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This paper proposes a fast high-quality three-dimensional (3D) compressed sensing for a phased array weather radar
(PAWR), which is capable of spatially and temporally high-resolution observation of the atmosphere. Because of the
high-resolution, the PAWR generates huge observation data of approximately 500 megabytes every thirty seconds. To
transfer this huge data in a public internet line for real time weather forecast, an efficient data compression technology
is required. The proposed method compresses the PAWR data by randomly transferring several measurements only in
the troposphere, and then reconstructs the missing measurements for each small 3D tensor data by minimizing a cost
function based on a prior knowledge on weather phenomena. The minimizer of the cost function can be quickly com-
puted by using a convex optimization algorithm with Nesterov’s acceleration technique. Numerical simulations using
real PAWR data show the effectiveness of the proposed method compared to conventional two-dimensional methods.
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1. Introduction

Occurrence of extreme weather events is getting more fre-
quent (1). Among such events, there exist thunderstorms with
heavy rain caused by quick growth of cumulonimbus clouds.
Thunderstorms only take tens of minutes from their genera-
tion to decay, while classical weather radars equipped with a
parabolic antenna take five or ten minutes for sparse scan of
the whole sky. Thus the temporal and spatial resolution is not
sufficient for observation of these thunderstorms.

A phased array weather radar (PAWR) (2)–(4) was developed
in order to overcome the above limitation. That developed in
Osaka University achieved the temporal resolution of thirty
seconds for scanning a hemisphere of a radius sixty kilome-
ters. Furthermore, the spatial resolution along the range axis
was improved to one hundred meters, which means that the
number of sampling points in the range axis increased to 600.
Those in the azimuth and the elevation axes increased to 300
and 110, respectively. The measurements include thirteen as-
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pects of weather phenomena, and two bytes are used to de-
scribe each aspect. As a result, huge data of 490.9 megabytes
is generated every thirty seconds, and a data transfer with-
out any compression technique needs a transfer rate of 130.9
megabits per second (Mbps). Thus the current PAWR system
exploits a private internet line with some cost, but it makes
real time weather forecast on the network difficult.

To transfer the PAWR data in a public internet line, an ef-
ficient compression technique is necessary as well as a high-
quality reconstruction algorithm. A standard public internet
line of 100 Mbps at most can only maintain 30 to 40 Mbps in
average. By assuming that 35 Mbps is available, the required
compression rate becomes 26.73% approximately. Thus we
set 25% compression rate as our goal in this paper.

To this end, we exploit random selection for compression
scheme as used in several existing papers (5)–(9). In the PAWR
system, the observed data is processed as shown in the left
column of Fig. 1. The observed data are mixtures of the back-
scattered signals from various elevation angles within the an-
tenna beamwidth. A digital beamforming technique (10)–(12) di-
vides the mixed signals into the backscattered signals of the
individual elevations. Then, the demixed signals are used to
compute thirteen weather parameters including the reflection
intensity, whose data size is 37.8 megabytes for one rotation
of the PAWR. The computational cost to obtain each param-
eter is not ignorable. In a scenario without compression, the
entire 37.8 megabytes data are transferred to a remote server
and then analyzed. On the other hand, we exploit random se-
lection after the beamforming as shown in the right column
of Fig. 1. Then, we can reduce not only the data size of the
reflection intensity to 9.44 megabytes but also the cost for its
computation. Since the entire reflection intensity data are not
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Fig. 1. Flowcharts of original and our data processing.

computed, we cannot exploit a Huffman code, even though it
can theoretically achieve the lowest compression rate.

The random selection compression scheme matches with
reconstruction techniques in compressed sensing (CS) (13)–(15).
CS was first applied to radars for point targets (16)–(18) and then
applied to weather radars (5)–(9) (19) (20). For example, Mishra et
al. used a low-rank matrix approximation to reconstruct two-
dimensional (2D) slices, in the entire three-dimensional (3D)
PAWR data, from compressed slices (5). Shimamura et al. pro-
posed a one-dimensional (1D) reconstruction algorithm that
promotes the sparsity in a wavelet domain (6). In our previous
work, we proposed a two-dimensional (2D) reconstruction al-
gorithm which promotes the local similarity and the sparsity
of 2D slice data in the spatial and the frequency domains, re-
spectively (7) (8). In this method, matrices are extracted as slice
data for fixed elevations, in the same manner as the method
of Mishra et al. Such matrices are generated only after each
thirty seconds rotation of the PAWR. Hence the PAWR sys-
tem has to transfer these matrices while saving new measure-
ments in the next rotation. As a result, our previous technique
is not efficient with respect to memory usage although the re-
construction quality is better than the other methods (5) (6).

