, we first divide
the observations into two groups by using some empirically
determined threshold value on one random variable. Then we
check whether the distributions of the other random variable
are significantly different between the two groups. However,
hypothesis testing cannot detect small differences between
the two groups and any differences among one group.

Another famous method is regression analysis [1], [5]–[7].
In this approach, we construct a univariate continuous func-
tion which maps one random variable to the other one. Thus,
we can analyze the continuous relation between the two ran-
dom variables. This regression function is often constructed
as a low-order polynomial having the least square errors due
to its simplicity. In the spirit of robust statistics [4], [8]–[11],
a polynomial having the least absolute errors, which leads to
regression of the median, is also used for long-tailed data.

Quantile regression [12]–[15], which is the generalization
of the above median regression, enables robust and flexible
analysis. In this approach, by minimizing certain asymmetric
absolute errors, we can construct multiple quantile lines, i.e.,
percentile lines. Hence, we can realize continuous and two-
dimensional analysis using the multilevel regression results.
Although quantile regression is an effective analysis method,
there is a possibility that the polynomial regression model
cannot approximate true quantile lines enough. To make the
most of quantile regression, a spline regression model is used
[16]–[22]. Splines are piecewise polynomials and have been
widely used for construction of smooth functions, including
regression analysis, due to their flexibility and optimality.

In this paper, we propose a multilevel spline smoothing
technique for quantile regression. In the previous methods,
a quantile line of each level is individually constructed even
though all the quantiles are generated from one cumulative

distribution function. We newly consider the smoothness of
the cumulative distribution function, which makes the first
derivatives of the adjacent quantiles similar. Moreover, we
also enforce the non-crossing constraint [23]–[26], whom
the adjacent quantiles should satisfy, and an optional mono-
tone, i.e., non-decreasing, non-increasing, convex or concave,
property [27]–[30], whom a linear or a quadratic polynomial
has. Numerical experiments show that the proposed quantiles
are more harmonious with each other than the previous ones.

2 PRELIMINARIES

Let R and N denote the sets of all real numbers and non-
negative integers, respectively. For any open interval (a, b)
and ρ ∈ N ∪ {∞}, Cρ(a, b) stands for the set of all ρ-times
continuously differentiable real-valued functions on (a, b).
For any d ∈ N, Pd stands for the set of all univariate real
polynomials of degree d at most, i.e., Pd := {u : R → R :
x 7→

∑d
k=0 ckx

k | ck ∈ R}. We write vectors and matrices
with boldface small and boldface capital letters, respectively.

2.1 Regression Analysis
Suppose that we have observations {(xi, yi)}ni=1 of a pair

of random variables (X,Y ) whose joint probability density
function fX,Y (x, y) satisfies

∫∫
R2 fX,Y (x, y) dxdy = 1 and

fX,Y (x, y) > 0 for all (x, y) ∈ R2. Hence, the conditional
probability density function of Y given X is fY |X(y |x) :=
fX,Y (x, y)/fX(x) := fX,Y (x, y)/

∫∞
−∞ fX,Y (x, y) dy > 0.

When we analyze the continuous relation between the two
random variables X and Y , the least squares regression

minimize
θ

n∑
i=1

|yi − rθ(xi)|2 (1)

is often used due to its low computational cost [1], [5]–[7],
where rθ(x) is a certain regression model such as a polyno-
mial and θ stands for adjustable parameters to be optimized.
As n approaches infinity, the optimal solution rθ∗(x) of (1)
converges to the conditional mean µY (x) of Y given X = x:

rθ∗(x)→ µY (x) := E[Y |X = x] =

∫ ∞
−∞

yfY |X(y |x) dy

under the assumption that rθ(x) can exactly express µY (x)
if we choose the appropriate θ (see, e.g., [1] for proof).

It is well-known that the square error in (1) is sensitive to
outliers and the reliability of the optimal solution rθ∗(x) of
(1) significantly decreases for long-tailed data [4], [8]–[11].
In such situations, the least absolute deviations regression

minimize
θ

n∑
i=1

|yi − rθ(xi)| (2)



is used [10], [11]. Since the absolute error in (2) does not over-
evaluate the outliers differently from the square error, this
regression is robust even if n is not so large. Moreover, as
n approaches infinity, the optimal solution rθ∗(x) of (2) con-
verges to the conditional median mY (x) of Y given X = x:

rθ∗(x)→ mY (x) satisfying
∫ mY (x)

−∞
fY |X(y |x) dy = 0.5

under the assumption rθ(x) can express mY (x) (see [10]).

