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Daichi Kitahara, Student Member, IEEE, and Isao Yamada, Fellow, IEEE

Abstract—Two-dimensional (2D) phase unwrapping is an es-
timation problem of a continuous phase function, over a 2D
domain, from its wrapped samples. In this paper, we propose
a novel approach for high-resolution 2D phase unwrapping. In
the first step—SPline Smoothing (SPS), we construct a pair of the
smoothest spline functions which minimize the energies of their
local changes while interpolating, respectively, the cosine and the
sine of given wrapped samples. If these functions have no common
zero over the domain, the proposed estimate of the continuous
phase function can be obtained by algebraic phase unwrapping in
the second step—Algebraic Phase Unwrapping (APU). To avoid
the occurrence of common zeros in SPS due to phase noise
in the observed wrapped samples, we also propose a denoising
step—Denoising by Selective Smoothing (DSS)—as preprocessing,
which selectively smooths unreliable wrapped samples by using
convex optimization. The smoothness of the proposed unwrapped
phase function is guaranteed globally over the domain without
losing any desired consistency with all reliable wrapped samples.
Numerical experiments for terrain height estimation demonstrate
the effectiveness of the proposed 2D phase unwrapping scheme.

Index Terms—Algebraic phase unwrapping, bivariate spline
function, convex optimization, interferometric synthetic aperture
radar, signal denoising, spline smoothing, terrain height estima-
tion, two-dimensional phase unwrapping.

I. INTRODUCTION

TWO-DIMENSIONAL (2D) phase unwrapping [1], [2] is
an estimation problem of an unknown continuous phase

function Θ : Ω→ R from its noisy wrapped samples

ΘW (x, y) := W (Θ(x, y) + ν(x, y)) ∈ (−π, π] ((x, y) ∈ G),
(1)

where Ω (⊂ R2) is a simply connected closed region, G (⊂ Ω)
is the set of finite sampling points, ν is additive phase noise,
and W : R→ (−π, π] is the wrapping operator defined by

∀ϑ ∈ R ∃η ∈ Z ϑ = W (ϑ) + 2πη and W (ϑ) ∈ (−π, π].

Θ and ΘW are called the unwrapped phase and the wrapped
phase respectively. 2D phase unwrapping is important for
signal and image processing applications such as terrain height
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estimation (see Section IV-A) and landslide identification
by interferometric synthetic aperture radar (InSAR) [3]–[9],
seafloor depth estimation by interferometric synthetic aperture
sonar (InSAS) [10]–[13], 3D shape measurement by fringe
projection [14]–[17] or X-ray [18]–[21], and water/fat sepa-
ration in magnetic resonance imaging (MRI) [22]–[25].

As remarked clearly in [26], all commonly used phase
unwrapping algorithms are based on the assumption that
the true unwrapped phase field varies slowly enough that
in most places, neighboring phase values are within one-
half cycle (π rad) of one another, i.e., it is assumed that
∆Θi := Θ(x̃, ỹ) − Θ(x, y) ∈ (−π, π] for most neighboring
pairs of samples i := ((x, y), (x̃, ỹ)) ∈ G×G. Such algorithms
have been designed to suppress a certain function J measuring
the unwrapped phase differences ∆Θi for all neighboring pairs
i ∈ G × G as

J(Θ) :=
∑
i

Ji(∆Θi) (Θ := vec(Θ(x, y))(x,y)∈G), (2)

where Ji : R→ R+ usually achieves 0 if ∆Θi = W (∆ΘW
i ),

∆ΘW
i := ΘW (x̃, ỹ) − ΘW (x, y) is the wrapped phase dif-

ference between a neighboring pair i = ((x, y), (x̃, ỹ)), and
vec stands for the vectorization of multidimensional arrays.
Such a specification of Ji is introduced on the basis of a
simple property that, under the assumption ν = 0,

∆Θi = W (∆ΘW
i )⇔ ∆Θi ∈ (−π, π]. (3)

Then the algorithms try to use a minimizer of J as an estimate
of the unwrapped phase.

Existing algorithms can be classified into two types. Major
algorithms, [5], [25]–[30] assume that noise ν in (1) is small
enough and try to find a minimizer of J under the condition

∀(x, y) ∈ G ∃η(x, y) ∈ Z Θ(x, y) = ΘW (x, y) + 2πη(x, y).
(4)

This type of optimization problem is combinatorial and in-
tractable due to condition (4). Therefore the algorithms first
detect every closed loop having a residue1 (see Fig. 12(a) in
Appendix A). After identifying the residues, the algorithms
construct the set of branches B by connecting the positive and
negative residues (see Fig. 12(b) in Appendix A). By defining
E as the set of indices for neighboring pairs of samples which
lie on either side of some branch in B and by summing up
continuously W (∆ΘW

i ) (i 6∈ E), we can construct a candi-
date of the unwrapped phase Θ(E) satisfying condition (4),

1Note that this residue in 2D phase unwrapping is defined with a discretized
contour integral for the wrapped phase over sampling points [1], [5] and
different from the well-known residue in complex analysis.
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∆Θi(E) = W (∆ΘW
i ) if i 6∈ E, and ∆Θi(E) 6= W (∆ΘW

i )
if i ∈ E (see, e.g., [5], [25]–[30] and Fig. 12(b)). As a result,
the cost in (2) is redefined as a function of E by

Ĵ(E) := J(Θ(E)) =
∑
i 6∈E

Ji(W (∆ΘW
i )) +

∑
i∈E

Ji(∆Θi(E)),

(5)
and the algorithms search for a minimizer E∗ (or equivalently
optimal branches B∗) of Ĵ to obtain an estimate Θ(E∗) (see
Appendices A-(I) and A-(II)). In this paper, we call algorithms
of this type network flow methods along [2], [26] because some
of these algorithms use a technique developed originally for
network flow in graph theory (see, e.g., Appendix A-(II)).
In this approach, if the observed wrapped phase has only
small noise and the true unwrapped phase differences are
sufficiently small with respect to sampling interval, we can
find E∗ and construct a very good estimate Θ(E∗). However,
otherwise, condition (4) is violated due to phase noise ν, and
the minimizer E∗ is hard to compute because the number of
residues becomes large.

The other type of algorithms [24], [31]–[34], directly ap-
proximate a minimizer Θ∗ = vec(Θ∗(x, y))(x,y)∈G of J with-
out requiring condition (4). In this approach, if the cost J is a
certain convex function, we can find Θ∗ and the computation
time depends mainly on the size of Θ (see Appendix A-(III)).
Therefore even if the observed wrapped phase is noisy and
has many residues, Θ∗ is obtained without suffering from the
increase of the computation time. However since condition (4)
is not required in the optimization problem, the consistency
between Θ∗ and ΘW , i.e., W (Θ∗(x, y)) ≈ ΘW (x, y), is not
guaranteed at many sampling points (x, y) ∈ G.

In this paper, we propose a completely different algebraic
approach to 2D phase unwrapping by exploiting the property
of ΘW ∈ (−π, π]:

ΘW = W (Θ + ν)

⇔
(
cos ΘW , sin ΘW

)
=
(
cos(Θ + ν), sin(Θ + ν)

)
. (6)

The proposed scheme achieves a high-resolution estimate of
the unwrapped phase Θ unlike many existing algorithms [5],
[24]–[34]. We estimate Θ as the continuous phase function
θf ∈ C2(Ω) of a twice continuously differentiable complex
function f := f(0) + ıf(1) = |f |eıθf , where f(0) ∈ C2(Ω) and
f(1) ∈ C2(Ω) have no common zero over Ω (see Notation
in the end of this section). Then the estimation problem of
Θ is replaced with those of f(0) and f(1) which respectively
approximate cos Θ and sin Θ. Clearly, by (6), f(0) and f(1)

are desired to interpolate cos(ΘW (x, y)) = cos(Θ(x, y)) and
sin(ΘW (x, y)) = sin(Θ(x, y)) respectively if ν(x, y) = 0
at (x, y) ∈ G. Motivated by the main idea of functional
data analysis [35]–[37], we assume that f is “smooth” which
means that the energy of local change is small over Ω, and
adopt the bivariate spline space as the set of all candidates
of f(0) and f(1). After finding the smoothest spline functions
f∗(0) and f∗(1) which are consistent with the wrapped phase
information cos(ΘW (x, y)) and sin(ΘW (x, y)) at (x, y) ∈ G
(SPline Smoothing (SPS)), the continuous phase function θf∗

of f∗ := f∗(0) + ıf∗(1) = |f∗|eıθf∗ is analytically computed, as
the proposed estimate of Θ, by Algebraic Phase Unwrapping

(APU) [38]–[42]. This approach has been proven particularly
effective in the case where phase noise ν is relatively small
and f∗ has no zero over Ω. Indeed, by this approach, we can
maximize a certain smoothness of θf subject to the condition
W (θf (x, y)) ≈ ΘW (x, y) for all sampling points (x, y) ∈ G
(see Fig. 3 in Section III) unlike other algorithms.

Meanwhile, a central reason of the difficulty in 2D phase
unwrapping has been due to the appearance of residues which
are often caused by phase noise observed at even small portion
of sampling points. Indeed, excessive fidelity to noisy wrapped
samples erroneously influences the global feature of the results
of existing 2D phase unwrapping algorithms (see, e.g., [1], [2],
[43]–[45]). Such erroneous global features can also happen
in the above proposed scheme (SPS and APU) as the path
dependency of θf∗ in APU due to the occurrence of zeros of
f∗ in SPS (see Fig. 4 in Section III). To suppress the influence
of noise, we denoise, as a preprocessing step (Denoising by
Selective Smoothing (DSS)), the wrapped phase ΘW and ob-
tain smoothed wrapped samples Θ̃W ∈ (−π, π] on G′ (⊃ G).
In DSS, motivated by extensive studies on quality maps, in
particular, maximum phase gradient maps [1, Section 3.3.4],
we classify all wrapped samples into reliable and unreliable
classes on the basis of the wrapped phase difference. Then we
smooth ΘW by using convex optimization without changing
any information about reliable wrapped samples. Finally, we
construct θf∗ , as an estimate of Θ, by applying SPS and APU
to the denoised wrapped phase Θ̃W obtained in DSS.

This paper is organized as follows. Section II introduces
bivariate spline functions on triangles. Section III-A presents
the main idea of the proposed 2D phase unwrapping scheme
based on SPS and APU. Section III-B and Section III-C
respectively explain the details of SPS and APU. Section III-D
introduces DSS and Section III-E shows the overall steps of the
proposed scheme. Section IV demonstrates the effectiveness of
the proposed scheme in application to InSAR terrain height
estimation. Finally Section V concludes this paper.

The proposed scheme is not only based on the traditional
ideas in the existing phase unwrapping techniques but also
based on powerful mathematical ideas, e.g., spline smooth-
ing, convex optimization, and computer algebra. For self-
containedness and readability, comprehensive introductions
to these ideas are also presented in Appendices.

