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Abstract The unwrapped phase of a complex function is defined with a line integral of the
gradient of the arctangent of the ratio of the real and imaginary parts of the function. The
phase unwrapping, which is a problem to reconstruct the unwrapped phase of an unknown
complex function from its finite observed samples, has been a key for estimating useful
physical quantity in many signal and image processing applications. In the light of the func-
tional data analysis, it is natural to estimate first the unknown complex function by a certain
piecewise complex polynomial and then to compute the exact unwrapped phase of the piece-
wise complex polynomial with the algebraic phase unwrapping algorithms (Yamada et al.
in IEEE Trans Signal Process 46(6), 1639–1664, 1998; Yamada and Bose in IEEE Trans
Circuits Syst I Fundam Theory Appl 49(3), 298–304, 2002; Yamada and Oguchi in Mul-
tidimens Syst Signal Process 22(1–3), 191–211, 2011). In this paper, we propose several
useful extensions and numerical stabilizations of the algebraic phase unwrapping along the
real axis which was established originally in Yamada and Oguchi (Multidimens Syst Signal
Process 22(1–3), 191–211, 2011). The proposed extensions include (i) removal of a certain
critical assumption premised in the original algebraic phase unwrapping, and (ii) algebraic
phase unwrapping for a pair of bivariate polynomials. Moreover, in order to resolve certain
numerical instabilities caused by the coefficient growth in an inductive step in the original
algorithm, we propose to compute directly a certain subresultant sequence without pass-
ing through the inductive step. The extensive numerical experiments exemplify the notable
improvement, in the performance of the algebraic phase unwrapping, made by the proposed
numerical stabilization.
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1 Introduction

Suppose that(
d(0)(γ(ζk)),d(1)(γ(ζk))

)
:=
(

f(0)(γ(ζk))+ε(0)(γ(ζk)), f(1)(γ(ζk))+ε(1)(γ(ζk))
)
∈ R2

(k = 1,2, . . . ,s) are given as a finite sequence of 2-D noisy real vectors, where f(i) : R2→R
(i = 0,1) are unknown functions, ε(i) : R2 → R (i = 0,1) are additive random noise func-
tions, and γ : [a,b]→ R2 is a known piecewise C1 function which defines a path along the
sample points γ(ζk) ∈ R2 (a≤ ζ1 < ζ2 < · · ·< ζs ≤ b).

For simplicity, denote by F : [a,b] 3 t 7→ F(0)(t) + jF(1)(t) ∈ C a univariate complex
valued function defined as

F(i)(t) := f(i)(γ(t)) for all t ∈ [a,b] (i = 0,1).

The two-dimensional phase unwrapping of ( f(0), f(1)) along γ at (x∗,y∗) := γ(t∗) ∈ R2,
or the phase unwrapping of F at t∗ ∈ [a,b] along the real axis, is a problem of estimating the
unwrapped phase

θ
[γ]
f (x∗,y∗) := θF(t∗) := θF(a)+

∫ t∗

a
ℑ

{
F ′(0)(t)+ jF ′(1)(t)

F(0)(t)+ jF(1)(t)

}
dt (1)

by using the data
(
d(0)(γ(ζk)),d(1)(γ(ζk))

)
(k = 1,2, . . . ,s), where we assume θF(a) ∈

(−π,π] is given as the initial phase satisfying F(a) := |F(a)|e jθF (a) 6= 0, the derivative
F ′(i)(t) of F(i)(t) (i = 0,1) are well-defined almost everywhere over [a,b], and the integral in
(1) is well-defined in the sense of Lebesgue (see, e.g., Rudin 1976, Chapter 11).

In many signal and image processing problems, the phase unwrapping has been a key
for estimating some physical quantity (Ghiglia and Pritt 1998; Ying 2006), for example,
surface topography in synthetic aperture radar (SAR) interferometry (Graham 1974; Zebker
and Goldstein 1986; Goldstein et al. 1988; Jakowatz, Jr. et al. 1996) and synthetic aperture
sonar (SAS) interferometry (Denbigh 1994; Hansen et al. 2003; Hayes and Gough 2009),
wavefront distortion in adaptive optics (Fried 1977; Hudgin 1977; Noll 1978), the degree
of magnetic field inhomogeneity in the water/fat separation problem of magnetic resonance
imaging (MRI) (Glover and Schneider 1991; Szumowski et al. 1994; Moon-Ho Song et al.
1995), the relationship between the object phase and the bispectrum phase in astronomical
imaging (Marron et al. 1990; Negrete-Regagnon 1996), the accurate profiling of mechanical
parts by x-ray (Cloetens et al. 1999; Weitkamp et al. 2005) and the DOA estimation in array
signal processing (Yamada and Oguchi 2011).