In this paper, not only to reduce the memory usage but also
to further improve the reconstruction quality, we propose a
3D reconstruction method. The PAWR sequentially captures
2D slice data for fixed azimuth directions, and then creates
the entire 3D PAWR data by combining all 2D slice data. If
we apply our previous 2D reconstruction method (7) (8) to such
a slice in each azimuth direction, we can transfer the PAWR
data with low memory usage because we do not need to wait
the thirty seconds rotation. However, the reconstruction qual-
ity of this simple strategy is not good because the local simi-
larity along the elevation axis is lower than that along the az-
imuth axis. To achieve both of low memory usage and high
reconstruction accuracy, we have proposed a 3D reconstruc-
tion method (9), and this paper proposes its improved version.
In the 3D reconstruction method (9), we combine several con-
tiguous slices into a 3D tensor and compress it. We randomly
select and transfer some measurements of the 3D tensor only
in the troposphere. Then, we reconstruct the 3D tensor from

the compressed tensor by minimizing a convex cost function
based on the following prior knowledge on the PAWR data.
First, all measurements outside of the troposphere are zeros
because there is no weather events. Second, the reconstructed
data should be consistent with the compressed one. Third, the
3D total variation is relatively small because of the local sim-
ilarity in the spatial domain. Fourth, the ℓ1-norm of the 3D
discrete cosine transform (DCT) coefficients is also small be-
cause of the sparsity in the frequency domain. Since the cost
function is convex, the minimizer can be efficiently found by
using one of the convex optimization techniques (21)–(23).

In the previous paper (9), we further improved the conver-
gence speed by Nesterov’s acceleration technique (24)–(27), but
one issue that the cost function is not strongly convex† was
not considered. For a strongly convex cost function, the con-
vergence speed of the alternating direction method of multi-
pliers (ADMM) can be improved by applying Nesterov’s ac-
celeration to dual variables (26). However, since the proposed
cost function is not strongly convex, the previous algorithm (9)

cannot guarantee the convergence to the optimal solution. Al-
though Nesterov’s acceleration with a restart rule is proposed
to theoretically guarantee the convergence (26), this strategy is
slow because it takes much time, in every iteration, to judge
whether the restart should be done or not. Instead, in this pa-
per, we apply the acceleration technique only in the first sev-
eral iterations, and after that the standard ADMM iterations
are used. Numerical simulations using real PAWR data show
that the proposed method outperforms the conventional 2D
reconstruction algorithms (5) (7) (8) with less computational time.

The rest of this paper is organized as follows. Section 2 for-
mulates our PAWR data compression scheme. In Section 3.1,
we define a cost function for 3D reconstruction and propose
a blockwise reconstruction algorithm based on a convex op-
timization technique. Section 3.2 describes Nesterov’s accel-
eration for the reconstruction algorithm. Section 4 shows the
effectiveness of the proposed algorithm by numerical simula-
tions using real data. Finally, Section 5 concludes this paper.

2. Data Compression by Random Selection
In this paper, we focus on the reflection intensity among

thirteen weather parameters observed by the PAWR (2)–(4). The
other parameters can be handled in similar ways. The reflec-
tion intensities are observed as a 3D tensor X ∈ RNR×NA×NE ,
and we denote by x[nR, nA, nE] ∈ R the (nR, nA, nE)-entry of
X, where 1 ≤ nR ≤ NR := 600, 1 ≤ nA ≤ NA := 300, and
1 ≤ nE ≤ NE := 110, i.e., the number of measurements is
N := NRNANE = 19,800,000.