Notation: Let Z, Z+, Z++, R, R+, R++ and C be the sets
of all integers, non-negative integers, positive integers, real
numbers, non-negative real numbers, positive real numbers,
and complex numbers, respectively. We use ı ∈ C to denote
the imaginary unit, i.e., ı2 = −1, and use i ∈ Z+ and j ∈
Z+ for general indices. For any set S, card(S) stands for its
cardinal number. For ρ ∈ Z+, Cρ(Ω) stands for the set of
all ρ-times continuously differentiable real-valued functions
over a simply connected region Ω ⊂ R2. A boldface letter
expresses a vector or a matrix. For any vector x ∈ Rn and
matrix X ∈ Rn×m, [x]i and [X]i,j respectively denote the ith
component of x and the (i, j) entry of X . For p > 0 and w ∈
Rn++, the `p (quasi-)norm and the weighted `p (quasi-)norm of
x ∈ Rn are respectively defined as ‖x‖p := p

√∑n
i=1 |[x]i|p

and ‖x‖p,w := p
√∑n

i=1[w]i|[x]i|p (Note: ‖ · ‖p and ‖ · ‖p,w
satisfy the condition of the norm in Rn if p ≥ 1).
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II. BIVARIATE SPLINE FUNCTIONS ON TRIANGULATIONS

We restrict ourselves to partitioning a polygonal domain
Ω ⊂ R2 into triangles because these have the most flexibility
with respect to the resolution of the discretization in Ω.

Define a triangle T ⊂ R2, by specifying three vertices vk :=
(xk, yk) ∈ R2 (k = 1, 2, 3) which are not arranged linearly,
i.e., % := x1y2 − y1x2 + x2y3 − y2x3 + x3y1 − y3x1 6= 0, as

T := 〈v1,v2,v3〉

:=

{
rv1 + sv2 + tv3 ∈ R2

∣∣∣∣ r, s, t ∈ [0, 1]

r + s+ t = 1

}
.

Let ∆ := {Ti}Ni=1 be a collection of triangles Ti ⊂ R2 whose
union forms a simply connected closed region Ω ⊂ R2, i.e.,⋃N
i=1 Ti = Ω. If, for any pair of triangles Ti ∈ ∆ and Tj ∈ ∆

(i 6= j), Ti∩Tj is either empty or a common edge or a common
vertex, the collection ∆ is called a regular triangulation. Given
a regular triangulation ∆ and ρ, d ∈ Z+ s.t. 0 ≤ ρ < d, define

Sρd (∆) := {f ∈ Cρ(Ω) | ∀Ti ∈ ∆ f = fi ∈ Pd over Ti}

as the set of all bivariate spline functions of degree d and
smoothness ρ on ∆, where Pd stands for the set of all bivariate
polynomials whose degree is d at most, i.e., Pd := {f : R2 →
R : (x, y) 7→

∑d
i=0

∑d−i
j=0 ci,jx

iyj | ci,j ∈ R}.
For T = 〈v1,v2,v3〉 s.t. vk = (xk, yk) ∈ R2 (k = 1, 2, 3),

every (x, y) ∈ R2 can be expressed uniquely in the form

(x, y) = rv1 + sv2 + tv3 s.t. r + s+ t = 1,

where (r, s, t) is called barycentric coordinate of (x, y) with
respect to T [46], [47] and expressed as

r = ((y2 − y3)x− (x2 − x3)y + x2y3 − y2x3)/%

s = ((y3 − y1)x− (x3 − x1)y + x3y1 − y3x1)/%

t = ((y1 − y2)x− (x1 − x2)y + x1y2 − y1x2)/%

 .

By using the above expression of (x, y), the Bernstein-Bézier
polynomial of degree d is defined, for T and (l,m, n) ∈ Z3

+

satisfying l +m+ n = d, as

BTl,m,n : R2 → R : (x, y) 7→ d!

l!m!n!
rlsmtn.

It is known that {BTl,m,n | (l,m, n) ∈ Z3
+ and l+m+n = d}

is a basis of Pd, and hence any piecewise polynomial f , whose
restriction fi to Ti ∈ ∆ satisfies fi ∈ Pd (i = 1, 2, . . . , N ),
can be expressed uniquely as

fi(x, y) = fTi(r, s, t) :=
∑

l+m+n=d

cTil,m,n
d!

l!m!n!
rlsmtn, (7)

where (r, s, t) is barycentric coordinate with respect to Ti.
Such a representation of piecewise polynomials is called the
Bernstein-Bézier form (or B-form for short), and cTil,m,n ∈ R
is called the Bernstein-Bézier coefficient (or B-coefficient). By
using the B-coefficient vector c := vec(cTil,m,n)i=1,2,...,N

l+m+n=d of
such f , Lai [48] gave a matrix H for characterization f ∈
Sρd (∆)⇔Hc = 0. Such a matrix H is deduced as follows.

Fact 1 ([48]): Let T1 := 〈v1,v2,v3〉, T2 := 〈v1,v2,v4〉
and let (r4, s4, t4) be barycentric coordinate of v4 with respect

Fig. 1. Example of the Bézier net of a bivariate spline function f of degree
d = 4 on a regular triangulation ∆ = {T1, T2}, where T1 = 〈v1,v2,v3〉
and T2 = 〈v1,v2,v4〉.

to T1. Suppose that f : T1 ∪ T2 → R can be expressed as (7)
over Ti (i = 1, 2). Then f ∈ Sρd ({T1, T2}) if and only if

L
dn2 e
1

(
cT1l,m,n

)
= L

bn2 c
2

(
cT2l,m,n

)
for all n = 0, 1, . . . , ρ and l+m = d−n, where d · e and b · c
are respectively the ceiling and floor functions, i.e.,

dxe := min {z ∈ Z | z ≥ x}
bxc := max {z ∈ Z | z ≤ x}

}
,

and Lki (cTil,m,n) ∈ R (l + m + n = d, i = 1, 2 and k ∈ Z+)
are defined recursively by L0

i (c
Ti
l,m,n) := cTil,m,n and

Lki
(
cTil,m,n

)
:=

r4

(−t4)i−1
Lk−1
i

(
cTil+1,m,n−1

)
+

s4

(−t4)i−1
Lk−1
i

(
cTil,m+1,n−1

)
+

t4
(t4)2i−2

Lk−1
i

(
cTil,m,n

)
for k ≥ 1.

Actually, we can use a more compact expression by remov-
ing some redundant components in c as follows.

Remark 1 (A Compact Expression of the B-Coefficients): Let
us consider a simple example where a regular triangulation
∆ has only two triangles T1 := 〈v1,v2,v3〉 and T2 :=
〈v1,v2,v4〉, i.e., ∆ := {T1, T2} and T1 ∪ T2 =: Ω. Suppose
that f is a bivariate spline function of degree d = 4 on ∆.
Then, since there exist fifteen combinations for (l,m, n) ∈ Z3

+

s.t. l +m+ n = 4, the size of the B-coefficient vector is 30,
i.e., c := vec(cTil,m,n)i=1,2

l+m+n=4 ∈ R30. Meanwhile, in spline
function theory [46], [47], [49]–[52], the B-coefficients cT1l,m,n
and cT2l,m,n are respectively assigned to l

l+m+nv1+ m
l+m+nv2+

n
l+m+nv3 ∈ T1 and l

l+m+nv1 + m
l+m+nv2 + n

l+m+nv4 ∈ T2

(such a representation is called the Bézier net [49]) as shown in
Fig. 1 where we see that cT1i,4−i,0 and cT2i,4−i,0 (i = 0, 1, 2, 3, 4)
are assigned to the same location. This corresponds to the
characterization of f ∈ S0

4 (∆) in Fact 1 by

cT1i,4−i,0 = cT2i,4−i,0 (i = 0, 1, 2, 3, 4).

Hence by imposing ai := cT1i,4−i,0 = cT2i,4−i,0 (i = 0, 1, 2, 3, 4)
on the B-coefficients for T1 and T2, we can guarantee f ∈
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S0
4 (∆) and can reduce the size of the B-coefficient vector

from 30 to 25, i.e., with the use of ai, bi, ci, di, ei, gi,
and hi in Fig. 1, we can redefine the B-coefficient vector as
c := vec((ai)

4
i=0, (bi, ci)

3
i=0, (di, ei, gi, hi)

2
i=0) ∈ R25. Then

f ∈ S0
4 (∆) on each triangle Ti can be expressed, in terms of

barycentric coordinate (r, s, t) with respect to Ti, as (8) and
(9). In particular, the values of f at vertices vi (i = 1, 2, 3, 4)
are easily determined by

f(v1) = fT1(1, 0, 0) = fT2(1, 0, 0) = a4

f(v2) = fT1(0, 1, 0) = fT2(0, 1, 0) = a0

f(v3) = fT1(0, 0, 1) = g2

f(v4) = fT2(0, 0, 1) = h2

 . (10)

From Fact 1, f satisfies f ∈ S1
4 (∆) if and only if

r4ai+1 + s4ai + t4bi = ci (i = 0, 1, 2, 3), (11)

where (r4, s4, t4) is barycentric coordinate of v4 with respect
to T1, i.e., r4v1 + s4v2 + t4v3 = v4 and r4 + s4 + t4 = 1.
Similarly f satisfies f ∈ S2

4 (∆) if and only if (11) and

t4(r4bi+1 + s4bi + t4di) = −r4ci+1− s4ci + ei (i = 0, 1, 2).
(12)

Finally, from (11) and (12), we can construct a matrix H , for
each ρ = 1, 2, satisfying f ∈ Sρ4 (∆) ⇔Hc = 0.

III. ALGEBRAIC RECOVERY OF 2D UNWRAPPED PHASE

A. General Idea of the Proposed Scheme

In this section, we propose an algebraic approach for high-
resolution 2D phase unwrapping. We estimate the unwrapped
phase Θ as a continuous function defined over Ω unlike many
existing algorithms (see Appendix A). In our previous works
[41], [42], by using Poincaré’s lemma [53], we clarified the
condition for the unique existence of the continuous phase
function θf ∈ C2(Ω) of a complex function f := f(0) + ıf(1) :
Ω→ C s.t. f(k) ∈ C2(Ω) (k = 0, 1).

Fact 2 ([41]): Let Ω be a simply connected closed region
on R2. Suppose that f(k) : Ω → R (k = 0, 1) are twice
continuously differentiable functions, i.e., f(k) ∈ C2(Ω), and
satisfy f(x, y) := f(0)(x, y) + ıf(1)(x, y) 6= 0 for all (x, y) ∈
Ω. Then for arbitrarily fixed (x0, y0) ∈ Ω and θ0 satisfying
f(x0, y0) = |f(x0, y0)|eıθ0 , the following hold.

(i) There exists a unique continuous function θf ∈ C2(Ω)
satisfying θf (x0, y0) = θ0 and

∂θf
∂x

(x, y) = =

[
∂f(0)
∂x (x, y) + ı

∂f(1)
∂x (x, y)

f(0)(x, y) + ıf(1)(x, y)

]
∂θf
∂y

(x, y) = =

[
∂f(0)
∂y (x, y) + ı

∂f(1)
∂y (x, y)

f(0)(x, y) + ıf(1)(x, y)

]
 (13)

for all (x, y) ∈ Ω, where =(c) stands for the imaginary
part of c ∈ C. θf satisfies

f(x, y) = |f(x, y)|eıθf (x,y) for all (x, y) ∈ Ω.

(ii) Let Υ : [a, b]→ Ω be a piecewise C1 path s.t. Υ(a) =
(x0, y0) and Υ(b) = (x1, y1) ∈ Ω. Then we have

θf (x1, y1) = θ0 +

∫ b

a

=

[
F ′(0)(τ) + ıF ′(1)(τ)

F(0)(τ) + ıF(1)(τ)

]
dτ ,

where F(k)(τ) := f(k)(Υ(τ)) (k = 0, 1).
Remark 2 (Note on Equation (13)): Note that

=

[
∂f(0)
∂x (x, y) + ı

∂f(1)
∂x (x, y)

f(0)(x, y) + ıf(1)(x, y)

]
=

∂

∂x

[
arctan

(
f(1)(x, y)

f(0)(x, y)

)]

=

[
∂f(0)
∂y (x, y) + ı

∂f(1)
∂y (x, y)

f(0)(x, y) + ıf(1)(x, y)

]
=

∂

∂y

[
arctan

(
f(1)(x, y)

f(0)(x, y)

)]


holds at every (x, y) ∈ Ω satisfying f(0)(x, y) 6= 0, where
arctan : R → (−π/2, π/2) returns the principal value of the
inverse tangent, i.e., tan(arctan(x)) = x for all x ∈ R.