Despite the tremendous effort made so far, a technically reliable phase unwrapping has
not yet been established for its practical use in wide range of signal and image processing.
This is mainly because θF(t) (a ≤ t ≤ b) is continuously defined along the arc γ([a,b])
as in (1) while most existing phase unwrapping algorithms, e.g., path-following methods
(Goldstein et al. 1988; Judge and Bryanston-Cross 1994; Lin et al. 1994; Buckland et al.
1995), minimum-norm methods (Busbee et al. 1970; Pritt and Shipman 1994; Ghiglia and
Romero 1996) and network flow methods (Flynn 1997; Costantini 1998) estimate the un-
wrapped phase θF only at ζk (k = 1,2, . . . ,s) without checking the consistency with θF at
t ∈ (ζk,ζk+1).

In this paper, in the spirit of functional data analysis (Wahba 1990; Unser 1999; Ramsay
and Silverman 2005; Schumaker 2007), we consider the situation where the functions F(i) :
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[a,b]→R (i = 0,1) have been approximated respectively by known functions F̃(i) : [a,b]→
R (i = 0,1) through some smoothing techniques. In such a case, it is natural to estimate
θF(t∗) in (1) by

θF̃(t
∗) := θF̃(a)+

∫ t∗

a
ℑ

{
F̃ ′(0)(t)+ jF̃ ′(1)(t)

F̃(0)(t)+ jF̃(1)(t)

}
dt. (2)

In particular, motivated by the great success in the use of the Spline functions in the
functional data analysis (Silverman 1985; Chui 1988; Wahba 1990; Unser 1999; Ramsay
and Silverman 2005; Schumaker 2007), in this paper, we focus on a special case where
F̃(i) : [a,b]→ R (i = 0,1) are given as piecewise polynomials (Kitahara and Yamada 2012).
In this special case, by dividing the interval [a,b] into finite subintervals if necessary, the
computation of θF̃(t

∗) in (2) is reduced to the following phase unwrapping for a univariate
complex polynomial along the real axis.

Problem 1 (Phase unwrapping for a univariate complex polynomial along the real axis I )
For a given univariate complex polynomial C(t) =

∑m
k=0cktk ∈ C[t] satisfying C(a) =

|C(a)|e jθC(a) 6= 0 with θC(a) ∈ (−π,π], let C(0)(t) :=
∑m

k=0ℜ(ck)tk ∈ R[t] and C(1)(t) :=∑m
k=0ℑ(ck)tk ∈ R[t]. Then compute the unwrapped phase of C(t) at t∗ ∈ [a,b] by

θC(t∗) := θC(a)+
∫ t∗

a
ℑ

{
C′(0)(t)+ jC′(1)(t)

C(0)(t)+ jC(1)(t)

}
dt,

= θC(a)+
∫ t∗

a
ℑ

{
B′(0)(t)+ jB′(1)(t)

B(0)(t)+ jB(1)(t)

}
dt, (3)

= θC(a)+
∫ t∗

a

B′(1)(t)B(0)(t)−B(1)(t)B′(0)(t)

{B(0)(t)}2 +{B(1)(t)}2 dt, (4)

where B(0)(t), B(1)(t) ∈ R[t] are respectively the real and imaginary parts of B(t) :=
C(t)

GCD(C(t),C(t))
= B(0)(t)+ jB(1)(t) ∈ C[t] for C(t) :=

∑m
k=0c̄ktk ∈ C[t], and GCD stands for

the greatest common divisor.

(On the expression (3) of θC(t∗) and the integrability of (4), see Appendix 1).