The PAWR can observe the reflection intensities within a
hemisphere of a radius sixty kilometers. This hemisphere in-
cludes the out of the troposphere and x[nR, nA, nE] is 0 there.
We use this knowledge for both sampling and reconstruction.
Let Htro be the height of the troposphere, where the curvature
of the earth is not taken into account. In order to compress the
original data X, we randomly select M (< N) measurements
within regions in which the height is lower than Htro and then
convert (N − M) unselected measurements into 0. This com-
pression process is denoted byA : RNR×NA×NE → RNR×NA×NE ,
† A function f : RN → R ∪ {∞} is called convex if f (λx + (1 − λ)y) ≤
λ f (x) + (1 − λ) f (y) for all x, y ∈ RN and all λ ∈ (0, 1), and strongly convex
if f (λx + (1 − λ)y) < λ f (x) + (1 − λ) f (y) for all x, y ∈ RN and all λ ∈ (0, 1).
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(a) Original data X[ : , 1, : ] [dBZ] (b) Compressed data Y[ : , 1, : ] [dBZ]

Fig. 2. Original data and compressed data.

the compressed data is expressed as Y := A(X), and the com-
pression ratio is defined by α := M/N ∈ (0, 1).

An example of a pair of the original observed data X and
the compressed data Y is shown in Fig. 2, where slices of the
1st azimuth direction are extracted from the entire 3D tensors.
The original data X was acquired on March 30th, 2014, by the
PAWR equipped in Suita Campus of Osaka University, Japan,
and the compressed data Y retains only 25% measurements
among X. Now, we must recover the missing measurements
from the selected remaining ones and their positions. The
next section proposes a high-quality reconstruction method.

3. Three-Dimensional Reconstruction Algorithm
Based on Blockwise Convex Optimization

The proposed method in this paper is an improved version
of our previous 3D reconstruction method (9). In Section 3.1,
we summarize our previous method (9), where the data fidelity
term is modified from the cost into constraint. In Section 3.2,
we apply Nesterov’s acceleration while considering the non-
strong convexity which was ignored in the previous paper (9).

3.1 Proposed 3D Blockwise Reconstruction In the
PAWR system, a 2D matrix data X[ : , nA, : ] ∈ RNR×NE as in
Fig. 2(a) is acquired at the same time. By rotationally acquir-
ing X[ : , nA, : ] (nA = 1, 2, . . . ,NA) in sequence and combin-
ing them, the entire 3D tensor data X ∈ RNR×NA×NE is gener-
ated. In this section, we propose to divide the entire tensor X
into small tensors and to reconstruct each tensor in sequence.

At first, with some factor s of NA, we divide the original
data X and the compressed one Y into NA/s tensors Xl :=
(X[ : , (l − 1)s + 1, : ], X[ : , (l − 1)s + 2, : ], . . . , X[ : , ls, : ]) ∈
RNR×s×NE and Yl = Al(Xl) ∈ RNR×s×NE (l = 1, 2, . . . ,NA/s).
We suppose that each compression processAl : RNR×s×NE →
RNR×s×NE has the same compression ratio M/N, i.e., we ran-
domly select sM/NA measurements from each Xl within re-
gions in which the height is lower than Htro.

To reconstruct the complete measurements Xl from the ran-
domly selected ones Yl, we exploit four characteristics of Xl.
First, the measurements outside of the troposphere are 0 as
mentioned before. Let us denote the set of all Xl ∈ RNR×s×NE

satisfying this condition by S. Second, the observation of Xl
should be consistent with Yl. Third, the reflection intensities
are locally similar because rain falling areas exist continu-
ously. Fourth, we suppose that Xl can be sparsely described
in the frequency domain. On the basis of the above charac-
teristics, we reconstruct X as X∗ := (X∗1, X

∗
2, . . . , X

∗
NA/s

) ∈
RNR×NA×NE , where each block X∗l (l = 1, 2, . . . ,NA/s) is re-

constructed by solving a convex optimization problem

X∗l := argmin
Xl∈S s.t.Al(Xl)=Yl

TV(Xl) + λ ∥C(Xl)∥1. · · · · · · ·(1)

In (1), λ > 0, C : RNR×s×NE → RNR×s×NE denotes the 3D DCT,
∥Xl∥1 :=

∑NR
nR=1
∑s

nA=1
∑NE

nE=1 |xl[nR, nA, nE]|, and the total vari-
ation is defined by

TV(Xl) :=
NR−1∑
nR=1

s∑
nA=1

NE∑
nE=1

|xl[nR + 1, nA, nE] − xl[nR, nA, nE]|

+

NR∑
nR=1

s−1∑
nA=1

NE∑
nE=1

|xl[nR, nA + 1, nE] − xl[nR, nA, nE]|

+

NR∑
nR=1

s∑
nA=1

NE−1∑
nE=1

|xl[nR, nA, nE + 1] − xl[nR, nA, nE]|.