Trying to estimate Θ by θf ∈ C2(Ω), from Fact 2, we can
reduce the estimation problem of Θ to those of f(0) ∈ C2(Ω)
and f(1) ∈ C2(Ω) which respectively approximate cos Θ and
sin Θ. In particular, under the assumption that phase noise ν
is not significant in (1), f(0) and f(1) are desired to inter-
polate cos(ΘW (x, y)) ≈ cos(Θ(x, y)) and sin(ΘW (x, y)) ≈
sin(Θ(x, y)), respectively, at every sampling point (x, y) ∈ G.
Moreover, on the basis of the idea of functional data analysis
[35]–[37], we search for f(0) and f(1) which are smooth. Here
the word “smooth” means that the energy of local change,
i.e., the L2 norm of the second order partial derivative, is
small over Ω. Therefore we design a smooth continuous phase
function θf by minimizing the energy of local change of f(k)

(k = 0, 1):∫∫
Ω

[∣∣∣∣∂2f(k)

∂x2

∣∣∣∣2 + 2

∣∣∣∣∂2f(k)

∂x∂y

∣∣∣∣2 +

∣∣∣∣∂2f(k)

∂y2

∣∣∣∣2
]

dxdy (14)

in a suitable functional space subject to |f(x, y)| > 0 for all
(x, y) ∈ Ω and2

f(0)(x, y) = cos
(
ΘW (x, y)

)
f(1)(x, y) = sin

(
ΘW (x, y)

)} for all (x, y) ∈ G. (15)

We can guarantee that θf satisfies W (θf (x, y)) = ΘW (x, y)
for all (x, y) ∈ G if (15) and |f(x, y)| > 0 for all (x, y) ∈ Ω.

2Of course, condition (15) can be generalized in a natural way if amplitude
information at every sampling point (x, y) ∈ G is available.

f1(x, y) = fT1(r, s, t) = a4r
4 + 4a3r

3s+ 4b3r
3t+ 6a2r

2s2 + 12b2r
2st+ 6d2r

2t2 + 4a1rs
3

+ 12b1rs
2t+ 12d1rst

2 + 4g1rt
3 + a0s

4 + 4b0s
3t+ 6d0s

2t2 + 4g0st
3 + g2t

4 (8)

f2(x, y) = fT2(r, s, t) = a4r
4 + 4a3r

3s+ 4c3r
3t+ 6a2r

2s2 + 12c2r
2st+ 6e2r

2t2 + 4a1rs
3

+ 12c1rs
2t+ 12e1rst

2 + 4h1rt
3 + a0s

4 + 4c0s
3t+ 6e0s

2t2 + 4h0st
3 + h2t

4 (9)
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Motivated by Fact 2 and the successful utilization of spline
functions in functional data analysis [47], [49]–[52], [54]–
[58], (see, e.g., Appendix B on a certain optimality of spline
functions), we adopt the bivariate spline space S2

d(∆) (d ≥ 3)
as the set of all possible candidates of f(k).

As a result, we propose the following 2D phase unwrapping
scheme whose core consists of SPline Smoothing (SPS) and
Algebraic Phase Unwrapping (APU).

SPS: Find f∗(k) ∈ S
2
d(∆) ⊂ C2(Ω) (k = 0, 1 and d ≥ 3)

which minimize (14) subject to (15).
APU: For any point of interest (x, y) ∈ Ω, compute the

value of θf∗(x, y) defined in Fact 2(ii) along a
suitable piecewise C1 path Υ.

Note that SPS is a convex relaxation of an original opti-
mization problem, defined with (14) and (15), which requires
an additional condition f(0)(x, y) + ıf(1)(x, y) 6= 0 for all
(x, y) ∈ Ω. Fortunately, if the observed wrapped phase ΘW is
not contaminated by severe phase noise and sufficiently many
sampling points are available to capture the geometric feature
of Θ, the solution (f∗(0), f

∗
(1)) of this relaxed problem tends to

automatically satisfy the additional condition. If there exists
(x, y) ∈ Ω s.t. f∗(0)(x, y)+ ıf∗(1)(x, y) = 0, we use a denoising
step proposed in Section III-D to avoid the occurrence of zeros.

B. SPline Smoothing (SPS)

Let c(k) (k = 0, 1) be the B-coefficient vectors of f(k) ∈
S0
d(∆) (see Remark 1). Then the energy of local change in

(14) can be expressed as cT(k)Qc(k) [59, Theorem 1] (see
Appendix C), where Q is a symmetric positive semidefinite
matrix. The condition f(k) ∈ S2

d(∆) (⊂ S0
d(∆)) is equivalent

to Hc(k) = 0 as shown in Remark 1 and condition (15) can
be expressed as Ic(k) = d(k) in terms of

d(0) := vec
(
cos
(
ΘW (x, y)

))
(x,y)∈G

d(1) := vec
(
sin
(
ΘW (x, y)

))
(x,y)∈G

}
and a sparse matrix I . Indeed, if we assume that

every (x, y) ∈ G is a vertex of some T ∈ ∆, (16)

each row vector of I has only one non-zero component ‘1’
(see, e.g., (10)). As a result, SPS in the proposed scheme is
reduced to the following convex optimization problem, say
SPS again, for the B-coefficient vector c(k):

SPS: Find c∗(k) (k = 0, 1) minimizing

cT(k)Qc(k)

subject to Hc(k) = 0 and Ic(k) = d(k).

Moreover, by considering the reliability of wrapped samples
influenced by phase noise ν, we can relax SPS as a generalized
Hermite-Birkhoff interpolation problem [57]:

SPS+: Find c∗(k) (k = 0, 1) minimizing

cT(k)Qc(k)

subject to Hc(k) = 0 and −ε(k) ≤ Ic(k) − d(k) ≤ ε(k),

where ε(k) := vec(ε(k)(x, y))(x,y)∈G ∈ Rcard(G)
+ (k = 0, 1)

are the acceptable interpolation errors designed to be small

if the wrapped phase ΘW (x, y) is reliable at (x, y) ∈ G,
and relatively large otherwise. SPS and SPS+ can be solved
by quadratic programming solvers, e.g., in [60]–[62] if the
constraints are feasible.

Even if the constraint in SPS (or SPS+) is infeasible, it
can be relaxed in the following sense of hierarchical convex
optimization problem:

SPS++: Find c∗∗(k) (k = 0, 1) minimizing

c∗T(k)Qc
∗
(k)

subject to c∗(k) ∈ argmin
Hc(k)= 0

‖Ic(k) − d(k)‖22.

SPS++ can be solved by hybrid steepest descent method [63]–
[68].

C. Algebraic Phase Unwrapping (APU)

Let ∆ := {Ti := 〈v〈i〉1 ,v
〈i〉
2 ,v

〈i〉
3 〉}Ni=1 be a regular trian-

gulation satisfying (16), and let θ0 ∈ R satisfy f∗(v
〈1〉
1 ) :=

f∗(0)(v
〈1〉
1 ) + ıf∗(1)(v

〈1〉
1 ) = |f∗(v〈1〉1 )|eıθ0 . Suppose that we are

interested in the continuous phase function θf∗ of f∗ at v〈K〉2

(1 ≤ K ≤ N ), where we assume, without loss of generality,
v
〈i+1〉
1 = v

〈i〉
2 (i = 1, 2, . . . ,K−1) by renumbering the indices

of triangles and their vertices if necessary. Define a piecewise
C1 path Υ : [0,K]→

⋃K
i=1 Ti by

Υ(τ) := (τ − i+ 1)(v
〈i〉
2 − v

〈i〉
1 ) + v

〈i〉
1 for τ ∈ [i− 1, i],

and then, from Fact 2(ii), θf∗(v
〈K〉
2 ) is expressed as

θf∗(v
〈K〉
2 ) = θ0 +

∫ K

0

=

[
F ′(0)(τ) + ıF ′(1)(τ)

F(0)(τ) + ıF(1)(τ)

]
dτ , (17)

where F(k)(τ) := f∗(k)(Υ(τ)) (k = 0, 1). In this case, the
integral in (17) is expressed as

K∑
i=1

∫ i

i−1

=

[
F ′(0)(τ) + ıF ′(1)(τ)

F(0)(τ) + ıF(1)(τ)

]
dτ

=

K∑
i=1

∫ 1

0

=

[
F
〈i〉′
(0) (τ) + ıF

〈i〉′
(1) (τ)

F
〈i〉
(0)(τ) + ıF

〈i〉
(1)(τ)

]
dτ , (18)

where F 〈i〉(k)(τ) := F(k)(τ + i − 1) = f∗(k)(Υ(τ + i − 1)) =

f∗(k),Ti(1 − τ, τ, 0) (τ ∈ [0, 1], k = 0, 1 and i = 1, 2, . . . ,K)
are univariate polynomials of degree d at most. For example,
if f∗(k) ∈ S

2
4 (∆), by using its B-coefficients (c

Ti,(k)
l,m,n )l+m+n=4,

F
〈i〉
(k) (k = 0, 1 and i = 1, 2, . . . ,K) are expressed as

F
〈i〉
(k)(τ) = f∗(k),Ti(1− τ, τ, 0)

= c
Ti,(k)
4,0,0 (1− τ)4 + 4c

Ti,(k)
3,1,0 τ(1− τ)3

+ 6c
Ti,(k)
2,2,0 τ

2(1− τ)2 + 4c
Ti,(k)
1,3,0 τ

3(1− τ) + c
Ti,(k)
0,4,0 τ

4

=
(
c
Ti,(k)
4,0,0 − 4c

Ti,(k)
3,1,0 + 6c

Ti,(k)
2,2,0 − 4c

Ti,(k)
1,3,0 + c

Ti,(k)
0,4,0

)
τ4

− 4
(
c
Ti,(k)
4,0,0 − 3c

Ti,(k)
3,1,0 + 3c

Ti,(k)
2,2,0 − c

Ti,(k)
1,3,0

)
τ3

+ 6
(
c
Ti,(k)
4,0,0 − 2c

Ti,(k)
3,1,0 + c

Ti,(k)
2,2,0

)
τ2

− 4
(
c
Ti,(k)
4,0,0 − c

Ti,(k)
3,1,0

)
τ + c

Ti,(k)
4,0,0 .
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Input: P(0)(τ) ∈ R[τ ], P(1)(τ) ∈ R[τ ] and a ∈ R
Output: (Ψj(τ))qj=0

1: Ψ0(τ)←
P(0)(τ)

(τ−a)e0 (e0 is the order of a as a zero of polynomial P(0))

2: Ψ1(τ)←
P(1)(τ)

(τ−a)e1 (e1 is the order of a as a zero of polynomial P(1))
3: j ← 1
4: while deg(Ψj) ≥ 1 (deg(Ψj) is the degree of polynomial Ψj ) do
5: Ψj+1 ← −rem(Ψj−1,Ψj)

(rem(Ψj−1,Ψj) is the remainder of division of Ψj−1 by Ψj )
6: j ← j + 1
7: end while
8: q ← j
9: Return (Ψj(τ))qj=0

Fig. 2. Algorithm generating the polynomials (Ψj(τ))qj=0 in Fact 3 for APU.