Remark 1 (Possible inconsistency of θC caused by zero of C(t)) The function θC : [a,b]→
R defined in (3) and (4) is always continuous. Moreover, even if there exists tz ∈ (a,b)
satisfying C(tz) = 0 and C(t) 6= 0 for all t ∈ [a, tz), θC satisfies C(t) = |C(t)|e jθC(t) for all
t ∈ [a, tz]. However, in such a case, C(t) = |C(t)|e jθC(t) is not necessarily guaranteed for
t ∈ (tz,b]. The possible inconsistency happens essentially by the same reason as the path
dependency in the two-dimensional phase unwrapping (see Example 4 and Theorem 2).

Since B(t) 6= 0 for all t ∈ R is guaranteed in (3) and (4), it is sufficient to consider the
following problem.

Problem 2 (Phase unwrapping for a univariate complex polynomial along the real axis II )
For a given univariate complex polynomial A(t) =

∑m
k=0aktk ∈ C[t] satisfying A(t) 6= 0 for

all t ∈ [a,b], let A(0)(t) :=
∑m

k=0ℜ(ak)tk ∈ R[t] and A(1)(t) :=
∑m

k=0ℑ(ak)tk ∈ R[t]. Then
compute the unwrapped phase of A(t) at t∗ ∈ [a,b] by

θA(t∗) := θA(a)+
∫ t∗

a

A′(1)(t)A(0)(t)−A(1)(t)A′(0)(t)

{A(0)(t)}2 +{A(1)(t)}2 dt, (5)

where θA(a) ∈ (−π,π] satisfies A(a) = |A(a)|e jθA(a).
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The algebraic phase unwrapping for complex polynomials along the unit circle was
established first in Yamada et al. (1998) by extending a first discovery (McGowan and Kuc
1982) of a direct relation between a real coefficient polynomial and its unwrapped phase
along the unit circle. As its continuations, the algebraic phase unwrapping along the real
axis (Yamada and Oguchi 2011), which is a first solution to Problem 2 (see Theorem 1 in
Sect. 3.1), and that along the imaginary axis (Yamada and Bose 2002) have been developed.
These methods do not require any numerical root finding or numerical integration technique.
All the algorithms (Yamada et al. 1998; Yamada and Oguchi 2011; Yamada and Bose 2002)
are essentially based on computing certain general Sturm sequence by polynomial division
type algorithms. Potential application of the algebraic phase unwrapping is spanning widely
in signal and image processing (Graham 1974; Fried 1977; Hudgin 1977; Noll 1978; Zebker
and Goldstein 1986; Goldstein et al. 1988; Marron et al. 1990; Glover and Schneider 1991;
Denbigh 1994; Szumowski et al. 1994; Moon-Ho Song et al. 1995; Jakowatz, Jr. et al. 1996;
Negrete-Regagnon 1996; Cloetens et al. 1999; Hansen et al. 2003; Weitkamp et al. 2005;
Hayes and Gough 2009; Yamada and Oguchi 2011) where reliable phase information has
been demanded strongly.

However, in a direct computer implementation of all existing algorithms in Yamada
et al. (1998), Yamada and Oguchi (2011) and Yamada and Bose (2002) as well as in a
direct implementation of Algorithm 1 (Sturm-R) in Sect. 3.1, we encounter numerical in-
stabilities, especially for polynomials of relatively large degree, due to the unavoidable gap
between theoretical value and numerical value computed by digital computer using finite
digit number systems. Therefore, thoughtless direct implementation of the algebraic phase
unwrapping algorithms for polynomials of large degree, sometimes results in the loss of key
properties of the Sturm sequence. Such a loss leads to a certain serious failure of the phase
unwrapping in the end.

The goal of this paper is to present several extensions and numerical stabilization of the
algebraic phase unwrapping along the real axis (Yamada and Oguchi 2011). After giving
preliminary results necessary in the later sections, we revisit the algebraic phase unwrapping
along the real axis (Problem 2) in Sect. 3.1 where we present a new algorithm (Algorithm
1) to define a new Sturm sequence, unlike Yamada and Oguchi (2011, SGA 2), by elimi-
nating the greatest factor (t− a)ei from the first two polynomials A(i)(t) (i = 0,1) but not
eliminating from the remaining polynomials generated by an inductive step. By this sim-
plification, the Algorithm 1 (Sturm-R) turns out to generate the standard Sturm sequence