In (1), the cost function is convex and two constraint sets are
also convex†. Therefore, this problem is a convex optimiza-
tion problem and can be solved by the simultaneous direction
method of multipliers (SDMM) (22), which is a special case of
ADMM (21), as follows.

Let xl := vec(Xl) ∈ RN̂ (N̂ := sNRNE) be a vectorized ver-
sion of a 3D tensor Xl ∈ RNR×s×NE , and the inverse mapping
of vec is denoted by ten, i.e., Xl = ten(xl). Let Al ∈ RN̂×N̂ be a
diagonal matrix which converts the unselected measurements
of xl into 0 while retaining the selected ones. Define

DNR :=


−1 1 0 . . . 0
0 −1 1 . . . 0
...
. . .

. . .
. . .

...
0 . . . 0 −1 1

 ∈ R(NR−1)×NR ,

and also define Ds ∈ R(s−1)×s and DNE ∈ R(NE−1)×NE in the
same manner. The identity matrix and the 1D DCT matrix of
size K × K are denoted by IK and CK , respectively. By defin-
ing matrices, with the use of the Kronecker product ⊗, as

L1 := INE ⊗ Is ⊗ INR , L2 := INE ⊗ Is ⊗ DNR ,
L3 := INE ⊗ Ds ⊗ INR , L4 := DNE ⊗ Is ⊗ INR ,
L5 := CNE ⊗Cs ⊗CNR , L6 := INE ⊗ Is ⊗ INR ,

and defining g1(y1) := 0 if Aly1 = vec(Yl), g1(y1) := ∞ if
Aly1 , vec(Yl), gi(yi) := ∥yi∥1 (i = 2, 3, 4), g5(y5) := λ ∥y5∥1,
g6(y6) := 0 if ten(y6) ∈ S, and g6(y6) := ∞ if ten(y6) < S, a
vectorized version of X∗l in (1) is expressed as

x∗l = argmin
xl∈RN̂

6∑
i=1

gi(Lixl). · · · · · · · · · · · · · · · · · · · · · · · · (2)

The vector x∗l in (2) can be computed by SDMM as shown
in Algorithm 1, and the original tensor data is reconstructed
by X∗l = ten(x∗l ). In Algorithm 1, Q :=

∑6
i=1 LT

i Li ∈ RN̂×N̂

is invertible and the analytic form of Q−1 can be derived in a
similar way as in our previous method (7) (8) without any prod-
uct of huge matrices of size N̂ × N̂. Moreover, for any γ >
0, each proximity operator proxγgi

(wi) := argminyi
gi(yi) +

1
2γ ∥yi − wi∥22 (i = 1, 2, . . . , 6) can be easily computed (22) (23).

† Since the range resolution of the PAWR is 100 [m] and the elevation res-
olution is π

220 [rad], the height corresponding to xl[nR, nA, nE] is given by
100 nR sin( nEπ

220 ) [m]. Furthermore, the height of the troposphere Htro [m] is
fixed, and hence S is expressed as S := {Xl ∈ RNR×s×NE | xl[nR, nA, nE] = 0
for all (nR, nA, nE) s.t. 100 nR sin( nEπ

220 ) > Htro}. This set is clearly convex.
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Algorithm 1 3D PAWR data reconstruction
Input: Yl ∈ RNR×s×NE , γ ∈ (0,∞), and an integer Imax

1: yi,0 ← Livec(Yl) and zi,0 ← 0 (i = 1, 2, . . . , 6)
2: for k = 1, 2, . . . , Imax do
3: xk ← Q−1∑6

i=1 LT
i (yi,k−1 − zi,k−1)

4: yi,k ← proxγgi
(Lixk + zi,k−1) (i = 1, 2, . . . , 6)

5: zi,k ← zi,k−1 + Lixk − yi,k (i = 1, 2, . . . , 6)
6: end for

Output: x∗l ← xk

3.2 Nesterov’s Acceleration for Algorithm 1 In this
section, we improve the convergence speed of Algorithm 1 by
Nesterov’s acceleration technique (24)–(27). Goldstein et al. pro-
posed Fast ADMM as an accelerated variant of ADMM, and
the convergence rate can be improved fromO(1/k) toO(1/k2)
for a strongly convex optimization problem (26). Fortunately,
SDMM is just a special case of ADMM, and hence we apply
Nesterov’s technique to dual variables following the paper (26).