Since F 〈i〉(k)(τ) ∈ R[τ ] (k = 0, 1) are univariate polynomials, all
integrals in (18) can be computed analytically by the following
method called algebraic phase unwrapping [38]–[42].

Fact 3 ([41]): Let P(k)(τ) ∈ R[τ ] (k = 0, 1) be nonzero uni-
variate real polynomials, and let P (τ) := P(0)(τ)+ıP(1)(τ) ∈
C[τ ] be a univariate complex polynomial satisfying P (τ) 6= 0
for all τ ∈ [a, b]. Then, for every τ∗ ∈ (a, b], we have∫ τ∗

a

=

[
P ′(0)(τ) + ıP ′(1)(τ)

P(0)(τ) + ıP(1)(τ)

]
dτ

=


arctan(Q(τ∗)) +

[
V (Ψ(τ∗))− V (Ψ(a))

]
π

if P(0)(τ
∗) 6= 0;

π

2
+
[
V (Ψ(τ∗))− V (Ψ(a))

]
π if P(0)(τ

∗) = 0;

−

{
arctan(Q(a)) if P(0)(a) 6= 0;

sgn(Ψ0(a)Ψ1(a))
π

2
if P(0)(a) = 0,

(19)

where Q(τ) := P(1)(τ)/P(0)(τ), sgn(x) := x/|x| for x 6= 0,
sgn(x) := 0 for x = 0, and V (Ψ(τ∗)), V (Ψ(a)) ∈ Z+

are the numbers of sign changes, at τ = τ∗ and τ = a,
in the polynomial sequence (Ψj(τ))qj=0 generated by the
algorithm in Fig. 2. If there exists some Ψj whose value at
τ∗ is Ψj(τ

∗) = 0, its sign is not counted (e.g., if q = 5,
τ∗ = 1 and (Ψ0(1),Ψ1(1),Ψ2(1),Ψ3(1),Ψ4(1),Ψ5(1)) =
(3,−2, 5, 1, 0,−2), then V (Ψ(τ∗)) = 3 because there are
three sign changes (3→ −2), (−2→ 5) and (1→ −2)).

In [41], we also proposed an alternative way, based on
subresultant theory [69], of computation for V (Ψ(τ∗)) and
V (Ψ(a)) in (19), to resolve certain numerical instabilities
caused by polynomial division in the algorithm in Fig. 2. In
this paper, we use [41, Theorem 3] for fast and stable evalu-
ations of V (Ψ(τ∗)) and V (Ψ(a)) in (19). For completeness,
we summarize this idea in Appendix D.

Note that, under the condition f∗(x, y) 6= 0 for all (x, y) ∈
Ω, we can compute θf∗(x, y) not only at (x, y) ∈ G but also
at any (x, y) ∈ Ω by repeatedly applying algebraic phase
unwrapping. Therefore, unlike many existing algorithms, the
proposed 2D phase unwrapping scheme gives a smooth θf∗ , as
a high-resolution estimate of Θ, which is consistent with the
wrapped phase, i.e., W (θf∗(x, y)) ≈ ΘW (x, y) at (x, y) ∈ G.
This approach is particularly effective in the case where phase
noise is relatively small as shown in the following example.

(a) (b) (c) (d) (e)

Fig. 3. Numerical example of the proposed 2D phase unwrapping (SPS and
APU) (I): (a) unwrapped phase Θ (to be estimated), (b) wrapped phase ΘW

with small noise, (c) f∗
(0)

by SPS, (d) f∗
(1)

by SPS, and (e) θf∗ by APU.

(a) (b) (c) (d) (e)

Fig. 4. Numerical example of the proposed 2D phase unwrapping (SPS and
APU) (II): (a) wrapped phase ΘW with more severe noise, (b) f∗

(0)
by SPS,

(c) f∗
(1)

by SPS, (d) θf∗ by APU along Υ1, and (e) θf∗ by APU along Υ2.

Example 1 (2D Phase Unwrapping by SPS and APU): Sup-
pose that the unwrapped phase

Θ(x, y) := max

{
0, 20− (x− 15)2 + (y − 15)2

10

}
+
π

4

is defined over Ω := [0, 30] × [0, 30] as shown in Fig. 3(a).
Figure 3(b) shows the observed wrapped phase ΘW (xi, yj)
(G := {(xi, yj) := (i, j)}i=0,1,...,30

j=0,1,...,30) which is contaminated by
small white Gaussian noise (σ2 = 1/25) over R := {(x, y) ∈
G | 122 ≤ (x−15)2+(y−15)2 ≤ 162} (see Section III-D-1 for
the reason of this simple phase noise model). The smoothest
spline functions f∗(0) ∈ S

2
4 (∆†) and f∗(1) ∈ S

2
4 (∆†) computed

by SPS are respectively shown in Figs. 3(c) and 3(d), where
∆† := {T 〈1〉i,j , T

〈2〉
i,j , T

〈3〉
i,j , T

〈4〉
i,j }

i=0,1,...,29
j=0,1,...,29 is a crisscross par-

tition constructed by cutting every rectangle [xi, xi+1] ×
[yj , yj+1] (⊂ Ω) into four triangles T 〈1〉i,j := 〈vi,j ,vi,j+1,v

′
i,j〉,

T 〈2〉i,j := 〈vi,j ,vi+1,j ,v
′
i,j〉, T

〈3〉
i,j := 〈vi,j+1,vi+1,j+1,v

′
i,j〉,

and T 〈4〉i,j := 〈vi+1,j ,vi+1,j+1,v
′
i,j〉 s.t. vi,j := (xi, yj) and

v′i,j := (xi+xi+1

2 ,
yj+yj+1

2 ) [49], [51], [70]. In this case, f∗ :=
f∗(0) + ıf∗(1) satisfies f∗(x, y) 6= 0 for all (x, y) ∈ Ω. Then we
obtain θf∗ by applying APU along a suitable path Υ, e.g.,

Υ
(x,y)
1 (τ) :=

{
(τ, 0) if 0 ≤ τ ≤ x;
(x, τ − x) if x ≤ τ ≤ x+ y,

or

Υ
(x,y)
2 (τ) :=

{
(0, τ) if 0 ≤ τ ≤ y;
(τ − x, y) if y ≤ τ ≤ x+ y.

The results along Υ1 and Υ2 are exactly the same and shown
in Fig. 3(e). For each image in Fig. 3, the sample values in
[Min,Max] over G are rescaled into [0 (black), 255 (white)].3

However, for estimation of Θ in Fig. 3(a), if ΘW (Fig. 4(a))
is contaminated by more significant white Gaussian noise
(σ2 = 1/4) over R, f∗(0) ∈ S

2
4 (∆†) (Fig. 4(b)) and f∗(1) ∈

S2
4 (∆†) (Fig. 4(c)) computed by SPS have some common

zeros. In this case, from Fact 2, θf∗ is not well-defined in

3This rule of mapping is also employed in Figs. 4, 6, 8 and 10.
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Ω. Actually, we see that θf∗ computed by APU along Υ1

(Fig. 4(d)) and Υ2 (Fig. 4(e)) are very different, which is
caused by the path dependency due to the common zeros.
From this example, we find out that severe phase noise can
create undesired common zeros of f∗(0) and f∗(1) in SPS.

D. Denoising by Selective Smoothing (DSS)

It is well-known that phase noise observed at even small
portion of sampling points can create residues which influence
the global feature of the results of existing 2D phase unwrap-
ping algorithms (see, e.g., [1], [2], [43]–[45]). This has been a
central reason of the difficulty in 2D phase unwrapping. In the
proposed scheme for noisy wrapped samples, the occurrence
of common zeros of f∗(0) and f∗(1) in SPS (or SPS+ or SPS++),
which yields the path dependency of θf∗ in APU (see Fig. 4),
can be seen as such a type of difficulty. These facts suggest
that excessive fidelity to noisy wrapped samples easily leads
to poor estimates in 2D phase unwrapping problem.

In this subsection, to suppress the influence of noise, we
denoise the wrapped phase ΘW (x, y) ((x, y) ∈ G) to obtain
Θ̃W (x, y) ∈ (−π, π] ((x, y) ∈ G′ ⊃ G) by smoothing ΘW

while keeping the condition Θ̃W (x, y) = ΘW (x, y) for all
(x, y) ∈ GI (⊂ G), where GI is the set of all reliable sampling
points to be defined below. The reliability of each sampling
point is judged on the basis of the wrapped phase difference.
The smoothing is realized by using convex optimization. The
main idea of Denoising by Selective Smoothing (DSS) is
divided into the following two substeps.

DSS-1: Classify all sampling points in G into GI (Type I:
reliable) and GII := G \ GI (Type II: unreliable) on
the basis of W (∆ΘW

i ) (see Section III-D-1).
DSS-2: Produce smoothed wrapped samples Θ̃W (x, y) ∈

(−π, π] at (x, y) ∈ G′ (⊃ G), where Θ̃W satisfies

Θ̃W (x, y) = ΘW (x, y) if (x, y) ∈ GI

and Θ̃W (x, y) at (x, y) ∈ G′ \ GI is determined
by using convex optimization (see Section III-D-2)
and interpolation (see Section III-D-3).

In what follows, for simplicity, assume that ΘW is observed
on G := {(xi, yj)}i=0,1,...,n

j=0,1,...,m s.t. xi − xi−1 =: hx > 0 (i =
1, 2 . . . , n) and yj − yj−1 =: hy > 0 (j = 1, 2, . . . ,m), and
we use the notations Θi,j := Θ(xi, yj), ΘW

i,j := ΘW (xi, yj)

and Θ := vec(Θi,j)
i=0,1,...,n
j=0,1,...,m ∈ R(m+1)(n+1).

1) Classification of Sampling Points (DSS-1): In general,
at sampling points where the unwrapped phase changes sig-
nificantly, i.e., |∆Θi| is large, the variance of phase noise ν
tends to become large (see, e.g, maximum phase gradient maps
of InSAR and MRI examples in [1, Section 3.3.4]). Indeed,
such noise model is widely employed, e.g., in [71]. This fact
can also be explained in the scenario of InSAR terrain height
estimation by inherent measurement error due to geometric
decorrelation [72]–[74] which occurs at sampling points where
the height changes significantly. Since the relation between the
height difference ∆Hi and the unwrapped phase difference
∆Θi can be explained from (26) (or (27)) in Section IV-A,
large phase noise easily happens at sampling points where
|∆Θi| is large. More seriously, large noise at such points often

creates residues (see (30) in Appendix A) which influence
globally the results of 2D phase unwrapping [43]–[45].