(Mishra 1993, Definition 8.4.2) for
A(0)(t)
(t−a)e0 and

A(1)(t)
(t−a)e1 , and therefore we can express the

new Sturm sequence with the subresultant sequence (Collins 1967; Brown and Traub 1971;
Mishra 1993; Anai and Yokoyama 2011). Moreover, by this change for the first two poly-
nomials, Theorem 1 based on Algorithm 1 can deal with a special case A(0)(a) = 0 which
is excluded in Yamada and Oguchi (2011, Theorem 1). This relaxation is very useful es-
pecially in its application to a pair of piecewise polynomials (Sect. 3.2) because the value
of A(0)(t) at t = a is determined usually by the continuously connected polynomial defined
on the adjacent subinterval. In Sect. 3.3, we consider the two-dimensional phase unwrap-
ping and elucidate the condition for the path independence of the two-dimensional phase
unwrapping. In particular, if bivariate polynomial functions f(i) : R2→ R (i = 0,1) satisfy
f (x,y) := f(0)(x,y)+ j f(1)(x,y) 6= 0 for all (x,y) in a simply connected domain D⊂ R2, we
show, by Poincaré’s lemma (see, e.g., Galbis and Maestre 2012), that the phase unwrapping
along any piecewise C1 arc γ([a,b]) := {γ(t)∈R2 | a≤ t ≤ b}⊂D defines uniquely a twice
continuously differentiable function θ f ∈C2(D), which is the two-dimensional unwrapped
phase of f on D. The two-dimensional unwrapped phase θ f can be computed with Algo-
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rithm 1 without requiring any numerical root finding or numerical integration technique. In
Sect. 4, after starting with the observation of a typical situation causing numerical instabil-
ities in the direct computer implementation of the algebraic phase unwrapping (Algorithm
1), in order to stabilize the computation of θA(t∗) in Theorem 1, we propose to replace the
inductive computation of the polynomials Ψk(t) (k = 0,1, . . . ,q) in Algorithm 1, followed
by their numerical evaluation at t∗ ∈ [a,b], with the direct numerical computation of the
subresultant sequence (Collins 1967; Brown and Traub 1971) at t∗. For this purpose, we
present complete relation between the sign of the Sturm sequence and that of the subresul-
tant sequence (Propositions 4, 5 and Theorem 3). By the proposed replacement, the sign
of the ideal standard Sturm sequence can be computed without suffering from the propa-
gation of errors caused by the coefficient growth in the process of Algorithm 1, and then
the algebraic phase unwrapping is stabilized greatly even for polynomials of relatively large
degree. The extensive numerical experiments, of the algebraic phase unwrapping along the
real axis, exemplify the notable performance improvement made by the proposed numerical
stabilization.

The proposal in this paper is expected to be a firm mathematical foundation for wider
application of the algebraic phase unwrapping, e.g., in a combination with the spline smooth-
ing (Silverman 1985; Chui 1988; Wahba 1990; Unser 1999; Ramsay and Silverman 2005;
Schumaker 2007), to practical signal and image processing problems.

2 Preliminaries

2.1 Notation

Let N∗, R and C denote respectively the set of all positive integers, real numbers and com-
plex numbers. We use j ∈ C to denote the imaginary unit satisfying j2 = −1. For any
c ∈ C, ℜ(c), ℑ(c) and c̄ stand respectively for the real part, the imaginary part and the
complex conjugate of c. For any C(t) =

∑m
k=0cktk ∈ C[t] (s.t. cm 6= 0 and m≥ 0), we define

C(t) :=
∑m

k=0c̄ktk ∈C[t], deg(C) :=m, lc(C) := cm and mmc(C) :=max{|c0|, |c1|, . . . , |cm|}.
The degree of the zero polynomial is defined to be −∞. For any C(t) =

∑m
k=0cktk ∈ C[t],

we use the expression C(t) = C(0)(t)+ jC(1)(t), where C(0)(t) :=
∑m

k=0ℜ(ck)tk ∈ R[t] and
C(1)(t) :=

∑m
k=0ℑ(ck)tk ∈ R[t]. For any x ∈ R, its sign is defined by

sgn(x) :=
{

x/|x| if x 6= 0,
0 if x = 0,

and arctan denotes the principle value inverse tangent satisfying tan(arctan(x)) = x and
−π2 < arctan(x)< π

2 .