Since the function in (2) is not strongly convex, we should
use Fast ADMM with a restart rule for stable computations
(see Algorithm 8 in the paper (26)). However, in our case, this
strategy cannot accelerate Algorithm 1 because it takes much
time, in every iteration, to judge whether the restart should be
done or not. Through our numerical experiments, we found
that the restart hardly happens in the first several iterations,
e.g., five iterations for the problem in (2). Therefore, we ap-
ply Nesterov’s technique only in the first P iterations without
checking the restart condition, and after that the same itera-
tions as in Algorithm 1 are continued. Algorithm 2 summa-
rizes this idea, where we use different parameters γ1 and γ2
for computing proxγgi

to achieve the best convergence speed.
Note that Algorithms 1 and 2 are suitable for parallel com-

puting. Hence, GPU implementations of these algorithms, in
which the computation for each block Xl is assigned to each
core, would further accelerate the reconstruction process.

Algorithm 2 Fast 3D PAWR data reconstruction
Input: Yl ∈ RNR×s×NE , γ1, γ2 ∈ (0,∞), and integers P < Imax

1: yi,0 ← Livec(Yl) and zi,0 ← 0 (i = 1, 2, . . . , 6)
2: yi, 12

← yi,0 and zi, 12
← zi,0 (i = 1, 2, . . . , 6)

3: α0 ← 1
4: for k = 1, 2, . . . , P do
5: xk ← Q−1∑6

i=1 LT
i (yi,k− 1

2
− zi,k− 1

2
)

6: yi,k ← proxγ1gi
(Lixk + zi,k− 1

2
) (i = 1, 2, . . . , 6)

7: zi,k ← zi,k− 1
2
+ Lixk − yi,k (i = 1, 2, . . . , 6)

8: αk ←
1+
√

1+4α2
k−1

2
9: yi,k+ 1

2
← yi,k +

αk−1−1
αk

(yi,k − yi,k−1) (i = 1, 2, . . . , 6)

10: zi,k+ 1
2
← zi,k +

αk−1−1
αk

(zi,k − zi,k−1) (i = 1, 2, . . . , 6)
11: end for
12: zi,P ← γ2

γ1
zi,P (i = 1, 2, . . . , 6)

13: for k = P + 1, P + 2, . . . , Imax do
14: xk ← Q−1∑6

i=1 LT
i (yi,k−1 − zi,k−1)

15: yi,k ← proxγ2gi
(Lixk + zi,k−1) (i = 1, 2, . . . , 6)

16: zi,k ← zi,k−1 + Lixk − yi,k (i = 1, 2, . . . , 6)
17: end for

Output: x∗l ← xk

4. Numerical Simulations

To show the effectiveness of the proposed method, we con-
ducted simulations using real PAWR data shown in Fig. 3(a).
This data was acquired on March 30th, 2014, by the PAWR
equipped in Suita Campus of Osaka University, Japan, and is
referred as Data 1. The following simulations were executed
by Matlab on iMac (OS 10.10, Intel Core i5, 2.7 GHz, 8 GB).
The compressed data Y was generated with compression ratio
α = 0.25, where the height parameter Htro was set to 15 [km].
Each block Xl was generated by combining s = 4 contiguous
slices. This means that the PAWR system only has to store
4 slices for sending each small block while the conventional
2D reconstruction methods (5) (7) (8) have to store the entire 300
slices corresponding to one rotation of the PAWR. After send-
ing one block, memory can be overwritten by the succeeding
block. As a result, we can achieve 300/4 = 75 times lower
memory usage than those of the conventional methods (5) (7) (8).

Algorithm 1 reconstructed the 3D tensors Xl from Yl with
the use of λ = 4 and γ = 1.7, and Algorithm 2 reconstructed
Xl with the use of λ = 4, γ1 = 2.2, γ2 = 1.3 and P = 5. These
values were set so that the reconstruction quality and the con-
vergence rate would be the best. We compared the proposed
method with the 2D methods of Mishra et al. (5) and ours (7) (8),
which are called Conventional 1 and Conventional 2. We also
compared the results of the proposed method for s = 300, i.e.,
the results of the non-blockwise reconstruction. Note that the
shapes of the reconstructed blocks are different depending on
the reconstruction methods, e.g., sampling and reconstruction
in Conventional 1 and Conventional 2 are done slice-by-slice
for each fixed elevation angle. Therefore, the measurements
were not the same as those for the proposed method, but com-
pression rate was fixed by α = 0.25 for all methods.