From the above observation and the relation in (3), we use
W (∆ΘW

i ) as a criterion to define GI (⊂ G) and GII := G \GI.
We assign (xi, yj) ∈ G to GI if

∀(x̃, ỹ) ∈ N (xi, yj)
∣∣W (ΘW (x̃, ỹ)−ΘW (xi, yj)

)∣∣ ≤ κ
and

(r̃i−1,j−1, r̃i−1,j , r̃i,j−1, r̃i,j) = (0, 0, 0, 0),

where N (xi, yj) (⊂ G) is the set of all neighboring sampling
points of (xi, yj), i.e., card(N (xi, yj)) ≤ 4, κ ∈ [0, π] is a
threshold4 and r̃k,l ∈ {−1, 0,+1} is defined as r̃k,l := rk,l in
(30) if (k, l) ∈ [0, n−1]×[0,m−1] and as r̃k,l := 0 otherwise.5

2) Convex Optimization for Smoothing (DSS-2a): In order
to denoise unreliable wrapped samples ΘW (x, y) ((x, y) ∈
GII), we first find a minimizer Θ∗〈p〉 := vec(Θ∗〈p〉i,j)

i=0,1,...,n
j=0,1,...,m

of the following convex function:

J̃δ(Θ) := J̃(Θ) + δ‖Θ‖22

:=

n−1∑
i=0

m∑
j=0

wxi,j
∣∣Θi+1,j −Θi,j −W

(
ΘW
i+1,j −ΘW

i,j

)∣∣
+

n∑
i=0

m−1∑
j=0

wyi,j
∣∣Θi,j+1 −Θi,j −W

(
ΘW
i,j+1 −ΘW

i,j

)∣∣
+

n−2∑
i=0

m∑
j=0

wxxi,j |Θi+2,j − 2Θi+1,j + Θi,j |2

+

n−1∑
i=0

m−1∑
j=0

wxyi,j |Θi+1,j+1 −Θi+1,j −Θi,j+1 + Θi,j |2

+

n∑
i=0

m−2∑
j=0

wyyi,j |Θi,j+2 − 2Θi,j+1 + Θi,j |2 + δ‖Θ‖22, (20)

where wxi,j , w
y
i,j , w

xx
i,j , wxyi,j and wyyi,j are positive weights,6 and

δ‖Θ‖22 (0 < δ � 1) is introduced for the regularization due
to J̃(Θ) = J̃(Θ + c(1, 1, . . . , 1)T ) for any Θ ∈ R(m+1)(n+1)

and any c ∈ R. J̃ can be seen as a generalization of the cost
employed in [34] (for `1), i.e., J in (32) in Appendix A-(III),
by introducing an additional smoothness prior, the weighted
`2 norm of the second order differences of Θ,7 to J . The min-
imizer Θ∗〈p〉 is obtained by convex optimization techniques.8

The uncertainty of the minimizers of J̃ is corrected by a
translation as

Θ̃∗〈p〉i,j := Θ∗〈p〉i,j +
1

card(GI)

∑
(xi,yj)∈GI

W
(
ΘW
i,j −Θ∗〈p〉i,j

)
4To keep a sufficient number of samples of Type I, we can design κ by

using the histogram of |W (∆ΘWi )|.
5For other useful criteria to judge the reliability, see, e.g., [1, Section 3.3].
6Note that (wxi,j , w

y
i,j) are weights for data fidelity and (wxxi,j , w

xy
i,j , w

yy
i,j)

are weights for smoothness. We can adjust the ratio of these two types of
weights on the basis of geometric complexity of the target (see Section IV-B
for targets of complex shape where relatively smaller magnitude is used for
(wxxi,j , w

xy
i,j , w

yy
i,j) than that in Example 2 for a target of simple shape). Of

course, if such geometric information on the target is available further in each
local region, we can also adjust the ratio depending on (i, j).

7In (20), we can also use other smoothness priors, e.g., total variation [75],
[76], in place of the `2 norm of the second order differences.

8In Section III-E and Section IV-C, we use alternating direction method of
multipliers (ADMM) [77]–[79] to minimize J̃δ in (20).
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Input: ΘW (x, y) ((x, y) ∈ G), κ ∈ [0, π] and l ∈ Z++

Output: θf∗

1: SPS/SPS+/SPS++ for ΘW (x, y) ((x, y) ∈ G) (see Section III-B)
2: APU (see Section III-C)
3: while θf∗ depends on the integration path do
4: Increase the weights wxxi,j , wxyi,j and wyyi,j for further smoothing
5: DSS for ΘW (x, y) ((x, y) ∈ G) (see Section III-D)
6: SPS/SPS+/SPS++ for Θ̃W (x, y) ((x, y) ∈ G′)
7: APU
8: end while
9: Return θf∗

Fig. 5. Overall steps of the proposed 2D phase unwrapping scheme.

for improvement of the consistency with ΘW
i,j at reliable sam-

pling points (xi, yj) ∈ GI, where Θ∗〈p〉i,j +W (ΘW
i,j −Θ∗〈p〉i,j)

is the nearest phase in ΘW
i,j +2πZ from Θ∗〈p〉i,j , i.e., Θ∗〈p〉i,j +

W (ΘW
i,j −Θ∗〈p〉i,j) = argminϑ s.t. W (ϑ) = ΘWi,j

|ϑ−Θ∗〈p〉i,j |.
3) Denoised Wrapped Samples (DSS-2b): Set l ∈ Z++ on

the basis of geometric complexity of the target, e.g., possible
variation of terrain height, to be estimated in the applications
of 2D phase unwrapping. Let G′ := {(x′i, y′j)}

i=0,1,...,ln
j=0,1,...,lm s.t.

x′0 = x0, x′ln = xn, y′0 = y0, y′lm = ym, x′i − x′i−1 = hx/l
(i = 1, 2, . . . , ln), and y′j − y′j−1 = hy/l (j = 1, 2, . . . , lm).
The wrapped phase over G′ after denoising is obtained as

Θ̃W (x, y) :=

{
ΘW (x, y) if (x, y) ∈ GI;
W
(
BLI[Θ̃∗〈p〉](x, y)

)
if (x, y) ∈ G′ \ GI,

(21)
where BLI[Θ̃∗〈p〉] : Ω→ R stands for the bilinear interpolation
of Θ̃∗〈p〉 := vec(Θ̃∗〈p〉i,j)

i=0,1,...,n
j=0,1,...,m.

Remark 3 (On the Utilization of DSS): We combine DSS
with SPS (or SPS+ or SPS++) and APU as follows.

(i) From (21), DSS does not influence at all given wrapped
phase ΘW (x, y) at (x, y) ∈ GI. If application of SPS or
SPS+ with ε(k)(x, y) = 0 ((x, y) ∈ GI and k = 0, 1) to
Θ̃W (x, y) ((x, y) ∈ G′) yields f∗ = f∗(0) + ıf∗(1) having
no zero in Ω, then we can guarantee

W (θf∗(x, y)) = ΘW (x, y) for all (x, y) ∈ GI. (22)

We also remark that it is reasonable to use ε(k)(x, y) >

0 ((x, y) ∈ G′ \GI) in SPS+ because Θ̃W (x, y) is influ-
enced by smoothing effect of DSS and GII ⊂ G′ \ GI.

(ii) If f∗ computed by SPS (or SPS+ or SPS++) for Θ̃W

has zeros in Ω, the path independency of θf∗ and
relation (22) are not guaranteed in APU. In such a case,
we repeat DSS after increasing the weights wxxi,j , wxyi,j
and wyyi,j in (20) for further smoothing (see Fig. 5 in
Section III-E).

E. Overall Steps of the Proposed Scheme

Given wrapped samples ΘW (x, y) ((x, y) ∈ G), the overall
steps of the proposed 2D phase unwrapping scheme is finally
summarized in Fig. 5. Note that SPS (or SPS+ or SPS++)
APU and DSS yield a smooth continuous phase function
θf∗ , as a high-resolution estimate of Θ, which is consistent
with the wrapped phase at reliable sampling points, i.e.,
W (θf∗(x, y)) = ΘW (x, y) at (x, y) ∈ GI (see Example 2).

(a) (b) (c) (d) (e)

Fig. 6. Numerical example of the proposed 2D phase unwrapping (DSS, SPS+
and APU): (a) distribution of Type I (white) and Type II (black) samples,
(b) Θ̃W by DSS, (c) f∗

(0)
by SPS+, (d) f∗

(1)
by SPS+, and (e) θf∗ by APU.

Example 2 (2D Phase Unwrapping by DSS, SPS+ and APU):
According to the proposed scheme in Fig. 5, we apply the
denoising step DSS to ΘW in Fig. 4(a) for which SPS and
APU failed in unwrapping as shown in Figs. 4(d) and 4(e).
We set κ = 2π/3, wxi,j = wyi,j = wxi,j = wxyi,j = wyyi,j = 1, δ =
5× 10−7, and l = 1, i.e., G′ = G, for DSS. Figures 6(a) and
6(b) respectively show the distribution of samples of Type I
& Type II and the denoised wrapped phase Θ̃W by DSS from
which we see that Θ̃W is certainly smoother than ΘW around
R. Figures 6(c) and 6(d) respectively show f∗(0) ∈ S

2
4 (∆†) and

f∗(1) ∈ S
2
4 (∆†) obtained by applying SPS+ to Θ̃W , where we

set ε(0)(x, y) = ε(1)(x, y) = 0 if (x, y) ∈ GI to guarantee (22),
and set ε(0)(x, y) = 0.5−0.5| cos(Θ̃W (x, y))| and ε(1)(x, y) =

0.5−0.5| sin(Θ̃W (x, y))| otherwise. In this case, f∗(0) and f∗(1)

have no common zero over Ω. Hence, by applying APU along
any suitable path Υ, we can obtain θf∗ in Fig. 6(e) satisfying
W (θf∗(x, y)) = ΘW (x, y) for all (x, y) ∈ GI.

IV. APPLICATION TO TERRAIN HEIGHT ESTIMATION

In this section, we apply the proposed 2D phase unwrapping
scheme to InSAR terrain height estimation.

A. Terrain Height Estimation by InSAR
Interferometric synthetic aperture radar (InSAR) [3]–[9] is

an imaging technique allowing highly accurate measurements
of surface topography in all weather conditions, day or night.
In InSAR system (see Fig. 7(a)), Antenna 1 and Antenna 2
on-board an aircraft or a spacecraft platform transmit coherent
broadband radio signals and receive the reflected signals sk :=

|sk|e−ı(
4πRk
λ +φk+νk) (k = 1, 2) from a target corresponding

to (x, y) ∈ Ω, where λ is the wavelength of the transmitted
signal, Rk is the distance from Antenna k to the target, φk is
the backscatter phase delay, νk is additive phase noise, and the
dependencies of variables Rk, φk, νk, θo and θi on (x, y) are
omitted for notational simplicity in Fig. 7 and in the discussion
below. Since the backscatter phase delay φk is determined
by the shape of the target, geological condition, and weather
condition, we can expect φ1 = φ2 in many situations, and
hence the interferometric image is obtained as

s̄1s2 = |s1||s2|eı(
4π(R1−R2)

λ +ν), (23)

where s̄1 denotes the complex conjugate of s1 and ν := ν1 −
ν2. The interferometric phase Θint(x, y) := 4π(R1 − R2)/λ
can also be expressed, from the simple geometric relation in
Fig. 7(a) and the law of cosines, as

Θint(x, y) =
4π

λ

(
R1 −

√
R2

1 +B2 − 2R1B sin(θo − α)
)

,
(24)
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(a) (b)

Fig. 7. InSAR imaging geometry for terrain height estimation: (a) sectional
view to define the interferometric phase Θint(x, y) in (24) and (b) sectional
view to define the reference phase Θref(x, y) in (25).

and its noisy wrapped samples ΘW
int(x, y) := W (Θint(x, y) +

ν(x, y)) are observed from (23). The terrain height H at
(x, y) ∈ Ω is expressed by

H(x, y) =

√
(HSAR +RE −R1 cos θo)2 +R2

1 sin2 θo −RE

as shown in [6], or by

H(x, y) = (HSAR +RE) cos(θi − θo)−RE −R1 cos θi,

where HSAR is the height of Antenna 1, RE is the radius of
the earth, and the incidence angle θi is given, with the use of
the off-nadir angle θo by θi = arctan

( (HSAR+RE) sin θo
(HSAR+RE) cos θo−R1

)
.