2.2 Elementary facts on vector calculus

For the discussion on the continuity of the two-dimensional unwrapped phase and the appli-
cability of the algebraic phase unwrapping to two-dimensional case (Sect. 3.3), we need the
following classical results (see, e.g., Apostol 1974, Rudin 1976, Galbis and Maestre 2012).

Fact 1 (Green’s theorem and Poincaré’s lemma)
(a) (Green’s theorem) Suppose U is an open set in R2, P,Q ∈C1(U), i.e., P : U → R and

Q : U → R are continuously differentiable over U, and Ω is a closed subset of U, with
positively oriented boundary ∂Ω. Then we have∮

∂Ω
[P(x,y)dx+Q(x,y)dy] =

∫∫
Ω

(
∂Q
∂x

(x,y)− ∂P
∂y

(x,y)
)

dxdy.
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(b) (Poincaré’s lemma: Condition for exact differentiability) Suppose D is a simply con-
nected domain in R2, P,Q ∈ C1(D), and ∂P

∂y (x,y) =
∂Q
∂x (x,y) for all (x,y) ∈ D. Then

there exists a function f ∈C2(D) satisfying

∂ f
∂x

(x,y) = P(x,y) and
∂ f
∂y

(x,y) = Q(x,y) for all (x,y) ∈ D.

The function f ∈ C2(D) is nothing but the scalar potential of the vector field
(P(x,y),Q(x,y)) over D.

2.3 Subresultant and polynomial remainder

For a pair of real polynomials

P0(t) := amtm +am−1tm−1 + · · ·+a1t +a0,

P1(t) := bntn +bn−1tn−1 + · · ·+b1t +b0,

s.t. am 6= 0 and bn 6= 0, define Ri(P0,P1, t) ∈ R[t](m+n−2i)×(m+n−2i) (i = 0,1, . . . ,min{m−
1,n−1}) by

m+n−2i︷ ︸︸ ︷

Ri(P0,P1, t) :=



am am−1 · · · ai ai−1 · · · a0 P0(t)tn−i−1

am am−1 · · · ai ai−1 · · · a0 P0(t)tn−i−2

. . .
. . .

. . .
. . .

. . .
...

am am−1 · · · ai ai−1 · · · a0 P0(t)t i+1

am am−1 · · · ai · · · a1 P0(t)t i

. . .
. . .

. . .
...

...
am am−1 · · · ai P0(t)t

am · · · ai+1 P0(t)
bn bn−1 · · · bi bi−1 · · · b0 P1(t)tm−i−1

bn bn−1 · · · bi bi−1 · · · b0 P1(t)tm−i−2

. . .
. . .

. . .
. . .

. . .
...

bn bn−1 · · · bi bi−1 · · · b0 P1(t)t i+1

bn bn−1 · · · bi · · · b1 P1(t)t i

. . .
. . .

. . .
...

...
bn bn−1 · · · bi P1(t)t

bn · · · bi+1 P1(t)



.


n− i


m− i

Then the ith subresultant Sresi(P0,P1, t) of P0(t) and P1(t) is defined as the determinant of
Ri(P0,P1, t), i.e.,

Sresi(P0,P1, t) := det(Ri(P0,P1, t)) ∈ R[t] (i = 0,1, . . . ,min{m−1,n−1}).

It is well-known (Collins 1967; Brown and Traub 1971; Anai and Yokoyama 2011) that
the degree of the ith subresultant does not exceed i. For P0(t) and P1(t), we also define
Mi(P0,P1) ∈ R(m+n−2i)×(m+n−2i) (i = 0,1, . . . ,min{m−1,n−1}) by
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m+n−2i︷ ︸︸ ︷

Mi(P0,P1) :=



am am−1 · · · ai ai−1 · · · a0
am am−1 · · · ai ai−1 · · · a0

. . .
. . .

. . .
. . .

. . .
am am−1 · · · ai ai−1 · · · a0

am am−1 · · · ai · · · a1 a0
. . .

. . .
. . .

...
...

am am−1 · · · ai ai−1
am · · · ai+1 ai

bn bn−1 · · · bi bi−1 · · · b0
bn bn−1 · · · bi bi−1 · · · b0

. . .
. . .

. . .
. . .