We evaluated each reconstruction method by the normal-
ized error 100 ∥X∗ − X∥F/∥X∥F and the averaged computa-
tional time as shown in Table 1, where the Frobenius norm
is defined by ∥X∥F := (

∑NR
nR=1
∑NA

nA=1
∑NE

nE=1 |x[nR, nA, nE]|2)1/2,
and the numbers of iterations Imax were set to 650, 100, 30,
and 25 for Conventional 1, Conventional 2, Algorithm 1, and
Algorithm 2, respectively. From Table 1, the normalized er-
rors for Data 1 by Conventional 1 and Conventional 2 were
16.94% and 13.61%, respectively. Those by Algorithm 1 and
Algorithm 2 were 9.75% and 9.78% for the entire reconstruc-
tion (s = 300), and were 9.88% and 9.90% for the blockwise
reconstruction (s = 4). These results show that the proposed
3D reconstruction method outperforms the conventional 2D
methods. Moreover, we can see that the deterioration due to
the blockwise optimization was less than 0.5%, which is ac-
ceptable because this difference does not cause any change in
the estimation of rainfall (6). Although Nesterov’s acceleration
caused the slight deterioration of the accuracy, this is also ac-
ceptable. Therefore, the proposed 3D CS technique achieves
both of low memory usage and high reconstruction accuracy.
Table 2 shows the normalized errors of Algorithm 2 with dif-
ferent s for Data 1. From Table 2, although the reconstruction
accuracy tends to become better for larger s, we judged that
s = 4 is the best value among all factors of NA = 300 in terms
of both the memory usage and the reconstruction accuracy.

Figure 3 shows the reconstruction results of the 10th ele-
vation angle. The original data X and the compressed one Y
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(a) Original observed data X[ : , : , 10] [dBZ] (b) Magnification of the red rectangle in (a) (c) 25% randomly selected data Y[ : , : , 10] [dBZ]

(d) Conventional 1 (normalized error: 16.35%) (e) Conventional 2 (normalized error: 11.93%) (f) Algorithm 2 with s = 4 (normalized error: 8.77%)

(g) Magnification of the red rectangle in (d) (h) Magnification of the red rectangle in (e) (i) Magnification of the red rectangle in (f)

Fig. 3. Simulation results for the reflection intensity X [dBZ] observed on March 30th, 2014.

are shown in Figs. 3(a) and (c). The reconstructed one X∗ by
Conventional 1, Conventional 2, and Algorithm 2 with s = 4
are shown in Figs. 3(d), (e), and (f). Magnificated images of
X and X∗ are shown in Figs. 3(b), (g), (h), and (i). The nor-
malized errors for this slice by Conventional 1 and Conven-
tional 2 were 16.35% and 11.93%, respectively. On the other
hand, that by Algorithm 2 was 8.77%. From Fig. 3, we can
confirm high reconstruction quality of the proposed method.

Figure 4 shows the scatter plots of the simulation results
for Data 1. Figures 4(a), (b), and (c) show the results by Con-

ventional 1, Conventional 2, and Algorithm 2 using s = 4,
respectively. We can see that the scatter plot of the proposed
method is narrower than those of the 2D methods. In particu-
lar, the plot of the proposed method more than 30dBZ seems
narrower. Table 3 shows the distributions of the normalized
errors in detail. Table 3 shows that the proposed 3D method
outperformed the other methods for regions especially more
than 30dBZ, 40dBZ and 50dBZ. These ranges indicate that it
is heavily raining. Thus the proposed method may be effec-
tive for such heavy rain regions. Figure 4 also implies that the
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Table 1. Normalized error and computational time of each reconstruction method.