Hence, by reconstructing Θint from the noisy wrapped phase
ΘW

int, we can compute θo, θi and H if α, B, R1, RE, and
HSAR are available (Note: More precisely, for reconstruction
of Θint, we also need the absolute interferometric phase at
some point (x0, y0) ∈ Ω where the hight H(x0, y0) is known).
However, the available measurements of R1, RE, and HSAR

contain errors and directly degrade estimation accuracy of H
through the above equations. To suppress the degradation, H
is estimated as follows [73]. Suppose that we know the terrain
height at (x0, y0) ∈ Ω is H(x0, y0) = H0 (see Fig. 7(b)). Let

Θref(x, y) :=
4π(R1 −RH0

2 )

λ

=
4π

λ

(
R1 −

√
R2

1 +B2 − 2R1B sin(θH0
o − α)

)
,

(25)
where RH0

2 and θH0
o at (x, y) ∈ Ω, indicated in Fig. 7(b), are

available from cos θH0
o =

R2
1+(RE+HSAR)2−(RE+H0)2

2R1(RE+HSAR) . Θref

is called the reference phase and the following 2D phase
function Θ(x, y) := Θint(x, y) − Θref(x, y) is known to be
more reliable to use for estimation of H than Θint. Actually,
Θ is more robust than Θint against the measurement errors in
R1, RE and HSAR while the sensitivities of Θ and Θint to H

are identical, which is confirmed by

∂Θ

∂R1
=
∂Θint

∂R1
− ∂Θref

∂R1
≈ 0

∂Θ

∂RE
=
∂Θint

∂RE
− ∂Θref

∂RE
≈ 0

∂Θ

∂HSAR
=

∂Θint

∂HSAR
− ∂Θref

∂HSAR
≈ 0


and
∂Θ

∂H
=
∂Θint

∂H
=

4πB cos(θo − α)

λ sin θi
√
R2

1 +B2 − 2R1B sin(θo − α)
.

(26)
The expression (26) can be approximated as

∂Θ

∂H
≈ 4πB cos(θo − α)

λ sin θiR1
, (27)

which is found, e.g., in [72]–[74] (see Appendix E).
To estimate H(x, y), we also use

Θ(x, y) ≈ 4πB cos(θH0
o − α)(H(x, y)−H0)

λ sin θH0
i

√
R2

1 +B2 − 2R1B sin(θH0
o − α)

(28)

as a refinement of [80, Equation (A.2.7)] (see Appendix E),
where θH0

i , indicated in Fig. 7(b), is available from sin θH0
i =

(RE+HSAR) sin θH0
o

RE+H0
. The noisy wrapped phase ΘW (x, y) :=

W (Θint(x, y) − Θref(x, y) + ν(x, y)) = W (ΘW
int(x, y) −

Θref(x, y)) is obtained from (23) and Θref . After reconstruct-
ing Θ from ΘW , H is estimated from (28).

B. Parameter Settings of the Proposed Scheme

Assume that noisy wrapped samples ΘW (x, y) are observed
on regular rectangular grid points G := {(xi, yj)}i=0,1,...,n

j=0,1,...,m

s.t. xi − xi−1 =: hx > 0 (i = 1, 2, . . . , n) and yj − yj−1 =:
hy > 0 (j = 1, 2, . . . ,m) in Ω := [x0, xn]× [y0, ym].

In DSS, the denoised wrapped samples Θ̃W (x, y) on G′ :=
{(x′i, y′j)}

i=0,1,...,ln
j=0,1,...,lm are obtained by κ = π/4, l = 3, wxi,j =

wyi,j = 1, wxxi,j = wxyi,j = wyyi,j = 1/100 and δ = 5× 10−7 (see
Section III-D and Footnotes 4 & 6 for basic ideas on parameter
settings, and see also Figs. 8(g) & 10(g) for the effect of κ).

After DSS, we use SPS+ to obtain the smoothest spline
functions f∗(k) ∈ S

2
4 (∆†) (k = 0, 1), where ∆† is a crisscross

partition by cutting every rectangle [x′i, x
′
i+1]× [y′j , y

′
j+1] into

four triangles as introduced in Example 1. In SPS+, we set
ε(0)(x, y) = ε(1)(x, y) = 0 if (x, y) ∈ GI to guarantee (22),
and set ε(0)(x, y) = 0.5−0.5| cos(Θ̃W (x, y))| and ε(1)(x, y) =

0.5− 0.5| sin(Θ̃W (x, y))| otherwise (see Remark 3(i)).
In APU, we use the idea in Appendix D for a fast and stable

computation of V (Ψ(τ∗)) and V (Ψ(a)) in (19).

C. Numerical Experiments

We demonstrate the effectiveness of the proposed 2D phase
unwrapping scheme by terrain height estimation based on (28).
Figure 8(a) shows the unwrapped phase Θ generated from a
test mountain shown in Fig. 9(a). Here we set the parameters
of InSAR system by α = π/6 [rad], λ = 23.5 [cm], B =
500 [m], HSAR = 800 [km], RE = 6371 [km], R1(x0, y0) =
1243 [km], and H(x0, y0) = H0 = 2530 [m]. Figure 8(b)
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 8. Comparison of the proposed 2D phase unwrapping and the existing 2D phase unwrapping (I): (a) unwrapped phase Θ (to be estimated), (b) wrapped
phase ΘW , (c) estimate by BC (MSE = 1.7587), (d) estimate by MST (MSE = 8.2192), (e) estimate by MCF (MSE = 0.0974), (f) estimate by MLN
(MSE = 20.4673), (g) distribution of Type I (white) and Type II (black), and (h) estimate by the proposed scheme (DSS, SPS+ and APU) (MSE = 0.0379),
where MSE is the mean square error of each estimate, i.e, MSE := 1

32761

∑180
i=0

∑180
j=0 |Θi,j −Θ∗i,j |2 (Θ∗: estimate).

(a) (b) (c) (d) (e) (f)

Fig. 9. Comparison of terrain height estimations based on the proposed 2D phase unwrapping and the existing 2D phase unwrapping (I): (a) test mountain
of height H (to be estimated), (b) estimate by BC (MAE = 37.6844), (c) estimate by MST (MAE = 87.1949), (d) estimate by MCF (MAE = 26.9321),
(e) estimate by MLN (MAE = 162.3990), and (f) estimate by the proposed scheme (DSS, SPS+ and APU) (MAE = 23.2882), where MAE is the mean
absolute error of each estimate, i.e., MAE := 1

32761

∑180
i=0

∑180
j=0 |Hi,j −H∗i,j | (H∗: estimate).

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 10. Comparison of the proposed 2D phase unwrapping and the existing 2D phase unwrapping (II): (a) unwrapped phase Θ (to be estimated), (b) wrapped
phase ΘW , (c) estimate by BC (MSE = 2.5410), (d) estimate by MST (MSE = 49.4547), (e) estimate by MCF (MSE = 1.4087), (f) estimate by MLN
(MSE = 5.8364), (g) distribution of Type I (white) and Type II (black), and (h) estimate by the proposed scheme (DSS, SPS+ and APU) (MSE = 0.2011).

(a) (b) (c) (d) (e) (f)

Fig. 11. Comparison of terrain height estimations based on the proposed 2D phase unwrapping and the existing 2D phase unwrapping (II): (a) test mountain
of height H (to be estimated), (b) estimate by BC (MAE = 52.1210), (c) estimate by MST (MAE = 210.7460), (d) estimate by MCF (MAE = 41.1130),
(e) estimate by MLN (MAE = 86.7128), and (f) estimate by the proposed scheme (DSS, SPS+ and APU) (MAE = 30.3923).

depicts the wrapped phase ΘW on G := {(xi, yj)}i=0,1,...,180
j=0,1,...,180

s.t. hx = 16.2 [m] and hy = 19.5 [m], where additive phase
noise ν is generated by [71]. Figures 8(c), 8(d), 8(e), and 8(f)
respectively depict the estimates of Θ by branch cut (BC) [5],
minimum spanning tree (MST) [26], minimum cost flow (MCF)
[29] (all weights are ‘1’), and minimum `p norm (MLN) [34]
(p = 2 and all weights are ‘1’) (see Appendix A). Figure 8(g)
shows the distribution of samples of Type I and Type II from
which we see that samples of Type I distribute sparsely but
almost uniformly over Ω. Figure 8(h) depicts the estimate of Θ
by the proposed scheme (DSS, SPS+ and APU). Figures 9(b),
9(c), 9(d), 9(e), and 9(f) show the mountains constructed from
the results in Fig. 8 and (28). Figures 8 and 9 show that
the proposed scheme achieves the best performance compared
with the other algorithms visually as well as numerically.

Figure 10(a) shows the unwrapped phase Θ generated from
another test mountain in Fig. 11(a). The parameter settings of
InSAR system, the proposed scheme, and the other algorithms
are the same as those used in the first simulation except for
R1(x0, y0) = 1244 [km] and H(x0, y0) = H0 = 579 [m].
Figure 10(b) depicts the noisy wrapped phase ΘW on G :=
{(xi, yj)}i=0,1...,180

j=0,1...,180. Figures 10(c), 10(d), 10(e), and 10(f)
respectively depict the estimates of Θ by BC, MST, MCF,
and MLN. Figure 10(g) shows the distribution of samples of
Type I and Type II from which we see that samples of Type I of
this example also distribute sparsely but almost uniformly over
Ω. Figure 10(h) depicts the estimate by the proposed scheme
(DSS, SPS+ and APU). Figures 11(b), 11(c), 11(d), 11(e),
and 11(f) show the mountains based on the results in Fig. 10
and (28). In this example, the proposed 2D phase unwrapping



KITAHARA AND YAMADA: ALGEBRAIC PHASE UNWRAPPING BASED ON TWO-DIMENSIONAL SPLINE SMOOTHING OVER TRIANGLES 2113

(a) (b)

Fig. 12. Illustration of the basic idea of the network flow methods for 2D phase unwrapping: (a) detection of every closed loop Li,j having a residue
ri,j = ±1 in (30) based on given normalized wrapped phase ΘWi,j/π (i = 0, 1, . . . , 6 and j = 0, 1, . . . , 6) and (b) construction of the set of branches B and
an estimate Θi,j(E)/π (i = 0, 1, . . . , 6 and j = 0, 1, . . . , 6), where E = Ex∪Ey , Ex = {((x0, y1), (x1, y1)), ((x3, y1), (x4, y1)), ((x5, y2), (x6, y2))}
and Ey = {((x1, y1), (x1, y2)), ((x2, y1), (x2, y2)), ((x3, y1), (x3, y2)), ((x3, y4), (x3, y5)), ((x4, y4), (x4, y5))}.

scheme achieves again the best performance compared with
the other algorithms.

V. CONCLUSION

In this paper, we have proposed a novel 2D phase unwrap-
ping scheme which is composed of SPS (or SPS+ or SPS++),
APU and DSS. SPS (or SPS+ or SPS++) constructs a pair of
the smoothest spline functions which minimize the energies
of their local changes while satisfying respectively the desired
data fidelity conditions specified with the cosine and the sine
of given wrapped samples. If these functions have no common
zero over the domain of interest, the proposed estimate of the
unwrapped phase is computed by algebraic phase unwrapping
(APU) as a continuous function defined over the domain. To
avoid the occurrence of common zeros in SPS (or SPS+ or
SPS++) due to phase noise, we also proposed a denoising step
(DSS), as preprocessing, which selectively smooths unreliable
wrapped samples by using convex optimization. The smooth-
ness of the proposed estimate is guaranteed globally over
the domain without losing any desired consistency with all
reliable wrapped samples. Numerical experiments for InSAR
terrain height estimation demonstrated the effectiveness of the
proposed 2D phase unwrapping scheme.