2.2 Quantile Regression
By generalizing the fact that the least absolute deviations

regression leads to the conditional median, we can estimate
any quantile line as follows. First of all, we define the condi-
tional cumulative distribution function of Y given X = x by

FY |x(y) :=

∫ y

−∞
fY |X(t |x) dt.

Since FY |x(y) becomes a strictly increasing function from
the positivity of fY |X(y |x), the inverse function F−1

Y |x(p) is
well-defined for p ∈ (0, 1). Actually, the conditional quantile
function of Y givenX = x is equivalent to F−1

Y |x(p) [2], [31]:

QY |x(p) := F−1
Y |x(p).

The value of qp,Y (x) := QY |x(p) is called the p-th condi-
tional quantile of Y given X = x. Note that qp,Y (x) is called
the 100p-th percentile or centile in some papers [32]–[34]. If
p = 0.5, then qp,Y (x) equals the conditional median mY (x).

Define an asymmetric absolute value function

Jp(t) :=

{
pt if t ≥ 0,
−(1− p)t if t < 0,

and consider the following optimization problem [12]–[15]

minimize
θ

n∑
i=1

Jp(yi − rθ(xi)). (3)

Then, as n approaches infinity, the optimal solution rθ(x) of
(3) converges to the p-th conditional quantile qp,Y (x) of Y :

rθ∗(x)→ qp,Y (x) satisfying
∫ qp,Y (x)

−∞
fY |X(y |x) dy = p

under the assumption rθ(x) can express qp,Y (x) (see [14]).
Any quantile line is easily obtained only by changing p in (3).

2.3 Spline Function
Let tb := {Ii := (ξi−1, ξi)}bi=1 be a set of subintervals Ii

on an open interval I := (ξ0, ξb) s.t. ξi − ξi−1 =: hi > 0
(i = 1, 2, . . . , b). For tb and ρ, d ∈ N s.t. 0 ≤ ρ ≤ d, define

Sρd (tb) := {s ∈ Cρ(ξ0, ξb) | s = ui ∈ Pd on Ii}

as the set of all univariate spline functions of degree d and
smoothness ρ on tb. In what follows, we express a spline
function s ∈ Sρd (tb) in the interval normalization form

s(x) := ui(x) :=

d∑
k=0

c
〈i〉
k

(x− ξi−1

hi

)k
for x ∈ (ξi−1, ξi),

(4)
where c〈i〉k ∈ R (k = 0, 1, . . . , d) are coefficients of ui ∈ Pd.

Spline functions are often used to construct smooth func-
tions, e.g., for computer aided design and regression analysis
[16]–[22], due to the optimality shown in Fact 1 below.
Fact 1 (Spline as the unique solution of a variational prob-
lem) There is the unique solution of the following problem

minimize
g∈C2(−∞,∞)

n∑
i=1

|yi − g(xi)|2 + λ

∫ ∞
−∞
|g′′(x)|2 dx, (5)

and it is a natural cubic spline, which is a kind of spline
function of degree 3 and smoothness 2 [16]. In the problem
of (5), the smoothing parameter λ > 0 controls the trade-off
between the data fidelity and the smoothness of the solution.

By using the coefficients c〈i〉k in (4), we can easily evaluate
the characteristics of spline functions as follows.

2.3.1 Quadratic Form of the Roughness Penalty Term
By restricting the domain of interest from (−∞,∞) to

I = (ξ0, ξb) (⊇ (xmin, xmax)) and the function space from
C2(−∞,∞) to Sρd (tb) (2 ≤ ρ ≤ d) in Fact 1, the roughness
penalty term used in (5) can be expressed as∫

I

|s′′(x)|2 dx =

b∑
i=1

∫
Ii

|s′′(x)|2 dx. (6)

By using the expression in (4), the roughness penalty on Ii
is expressed as the following quadratic form∫

Ii

|s′′(x)|2 dx =

d∑
k=2

d∑
j=2

k(k − 1)j(j − 1)

h3
i (k + j − 3)

c
〈i〉
k c
〈i〉
j . (7)

From (6) and (7), the roughness penalty on I is expressed
as a quadratic form by

∫
I
|s′′(x)|2 dx = cTQc, where c :=

(c
〈1〉
d , c

〈1〉
d−1, . . . , c

〈1〉
0 , c

〈2〉
d , c

〈2〉
d−1, . . . , c

〈2〉
0 , . . . , c

〈b〉
0 ) ∈ Rb(d+1)

is the coefficient vector of s(x) and Q ∈ Rb(d+1)×b(d+1) is
a certain symmetric positive semidefinite matrix.