. . .
bn bn−1 · · · bi bi−1 · · · b0

bn bn−1 · · · bi · · · b1 b0
. . .

. . .
. . .

...
...

bn bn−1 · · · bi bi−1
bn · · · bi+1 bi



.


n− i


m− i

det(Mi(P0,P1)) is called the principal subresultant coefficient and satisfies

det(Mi(P0,P1)) =

{
lc(Sresi(P0,P1, t)) 6= 0 if deg(Sresi(P0,P1, t)) = i,
0 if deg(Sresi(P0,P1, t))< i.

(6)

In particular, M0(P0,P1) is the Sylvester matrix of P0(t) and P1(t), and det(M0(P0,P1)) =
Sres0(P0,P1, t) is the resultant of P0(t) and P1(t).

The subresultant is closely-linked to the polynomial remainder as follows.

Fact 2 (Relation between the subresultant and the polynomial remainder (Brown and Traub
1971, Lemma 1)) Let Pk−1(t), Pk(t) and Pk+1(t) be nonzero polynomials satisfying

deg(Pk−1)≥ deg(Pk)> deg(Pk+1)
Pk+1(t) := Pk−1(t)−Qk(t)Pk(t) with Qk(t) ∈ R[t]

}
.

Then, the i th subresultant Sresi(Pk−1,Pk, t) (i = 0,1, . . . ,deg(Pk)−1) can be expressed as

Sresi(Pk−1,Pk, t)=



(−1)deg(Pk−1)−deg(Pk)+1(lc(Pk))
deg(Pk−1)−deg(Pk)+1Pk+1(t)

for i = deg(Pk)−1,

0 for i ∈ [deg(Pk+1)+1,deg(Pk)−2] (if deg(Pk+1)<deg(Pk)−2),

(−1)(deg(Pk−1)−deg(Pk)+1)(deg(Pk)−deg(Pk+1))(lc(Pk))
deg(Pk−1)−deg(Pk+1)

× (lc(Pk+1))
deg(Pk)−deg(Pk+1)−1Pk+1(t)

for i = deg(Pk+1),

(−1)(deg(Pk−1)−deg(Pk)+1)(deg(Pk)−i)(lc(Pk))
deg(Pk−1)−deg(Pk+1)

×Sresi(Pk,Pk+1, t)

for i ∈ [0,deg(Pk+1)−1] (if deg(Pk+1)≥1).
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Remark 2 (The equivalence between Fact 2 and Brown and Traub 1971, Lemma 1) In
Brown and Traub (1971, Lemma 1), Sresi(Pk−1,Pk, t) (i∈ [0,deg(Pk+1)−1]) is expressed as

Sresi(Pk−1,Pk, t) = (−1)(deg(Pk−1)−i)(deg(Pk)−i)(lc(Pk))
deg(Pk−1)−deg(Pk+1)Sresi(Pk,Pk+1, t),

which is seemingly different from the expression in Fact 2. The equivalence between these
expressions is verified as follows.

If (deg(Pk)− i) is even, we have

(−1)(deg(Pk−1)−deg(Pk)+1)(deg(Pk)−i) = (−1)(deg(Pk−1)−i)(deg(Pk)−i) = 1.

If (deg(Pk)− i) is odd, i.e., deg(Pk)− i = 2ρ−1 (for some ρ ∈ N∗), we have

(−1)(deg(Pk−1)−deg(Pk)+1)(deg(Pk)−i) = (−1)(deg(Pk−1)−i−(2ρ−2))(deg(Pk)−i)

= (−1)(deg(Pk−1)−i)(deg(Pk)−i).

2.4 Expression of unwrapped phase

The next proposition is a slight extension of Yamada and Oguchi (2011, Proposition 2). The
expression (7) gives a useful formula to compute the exact unwrapped phase θA(t∗) when
all distinct real roots, in (a,b), of A(0)(t) are known.