APPENDIX A
EXISTING 2D PHASE UNWRAPPING ALGORITHMS

In this section, for simplicity, assume that noisy wrapped
samples are observed on G := {(xi, yj)}i=0,1,...,n

j=0,1,...,m in Ω :=
[x0, xn] × [y0, ym] s.t. x0 < x1 < · · · < xn and y0 < y1 <
· · · < ym, and we use the notations Θi,j := Θ(xi, yj), ΘW

i,j :=

ΘW (xi, yj) and Θ := vec(Θi,j)
i=0,1,...,n
j=0,1,...,m ∈ R(m+1)(n+1).

Network flow methods [5], [25]–[30] try to find a minimizer
of (2) under condition (4). For solving this combinatorial opti-
mization problem, the network flow methods first detect every

closed loop Li,j := ((xi, yj)→ (xi, yj+1)→ (xi+1, yj+1)→
(xi+1, yj)→ (xi, yj)) in G satisfying

W
(
ΘW
i,j+1 −ΘW

i,j

)
+W

(
ΘW
i+1,j+1 −ΘW

i,j+1

)
6= W

(
ΘW
i+1,j −ΘW

i,j

)
+W

(
ΘW
i+1,j+1 −ΘW

i+1,j

)
. (29)

Such a closed loop Li,j is said to have a residue, and must
pass at least one neighboring pair i s.t. ∆Θi 6= W (∆ΘW

i )
because otherwise

W
(
ΘW
i,j+1 −ΘW

i,j

)
+W

(
ΘW
i+1,j+1 −ΘW

i,j+1

)
= (Θi,j+1 −Θi,j) + (Θi+1,j+1 −Θi,j+1)

= (Θi+1,j −Θi,j) + (Θi+1,j+1 −Θi+1,j)

= W
(
ΘW
i+1,j −ΘW

i,j

)
+W

(
ΘW
i+1,j+1 −ΘW

i+1,j

)
contradicts (29). The all closed loops Li,j (i = 0, 1, . . . , n−1
and j = 0, 1, . . . ,m − 1) are classified into three classes by
discretized contour integrals:

ri,j :=
1

2π

(
W
(
ΘW
i,j+1 −ΘW

i,j

)
+W

(
ΘW
i+1,j+1 −ΘW

i,j+1

)
−W

(
ΘW
i+1,j+1 −ΘW

i+1,j

)
−W

(
ΘW
i+1,j −ΘW

i,j

))
=


0 (Li,j has no residue);
+1 (Li,j has a positive residue);
−1 (Li,j has a negative residue).

(30)

After identifying the residues (see Fig. 12(a)), the network flow
methods create the set of branches B. Each branch is defined
as a path connecting the positive and negative residues of the
same number (see Fig. 12(b) and [5], [25]–[30]). If we define
E := Ex ∪ Ey in Section I by

Ex :=

((xi, yj), (xi+1, yj))

∈ G × G

∣∣∣∣∣∣∣
(xi, yj) and (xi+1, yj)

lie on the left and right
sides of some branch in B
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and

Ey :=

((xi, yj), (xi, yj+1))

∈ G × G

∣∣∣∣∣∣∣
(xi, yj) and (xi, yj+1)

lie on the lower and upper
sides of some branch in B

 ,

we can construct a candidate of the unwrapped phase Θ(E) :=
vec(Θi,j(E))i=0,1,...,n

j=0,1,...,m satisfying condition (4), ∆Θi(E) =

W (∆ΘW
i ) if i 6∈ E, and ∆Θi(E) 6= W (∆ΘW

i ) if i ∈ E as
shown in Fig. 12(b).

Assume for simplicity that Ji in (2) is designed to achieve
0 if ∆Θi = W (∆ΘW

i ). Then (5) can be expressed as

Ĵ(E) =
∑
i∈E

Ji(∆Θi(E)). (31)

The network flow methods try to find optimal E∗ (or equiva-
lently optimal branches B∗) minimizing (31). In the following,
we introduce three major types of phase unwrapping algo-
rithms, i.e., (I) branch cut [5] & minimum spanning tree [26],
(II) minimum cost flow [29], which are examples of network
flow methods, and (III) minimum `p norm [34], which is not
classified into network flow methods and directly approximates
a minimizer of (2) without requiring condition (4).

(I). Branch Cut and Minimum Spanning Tree

Branch cut (BC) algorithm was established by Goldstein
et al. [5] and minimum spanning tree (MST) algorithm was
established by Chen and Zebker [26]. These algorithms try to
minimize (31), where the `0 (pseudo-)norm ‖vec(∆Θi(E)−
W (∆ΘW

i ))i∈E‖0 = card(E) is employed as the cost Ĵ .
Unfortunately, this optimization problem is NP-hard [26]. The
BC algorithm is a heuristic algorithm designed to approximate
B∗ by connecting the nearest residues repeatedly without
checking whether the residues have been already connected
with other residues. Therefore the same residues are connected
many times, which makes many extra branches and results
in poor estimates in region having many residues [26]. To
overcome this shortcomings, the MST algorithm approximates
B∗ by eliminating extra branches from the minimum spanning
tree which connects all residues. Since the length of the span-
ning tree is an upper bound of card(E), the MST algorithm
approximates B∗ by using a minimizer of the upper bound.

(II). Minimum Cost Flow

Minimum cost flow (MCF) algorithm was established by
Costantini [29]. The goal of the MCF algorithm is to min-
imize (31), where the weighted `1 norm ‖vec(∆Θi(E) −
W (∆ΘW

i ))i∈E‖1,w is employed as Ĵ . It is shown [29] that
this optimization problem can be interpreted as a minimum
cost integer-flow problem by considering positive and negative
residues as supply and demand nodes, respectively. Therefore
E∗ is computed by using minimum cost flow solvers [81].

(III). Minimum `p Norm

Minimum `p norm (MLN) algorithm was established by
Ghiglia and Romero [34] as a generalized version of minimum
`2 norm algorithm (the so-called least squares method) [31],
[32]. Differently from network flow methods, the MLN algo-

rithm directly approximates Θ∗ ∈ R(m+1)(n+1) minimizing

J(Θ) =

n−1∑
i=0

m∑
j=0

wxi,j
∣∣Θi+1,j −Θi,j −W

(
ΘW
i+1,j −ΘW

i,j

)∣∣p
+

n∑
i=0

m−1∑
j=0

wyi,j
∣∣Θi,j+1 −Θi,j −W

(
ΘW
i,j+1 −ΘW

i,j

)∣∣p (32)

without requiring condition (4), where wxi,j > 0, wyi,j > 0 and
p > 0. If p ≥ 1, J is convex and we can obtain a minimizer
Θ∗ by convex optimization techniques. Note that as seen from
J(Θ) = J(Θ+c(1, 1, . . . , 1)T ) for any Θ ∈ R(m+1)(n+1) and
any c ∈ R, the minimizer is not uniquely determined.

APPENDIX B
OPTIMALITY OF SPLINE FUNCTIONS

For a given 1D data {(xi, zi)}ni=0 s.t. a := x0 < x1 < · · · <
xn =: b, it is well-known that there exists a unique solution,
say f∗ ∈ C2(R), of the following variational problem:

min
f∈C2(R)

∫ b

a

|f ′′(x)|2 dx s.t. f(xi) = zi (i = 0, . . . , n),

and f∗ is a natural cubic spline [54] which is a kind of
univariate spline function of degree 3. This fact also guarantees
that the solutions, if they exist, of the following variational
problems:

min
f∈C2(R)

∫ b

a

|f ′′(x)|2 dx s.t. |f(xi)− zi| ≤ εi (i = 0, . . . , n)

and

min
f∈C2(R)

n∑
i=0

|f(xi)− zi|p + λ

∫ b

a

|f ′′(x)|2 dx

are also natural cubic splines, where εi ≥ 0, p > 0, and the
smoothing parameter λ > 0 controls the trade-off between
data fidelity and smoothness (see [37] for the case of p = 2).
This is because if there exists any solution g not a natural
cubic spline, then we can construct a natural cubic spline
f ∈ C2(R) satisfying f(xi) = g(xi) (i = 0, 1, . . . , n) and∫ b
a
|f ′′(x)|2 dx <

∫ b
a
|g′′(x)|2 dx, which is absurd.

Certain 2D extensions of the above discussion are found,
e.g., in [55], [56].

APPENDIX C
QUADRATIC FORM FOR ENERGY OF LOCAL CHANGE

Let ∆ := {Tι}Nι=1 be a regular triangulation s.t.
⋃N
ι=1 Tι =:

Ω. The energy of local change of f ∈ Sρd (∆) is defined as∫∫
Ω

[∣∣∣∣∂2f

∂x2

∣∣∣∣2 + 2

∣∣∣∣ ∂2f

∂x∂y

∣∣∣∣2 +

∣∣∣∣∂2f

∂y2

∣∣∣∣2
]

dxdy

=

N∑
ι=1

∫∫
Tι

[∣∣∣∣∂2fι
∂x2

∣∣∣∣2 + 2

∣∣∣∣ ∂2fι
∂x∂y

∣∣∣∣2 +

∣∣∣∣∂2fι
∂y2

∣∣∣∣2
]

dxdy,

where fι is the restriction of f to Tι as defined in (7). To
construct the matrix Q in Section III-B, we need a quadratic
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form expression

cTι Qιcι :=

∫∫
Tι

[∣∣∣∣∂2fι
∂x2

∣∣∣∣2 + 2

∣∣∣∣ ∂2fι
∂x∂y

∣∣∣∣2 +

∣∣∣∣∂2fι
∂y2

∣∣∣∣2
]

dxdy,

(33)
where cι is the B-coefficient vector of fι (ι = 1, 2, . . . , N ).
Such a expression is found in [59] as summarized below.

Fact 4 ([59]): Let Tι be a triangle on R2 and fι : Tι → R
be a bivariate polynomial of degree d ≥ 2 expressed as

fι(x, y) =

d∑
i=0

i∑
j=0

c i(i+1)
2 +j+1

d!

(d− i)!(i− j)!j!
rd−isi−jtj

by using its B-coefficients cι := (c1, c2, . . . , c(d+1)(d+2)/2)T

and barycentric coordinate (r, s, t) of (x, y) ∈ Tι with respect
to Tι. Then the symmetric positive semidefinite matrix Qι ∈
R

(d+1)(d+2)
2 × (d+1)(d+2)

2 in (33) is given by

[Qι] i(i+1)
2 +j+1,

k(k+1)
2 +l+1

:= d2(d− 1)2

∫∫
Tι
e

(d)
i,j,k,l dxdy

for 0 ≤ j ≤ i ≤ d and 0 ≤ l ≤ k ≤ d. Here e(ζ)
i,j,k,l ∈ R[r, s, t]

(2 ≤ ζ ≤ d, 0 ≤ j ≤ i ≤ ζ and 0 ≤ l ≤ k ≤ ζ) are
polynomials generated recursively from e

(2)
i,j,k,l defined in (34)

with r := ( ∂r∂x ,
∂r
∂y )T , s := ( ∂s∂x ,

∂s
∂y )T and t := ( ∂t∂x ,

∂t
∂y )T , and

e
(ζ)
i,j,k,l := r2e

(ζ−1)
i,j,k,l + rs

(
e

(ζ−1)
i,j,k−1,l + e

(ζ−1)
i−1,j,k,l

)
+ rt

(
e

(ζ−1)
i,j,k−1,l−1 + e

(ζ−1)
i−1,j−1,k,l

)
+ s2e

(ζ−1)
i−1,j,k−1,l

+ st
(
e

(ζ−1)
i−1,j,k−1,l−1 + e

(ζ−1)
i−1,j−1,k−1,l

)
+ t2e

(ζ−1)
i−1,j−1,k−1,l−1

for ζ ≥ 3 (Note: e(ζ)
i,j,k,l = 0 if i 6∈ [0, ζ], j 6∈ [0, i], k 6∈ [0, ζ],

or l 6∈ [0, k]).
By combining Fact 4 with Fact 5 below, we can compute

all components of Qι (ι = 1, 2, . . . , N ) in closed form, from
which, Q in Section III-B is obtained.