2.3.2 Linear Equation for the ρ-Times Differentiability
For a spline function s ∈ Sρd (tb) in (4), to ensure the ρ-

times continuous differentiability on (ξi−1, ξi+1), i.e., s ∈
Cρ(ξi−1, ξi+1), the coefficients of the adjacent pieces ui(x)
and ui+1(x) have to satisfy the following linear equation

s ∈ Cρ(ξi−1, ξi+1)

⇔ 1

hji

d∑
k=j

k!

(k − j)!
c
〈i〉
k −

j!

hji+1

c
〈i+1〉
j = 0 (j = 0, 1, . . . , ρ).

(8)
From (8), there is some matrix H ∈ R(b−1)(ρ+1)×b(d+1) sat-
isfying s ∈ Cρ(ξ0, ξb)⇔Hc = 0.

2.3.3 Sufficient Condition for the Non-Negativity
In our previous works, we estimated probability density

functions by splines [35], [36]. It is difficult to give a useful
necessary and sufficient condition for the non-negativity of
s ∈ Sρd (tb) over Ii. Instead, we used a sufficient condition

j∑
k=0

(d− k)!

(j − k)!(d− j)!
c
〈i〉
k ≥ 0 (j = 0, 1, . . . , d)

⇒ s(x) ≥ 0 for all x ∈ (ξi−1, ξi) (9)

in [37]. From (9), there is some matrix G ∈ Rb(d+1)×b(d+1)

satisfying Gc ≥ 0⇒ s(x) ≥ 0 for all x ∈ (ξ0, ξb).



3 DATA ANALYSIS BY MULTILEVEL SPLINES

3.1 Quantile Regression via Spline Smoothing
In the problems of (1), (2), and (3), the most commonly

used regression model is a polynomial rθ(x) =
∑d
k=0 ckx

k

of degree d = 1 or 2 [1], [5]–[7]. In this case, the adjustable
parameters are coefficients θ = (cd, cd−1, . . . , c0)T ∈ Rd+1.
However, there is a high probability that such simple models
cannot approximate the true quantile lines qp,Y (x) enough.

To deal with more complex quantile lines flexibly, we can
employ a spline regression model rθ(x) = s(x) ∈ Sρd (tb) as
a generalization of the polynomial regression model. In this
case, the adjustable parameters equal the coefficient vector
θ = c ∈ Rb(d+1) of s(x) in Section 2.3.1. Although spline
functions are very flexible, overfitting would be caused when
the number n of observations is not so large. Therefore, by
assuming the energy of local change of qp,Y (x) is small in
the same manner as (5), we solve the following problem

minimize
s∈Sρd(tb)

n∑
i=1

Jp(yi − s(xi)) + λ

∫
I

|s′′(x)|2 dx, (10)

instead of the problem of (3) [14], [15], [22]. By repeatedly
solving the problem of (10) for p = pl (p1 < p2 < · · · < pL),
we can construct quantile regression lines of L levels.

3.2 Simultaneous Regression by Monotone Splines
In the above strategy [14], [15], [22], an important conditi-

on ∀x qpl+1,Y (x)> qpl,Y (x) (l = 1, 2, . . . , L−1) is ignored.
Some papers considered this condition and constructed non-
crossing regression results [23]–[26]. Moreover, other papers
enforced non-decreasing, non-increasing, convex, or concave
property on each spline regression model sl(x) [27]–[30].

In this paper, in addition to the above properties, we newly
utilize the smoothness of fY |X(y |x), which makes the first
derivatives of the adjacent quantiles similar. Hence, we solve

minimize
(sl∈Sρd(tb))Ll=1

L∑
l=1

n∑
i=1

wiJpl(yi − sl(xi))

+ λ

L∑
l=1

∫
I

|s′′l (x)|2 dx+ κ

L−1∑
l=1

∫
I

|s′l+1(x)− s′l(x)|2 dx

subject to ∀x sl+1(x) ≥ sl(x) (l = 1, 2, . . . , L− 1)
(and ∀l ∀x s′l(x) ≥ 0, s′l(x) ≤ 0, s′′l (x) ≥ 0, or s′′l (x) ≤ 0),