Proposition 1 (An expression of the unwrapped phase) Let A(t) := A(0)(t)+ jA(1)(t)∈C[t]
satisfy A(t) 6= 0 for all t ∈ [a,b]. If A(0)(t) ≡ 0 or A(1)(t) ≡ 0, we have, from (5), θA(t∗) =
θA(a) for all t∗ ∈ [a,b]. Otherwise, define

ZA(0) := {t ∈ (a,b) | A(0)(t) = 0}

=

{
∅ if A(0)(t) 6= 0 for all t ∈ (a,b),
{µ1,µ2, . . . ,µz} otherwise,

where a < µ1 < µ2 < · · ·< µz < b, and

X (µi) :=


+1 if

{
A(0)(t)A(1)(t)> 0 for t ∈ (µi−ε,µi) and
A(0)(t)A(1)(t)< 0 for t ∈ (µi,µi +ε),

−1 if
{

A(0)(t)A(1)(t)< 0 for t ∈ (µi−ε,µi) and
A(0)(t)A(1)(t)> 0 for t ∈ (µi,µi +ε),

0 otherwise,

for µi (i = 1,2, . . . ,z) and for sufficiently small ε> 0. Then we have, for any t∗ ∈ (a,b],

θA(t∗) = θA(a)− lim
t→a+0

arctan{QA(t)}+ lim
t→t∗−0

arctan{QA(t)}+Λ(t∗)π, (7)

where QA(t) :=
ℑ{A(t)}
ℜ{A(t)}

=
A(1)(t)
A(0)(t)

and Λ(t∗) :=
∑

µi∈(a,t∗)

X (µi).

Proof See Appendix 2.
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3 Extensions of the algebraic phase unwrapping along the real axis

3.1 Relaxation of the conditions for algebraic phase unwrapping

Under the assumptions on A(0)(t),A(1)(t) ∈R[t], in Proposition 1, including A(0)(t) 6≡ 0 and
A(1)(t) 6≡ 0, define the sequence of real polynomials {Ψk(t)}q

k=0 by applying Algorithm 1
(Sturm-R) to A(0)(t) and A(1)(t). The sequence {Ψk(t)}q

k=0 is a Sturm sequence in the sense
of Lemma 1. Note that, in comparison to Yamada and Oguchi (2011, SGA 2), Algorithm 1
differently defines {Ψk(t)}q

k=0, i.e., Ψ0(t) and Ψ1(t) are defined respectively by eliminating
the greatest factor (t−a)e0 and (t−a)e1 from A(0)(t) and A(1)(t), but Ψk(t) (k = 2,3, . . . ,q)
are defined without eliminating the greatest factor (t−a)ek .

Algorithm 1 Sturm generating algorithm along the real axis (Sturm-R)

Input: A(0)(t),A(1)(t)∈R[t] and a,b∈R (s.t. A(0)(t)+ jA(1)(t) 6= 0 for all t ∈ [a,b] and A(0)(t),A(1)(t) 6≡ 0)

1:
Ψ0(t)←

A(0)(t)
(t−a)e0

, Ψ1(t)←
A(1)(t)
(t−a)e1

(where ei denotes the order of t = a as a zero of polynomial A(i)(t) (i = 0,1))
2: k← 1
3: while deg(Ψk) 6= 0 do
4: Ψk+1(t)←−Ψk−1(t)−Hk(t)Ψk(t) (where Hk(t) ∈ R[t] and deg(Ψk+1)< deg(Ψk))
5: k← k+1
6: end while

7: q←
{

k if Ψk(t) 6≡ 0
k−1 if Ψk(t)≡ 0

Output: {Ψk(t)}q
k=0

Clearly, Algorithm 1 (Sturm-R) is a modification of the Euclidean algorithm for com-
puting GCD(Ψ0(t),Ψ1(t)), which generates the standard Sturm sequence for a pair of poly-
nomials Ψ0(t) and Ψ1(t) in the sense of Henrici (1974, Section 6.3.III), Marden (1989,
Section 38) and Mishra (1993, Definition 8.4.2). The Sturm sequence {Ψk(t)}q

k=0 and the
polynomial remainder sequence {Pk(t)}q

k=0 generated by the Euclidean algorithm have the
following close relation.

Remark 3 (Relation between the standard Sturm sequence and the polynomial remainder
sequence) The Euclidean algorithm for computing GCD(Ψ0,Ψ1) generates the polynomial

remainder sequence {Pk(t)}q
k=0, where P0(t) :=Ψ0(t) :=

A(0)(t)
(t−a)e0 , P1(t) :=Ψ1(t) :=

A(1)(t)
(t−a)e1

and Pk+1(t) (k = 1,2, . . . ,q−1) are defined inductively by

Pk+1(t) := Pk−1(t)−Qk(t)Pk(t) with Qk(t) ∈ R[t] and deg(Pk+1)< deg(Pk).