Fact 5 ([46]): Let T := 〈v1,v2,v3〉 s.t. vk := (xk, yk) ∈
R2 (k = 1, 2, 3) and let (r, s, t) be barycentric coordinate of
(x, y) with respect to T . Then for any (l,m, n) ∈ Z3

+, we have∫∫
T
rlsmtn dxdy =

l!m!n!|%|
(d+ 2)!

,

where d := l+m+n and % := x1y2− y1x2 +x2y3− y2x3 +
x3y1 − y3x1.

APPENDIX D
FAST AND NUMERICALLY STABLE COMPUTATION FOR

ALGEBRAIC PHASE UNWRAPPING WITH SUBRESULTANT

Suppose that univariate real polynomials

Ψ0(τ) = amτ
m + am−1τ

m−1 + · · ·+ a1τ + a0

Ψ1(τ) = bnτ
n + bn−1τ

n−1 + · · ·+ b1τ + b0

}
(35)

are given in Fact 3 and Fig. 2, where am 6= 0 and bn 6= 0,
i.e., deg(Ψ0) = m and deg(Ψ1) = n (Note: From (18), m
and n are at most d in the scenario of Section III-C). Then
for l = 0, 1, . . . ,min{m − 1, n − 1}, the lth subresultant
Sresl[Ψ0,Ψ1](τ) ∈ R[τ ] of (Ψ0,Ψ1) is defined, as a univariate
polynomial of degree l at most, by

Sresl[Ψ0,Ψ1](τ)

:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am · · · al+1 al · · · a1 a0 Ψ0(τ)τn−l−1

. . . . . . . . . . . . . . .
...

am · · · al+1 al · · · a1 a0 Ψ0(τ)τ l+1

am · · · al+1 al · · · a1 Ψ0(τ)τ l

. . . . . . . . .
...

...
am · · · al+1 al Ψ0(τ)τ

am · · · al+1 Ψ0(τ)
bn · · · bl+1 bl · · · b1 b0 Ψ1(τ)τm−l−1

. . . . . . . . . . . . . . .
...

bn · · · bl+1 bl · · · b1 b0 Ψ1(τ)τ l+1

bn · · · bl+1 bl · · · b1 Ψ1(τ)τ l

. . . . . . . . .
...

...
bn · · · bl+1 bl Ψ1(τ)τ

bn · · · bl+1 Ψ1(τ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(36)
where | · | stands for the determinant of a matrix. In particular,
Sres0[Ψ0,Ψ1] ∈ R is called the resultant of (Ψ0,Ψ1).

From the definitions of V (Ψ(τ∗)) and V (Ψ(a)) (see Fact 3),
for evaluating V (Ψ(τ∗)) and V (Ψ(a)) in (19), we need only
sgn(Ψj(τ

∗)) and sgn(Ψj(a)) (j = 0, 1, . . . , q) which can be
computed by using Sresl[Ψ0,Ψ1](τ∗) and Sresl[Ψ0,Ψ1](a)
respectively as shown below.

Fact 6 (See [41, Theorem 4] for More General Cases):
Let (Ψj(τ))qj=0 be the polynomial sequence generated by the
algorithm in Fig. 2, where Ψ0(τ) and Ψ1(τ) are given in (35).
If m ≥ n and deg(Sresl[Ψ0,Ψ1]) = l for all l ∈ [0, n − 1],

e
(2)
0,0,0,0 = (rTr)2; e

(2)
1,0,1,1 = e

(2)
1,1,1,0 = 2rTrsT t+ 2rTsrT t; e

(2)
1,1,2,2 = e

(2)
2,2,1,1 = 2tT ttTr

e
(2)
0,0,1,0 = e

(2)
1,0,0,0 = 2rTrrTs; e

(2)
1,0,2,0 = e

(2)
2,0,1,0 = 2sTssTr; e

(2)
2,0,2,0 = (sTs)2

e
(2)
0,0,1,1 = e

(2)
1,1,0,0 = 2rTrrT t; e

(2)
1,0,2,1 = e

(2)
2,1,1,0 = 2sTsrT t+ 2sTrsT t; e

(2)
2,0,2,1 = e

(2)
2,1,2,0 = 2sTssT t

e
(2)
0,0,2,0 = e

(2)
2,0,0,0 = (rTs)2; e

(2)
1,0,2,2 = e

(2)
2,2,1,0 = 2tTrtTs; e

(2)
2,0,2,2 = e

(2)
2,2,2,0 = (sT t)2

e
(2)
0,0,2,1 = e

(2)
2,1,0,0 = 2rTsrT t; e

(2)
1,1,1,1 = 2rTrtT t+ 2(rT t)2; e

(2)
2,1,2,1 = 2sTstT t+ 2(sT t)2

e
(2)
0,0,2,2 = e

(2)
2,2,0,0 = (rT t)2; e

(2)
1,1,2,0 = e

(2)
2,0,1,1 = 2sTrsT t; e

(2)
2,1,2,2 = e

(2)
2,2,2,1 = 2tT ttTs

e
(2)
1,0,1,0 = 2rTrsTs+ 2(rTs)2; e

(2)
1,1,2,1 = e

(2)
2,1,1,1 = 2tT trTs+ 2tTrtTs; e

(2)
2,2,2,2 = (tT t)2



(34)
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then we have q = n+ 1 and

sgn(Ψj(τ)) = (−1)(j−1)j/2+(j−1)(m−n+1)

· sgn
(
bm−n+1
n Sresn−j+1[Ψ0,Ψ1](τ)

)
for j = 2, 3, . . . , n+ 1.

Note that computation of Sresl[Ψ0,Ψ1](τ) in (36) does
not require any polynomial division, which results in stable
computation of V (Ψ(τ∗)) and V (Ψ(a)). If we are interested
in {θf∗(v

〈K〉
2 )}NK=1 (see Section III-C), the expressions in

(17), (18) and (19) indicate that only Sresn−j+1[Ψ0,Ψ1](0)
and Sresn−j+1[Ψ0,Ψ1](1) (j = 2, 3, . . . , n + 1) are neces-
sary to obtain V (Ψ(0)) and V (Ψ(1)) for given polynomials
P(k)(τ) := F

〈i〉
(k)(τ) ∈ R[τ ] (k = 0, 1 and i = 1, 2, . . . ,K).

Moreover, for any Ψk(τ) ∈ R[τ ] (k = 0, 1) in (35),9 the
expression in (36) indicates that Sresn−j+1[Ψ0,Ψ1](0) and
Sresn−j+1[Ψ0,Ψ1](1) can be expressed as multivariate poly-
nomials of coefficients of Ψ0(τ) and Ψ1(τ), where the total
degrees of Sresn−j+1[Ψ0,Ψ1](0) ∈ R[a0, . . . , am, b0, . . . , bn]
and Sresn−j+1[Ψ0,Ψ1](1) ∈ R[a0, . . . , am, b0, . . . , bn] are
(m−n+2j−2). Since these multivariate polynomials can be
constructed beforehand, fast and stable evaluations of V (Ψ(0))
and V (Ψ(1)) are realized by substituting each coefficient of
Ψ0(τ) and Ψ1(τ) to the multivariate polynomials.

APPENDIX E
DERIVATIONS OF RELATIONS (26) AND (28)

Consider the unwrapped phase Θ := Θint − Θref as a
bivariate function defined for (R1, H) ∈ R++ × R+ not
for (x, y) ∈ Ω. By letting Θref(R1) := Θint(R1, H0) and
Θ(R1, H) := Θint(R1, H)−Θref(R1), we have Θ(R1, H0) =
0 for all R1, and can verify from (24), with some algebra,

∂Θ

∂H
=
∂Θint

∂H
=

4πR1B cos(θo − α)

λ
√
R2

1 +B2 − 2R1B sin(θo − α)
· ∂θo
∂H

.

(37)
Moreover, from θo = arccos(

R2
1+(RE+HSAR)2−(RE+H)2

2R1(RE+HSAR) ),10

we have

∂θo
∂H

=

(
− 1

sin θo

)
·
(
− RE +H

R1(RE +HSAR)

)
=

1

R1
· RE +H

(RE +HSAR) sin θo
=

1

R1 sin θi
. (38)

Then, from (37) and (38), we derive (26):

∂Θ

∂H
=
∂Θint

∂H

=
4πB cos(θo(R1, H)− α)

λ sin θi(R1, H)
√
R2

1 +B2 − 2R1B sin(θo(R1, H)− α)
,

where the dependencies of θo and θi on (R1, H) are clearly
expressed. These relations show that the unwrapped phase Θ

9For any P(k)(τ) := F
〈i〉
(k)

(τ) ∈ R[τ ] (k = 0, 1 and i = 1, 2, . . . ,K),
Ψk(τ) := P(k)(τ)/τek (k = 0,1 and ek is the order of τ = 0 as a zero
of P(k)(τ)) can be computed precisely in digital computer because the
evaluation of P(k)(0) and the polynomial division of P(k)(τ) by τ are
implemented without any numerical errors.

10arccos : R → [0, π] returns the principal value of the inverse cosine,
i.e., cos(arccos(x)) = x for all x ∈ [−1, 1].

at any (R∗1, H
∗) can be expressed as shown in (28):

Θ(R∗1, H
∗) = Θ(R∗1, H0) +

∫ H∗

H0

∂Θ

∂H

∣∣∣∣
R1=R∗

1

dH

=

∫ H∗

H0

4πB cos(θHo − α)

λ sin θHi
√
R∗21 +B2 − 2R∗1B sin(θHo − α)

dH

≈
∫ H∗

H0

4πB cos(θH0
o − α)

λ sin θH0
i

√
R∗21 +B2 − 2R∗1B sin(θH0

o − α)
dH

=
4πB cos(θH0

o − α)

λ sin θH0
i

√
R∗21 +B2 − 2R∗1B sin(θH0

o − α)
(H∗ −H0),

where θHo := θo(R
∗
1, H) and θHi := θi(R

∗
1, H). The above

approximation is justified from the fact that θHo and θHi change
very slowly if R1 and HSAR are sufficiently large compared
with (H∗ −H0).

Note that, under the assumption 0 < x := B
R1
� 1, Θint in

(24) can approximated as

Θint ≈
4πB sin(θo − α)

λ
=: Θ̂int (39)

with the use of the fist order Taylor series approximation of√
1 + x2 − 2x sin(θo − α) ≈ 1 − x sin(θo − α). Finally, by

using (39), we derive

∂Θ

∂H
≈ ∂Θ̂int

∂H
=

4πB cos(θo − α)

λ
· ∂θo
∂H

=
4πB cos(θo − α)

λR1 sin θi
,

which is (27), and

Θ(R∗1, H
∗) = Θ(R∗1, H0) +

∫ H∗

H0

∂Θ

∂H

∣∣∣∣
R1=R∗

1

dH

≈
∫ H∗

H0

4πB cos(θHo − α)

λR∗1 sin θHi
dH

≈
∫ H∗

H0

4πB cos(θH0
o − α)

λR∗1 sin θH0
i

dH

=
4πB cos(θH0

o − α)

λR∗1 sin θH0
i

(H∗ −H0),

which is found, e.g., in [80, Equation (A.2.7)].11
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