(11)
where wi > 0 and κ > 0. sl(xi) is expressed as aT

i cl with a
certain vector ai ∈ Rb(d+1) and the coefficient vector cl of
sl. The second term is expressed as

∑L
l=1 c

T
l Qcl = c̄TQ1c̄

with c̄ := (cT
1 , c

T
2 , . . . , c

T
L) ∈ Rb(d+1)L. From (6) and∫

Ii

|s′l+1(x)− s′l(x)|2 dx =

d∑
k=1

d∑
j=1

kj

hi(k + j − 1)

·
(
c
〈i〉
l+1,kc

〈i〉
l+1,j − c

〈i〉
l+1,kc

〈i〉
l,j − c

〈i〉
l,kc
〈i〉
l+1,j + c

〈i〉
l,kc
〈i〉
l,j

)
, (12)

the third term is expressed as c̄TQ2c̄. From (9), a sufficient
condition for the non-crossing constraint can be given by
j∑

k=0

(d− k)!

(j − k)!(d− j)!
(c
〈i〉
l+1,k − c

〈i〉
l,k) ≥ 0 (j = 0, 1, . . . , d)

⇒ sl+1(x) ≥ sl(x) for all x ∈ (ξi−1, ξi), (13)

and that for the non-decreasing property can be given by
j∑

k=0

(d− k − 1)!(k + 1)

(j − k)!(d− j − 1)!
c
〈i〉
l,k+1 ≥ 0 (j = 0, 1, . . . , d− 1)

⇒ s′l(x) ≥ 0 for all x ∈ (ξi−1, ξi). (14)

Sufficient conditions for the other properties can be obtained
in similar manners. From (6), (7), (8), (12), (13) and (14),
the problem of (11) is reduced to the following problem

minimize
c̄∈Rb(d+1)L

L∑
l=1

n∑
i=1

wiJpl(yi−aT
i cl) +λ c̄TQ1c̄+κ c̄TQ2c̄

subject to ∀lHcl = 0 and G1c̄ ≥ 0

(and ∀l G2cl ≥ 0, G2cl ≤ 0, G3cl ≥ 0, or G3cl ≤ 0).

The optimal solution of this problem is obtained, e.g., by the
alternating direction method of multipliers (ADMM) [38].

4 NUMERICAL EXPERIMENTS

We estimate the pl = l
4 -th (l = 1, 2, 3) quantiles qpl,Y (x) of

fY |X(y |x) :=
1√

2πσ̂(x)y
e
−

(log y−µ̂(x))2

2(σ̂(x))2 (y > 0)

by the method in (10) and the proposed one in (11), where
µ̂(x) :=


−0.5(x+ 0.15)2 + 1 if x ∈ (−∞,−0.15],
1 if x ∈ (−0.15, 0.15],

0.75(x− 0.15)2 + 1 if x ∈ (0.15,∞),

σ̂(x) :=

{
0.5 if x ∈ (−∞, 0.15],

0.5(x− 0.15)2 + 0.5 if x ∈ (0.15,∞),

and we define the probability density function of X by

fX(x) :=
0.3√
2πσ1

e
−

(x−µ1)2

2σ2
1 +

0.7√
2πσ2

e
−

(x−µ2)2

2σ2
2

with (µ1, σ1) := (−0.4, 0.2) and (µ2, σ2) := (0.2, 0.25). We
set n = 1000, d = 5, ρ = 2, b = 40, ξ0 = −1, ξ40 = 1, and
hi = 1

20 . Figures 1 and 2 show the results by (10) with λ =
1
40 and by (11) with wi = 4

√
fX(xi), (λ, κ) = ( 1

20 ,
1

100 ) and
the non-decreasing property. Black lines are the true mono-
tone quantiles, blue circles are observations, green lines are
the results by (10), and red ones are the results by (11). We
find that, differently from (10), the proposed method in (11)
can reconstruct the monotone and harmonious quantiles.

5 CONCLUSION

In this paper, we have proposed a novel spline smoothing
technique for quantile regression. Differently from the other
methods, we constructed multilevel quantile lines simultane-
ously by utilizing the similarity between the adjacent quan-
tile lines. We also considered the non-crossing constraint and
an optional (non-decreasing/non-increasing/convex/concave)
property. Numerical experiments showed that the proposed
method can construct harmonious multilevel quantile lines.
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Figure 1: Quantile Regression Results by (10) Figure 2: Quantile Regression Results by (11)
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