Conventional 1 Conventional 2 Algorithm 1 (s = 300) Algorithm 2 (s = 300) Algorithm 1 (s = 4) Algorithm 2 (s = 4)

Normalized Error [%]

Data 1 (2014/3/30) 16.94 13.61 9.75 9.78 9.88 9.90
Data 2 (2014/1/8) 20.51 17.21 12.49 12.48 12.69 12.65
Data 3 (2013/6/19) 16.65 13.37 9.56 9.62 9.68 9.72
Data 4 (2013/5/10) 30.35 21.03 15.15 15.33 15.61 15.82

Averaged Computational Time [sec] 2,180 678 304 223 314 242
(Computational Time per Slice or Block) (19.82 per Slice) (6.16 per Slice) — — (4.19 per Block) (3.23 per Block)

Table 2. Normalized errors depending on s for Data 1.

s 2 3 4 5 6 10 20 30 60 100 150
Error 9.99 9.93 9.90 9.90 9.91 9.87 9.85 9.83 9.81 9.82 9.80

Table 3. Normalized error distributions for Data 1.
Conventional 1 Conventional 2 Algorithm 2 (s = 4)

Normalized Error [%] 16.94 13.61 9.90
≥ 20dBZ 12.93 9.38 6.75
≥ 30dBZ 11.00 7.42 5.32
≥ 40dBZ 12.77 7.68 5.06
≥ 50dBZ 16.88 8.03 4.93

true PAWR data do not take the reflection intensities less than
15dBZ. This is because 15dBZ is too small to be valid mea-
surements, and hence the system is designed to discard such
values. The proposed method does not use this knowledge,
and if do, the reconstruction quality can be further improved.

Table 1 also shows the computational time of each method.
From Table 1, we find that both Algorithms 1 and 2 achieved
better reconstruction accuracy with less computational time
than Conventional 1 and Conventional 2. In addition, Algo-
rithm 2 is approximately 1.3 times faster than Algorithm 1,
and hence Nesterov’s technique is effective for acceleration.

We further conducted simulations for other data acquired
on January 8th, 2014, June 19th, 2013, and May 10th, 2013,
which are referred as Data 2, Data 3, and Data 4, respectively.
The normalized errors for each data are shown in Table 1 in
the same manner as Data 1. Further, Figs. 5, 6, and 7 show the
reconstruction results of the 10th elevation angle for Data 2,
Data 3, and Data 4, respectively. From Table 1 and these fig-
ures, we can see that the proposed method robustly achieves
better reconstruction results than the conventional methods.

In the above simulations, the number of the blocks Xl is 75.
Yet, to complete the reconstruction for all thirteen parameters
of the PAWR, the proposed method requires 3.23× 75× 13 ≈
3,150 seconds. Since the reconstruction should be completed
within 30 seconds, 105 times acceleration is required approx-
imately. To further accelerate Algorithm 2, implementation
by some compiler language like C is effective. In addition,
since the reconstruction for each block can be performed in a
parallel way, the computation based on GPU is also effective.
If each block can be reconstructed by a separate computer in
parallel, 105/75 ≈ 1.4 times acceleration is required to trans-
fer all parameters observed by the PAWR data in real time.

5. Conclusion

This paper proposed a fast high-quality 3D CS technique
for transferring the PAWR data in a public internet line. First,
we summarized our compression and reconstruction schemes
based on random sampling in the troposphere and blockwise
convex optimization, respectively. In the reconstruction part,
we defined a new cost function that expresses a prior knowl-
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(c) Algorithm 2 with s = 4

Fig. 4. Scatter plot of each method for Data 1.

edge such as the local similarity and sparsity of the 3D PAWR
data in the spatial and frequency domains. Because the cost
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(a) Original observed data X[ : , : , 10] [dBZ] (b) 25% randomly selected data Y[ : , : , 10] [dBZ]

(c) Conventional 1 (normalized error: 17.67%) (d) Conventional 2 (normalized error: 14.23%) (e) Algorithm 2 with s = 4 (normalized error: 10.68%)

Fig. 5. Simulation results for the reflection intensity X [dBZ] observed on January 8th, 2014.

function is convex, an efficient reconstruction algorithm was
derived by SDMM. Then, for improvement of the computa-
tional speed, we applied Nesterov’s acceleration technique to
SDMM. Numerical experiments using real data showed that
the proposed method achieves low memory usage, high ac-
curacy, and fast reconstruction compared with 2D methods.
Since the reconstruction can be performed for each block in a
parallel way, our method can be further accelerated by GPU.
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(a) Original observed data X[ : , : , 10] [dBZ] (b) 25% randomly selected data Y[ : , : , 10] [dBZ]

(c) Conventional 1 (normalized error: 27.16%) (d) Conventional 2 (normalized error: 18.55%) (e) Algorithm 2 with s = 4 (normalized error: 14.09%)

Fig. 7. Simulation results for the reflection intensity X [dBZ] observed on May 10th, 2013.
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