On the other hand, in Algorithm 1 (Sturm-R), Ψk+1(t) (k = 1,2, . . . ,q− 1) are defined
inductively by

Ψk+1(t) :=−Ψk−1(t)−Hk(t)Ψk(t) with Hk(t) ∈ R[t] and deg(Ψk+1)< deg(Ψk).

As a result, we have

Ψk(t) = (−1)
(k−1)k

2 Pk(t) (k = 0,1, . . . ,q). (8)
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The following lemma presents useful properties of {Ψk(t)}q
k=0. The properties (a), (b)

and (c) are well-known (see, e.g., Henrici 1974, Theorem 6.3b, Marden 1989, Section 38).
The properties (d) and (e) will be used in the proposed algebraic phase unwrapping (Theo-
rem 1).

Lemma 1 (Properties of the Sturm sequence generated by Algorithm 1) The Sturm se-
quence {Ψk(t)}q

k=0 generated by Algorithm 1 (Sturm-R) satisfies the following properties.

(a) Ψq(t) 6= 0 for a≤ t ≤ b,

(b) Ψk(t) 6= 0 or Ψk+1(t) 6= 0 for a≤ t ≤ b (k = 0,1, . . . ,q−1),

(c) Ψk(t∗) = 0 at t∗ ∈ [a,b]⇒Ψk−1(t∗)Ψk+1(t∗)< 0 (k = 1,2, . . . ,q−1),

(d) sgn(A(0)(t)) = sgn(Ψ0(t)) and sgn(A(1)(t)) = sgn(Ψ1(t)) for a < t ≤ b,

(e) lim
t→a+0

sgn(A(0)(t)) = sgn(Ψ0(a)) 6= 0 and lim
t→a+0

sgn(A(1)(t)) = sgn(Ψ1(a)) 6= 0.

Proof See Appendix 3.

The next theorem presents an exact expression of θA(t∗) in Problem 2. The expression
(9) does not require any root finding or any numerical integration technique. This theorem
is a relaxation of Yamada and Oguchi (2011, Theorem 1). Indeed, Theorem 1 can deal with
a special case A(0)(a) = 0 which is excluded in Yamada and Oguchi (2011, Theorem 1).

Theorem 1 (Algebraic phase unwrapping for a univariate complex polynomial along the
real axis) Let {Ψk(t)}q

k=0 be the sequence of real polynomials generated by applying Al-
gorithm 1 (Sturm-R) to A(0)(t),A(1)(t) ∈ R[t] under the assumptions A(t) := A(0)(t) +
jA(1)(t) 6= 0 (t ∈ [a,b]), A(0)(t) 6≡ 0 and A(1)(t) 6≡ 0. Define at each t ∈ [a,b] the number
of variations in the sign of {Ψk(t)}q

k=0 by

V{Ψ(t)} := V{Ψ0(t),Ψ1(t), . . . ,Ψq(t)}
:=
∣∣{i | 0≤ i < q and Ψi(t)Ψi+%(i)(t)< 0}

∣∣ ,
where %(i) := min{k ∈ N∗ |Ψi+k(t) 6= 0}. Then, for every t∗ ∈ (a,b], we have

θA(t∗) = θA(a)−

{
arctan{QA(a)} if A(0)(a) 6= 0,

sgn(Ψ0(a)Ψ1(a))π/2 if A(0)(a) = 0,

}

+

{
arctan{QA(t∗)}+[V{Ψ(t∗)}−V{Ψ(a)}]π if A(0)(t∗) 6= 0,

π/2+[V{Ψ(t∗)}−V{Ψ(a)}]π if A(0)(t∗) = 0.
(9)

Proof See Appendix 4.

Example 1 (Expression of the exact unwrapped phase by Theorem 1) Let us construct the
unwrapped phase θA(t) (0≤ t ≤ 1) of the univariate complex polynomial

A(t) := A(0)(t)+ jA(1)(t)

= (t4−1.11t3 +0.356t2−0.0255t)

+ j(t4−2.525t3 +2.29995t2−0.906172t +0.131222)

without using any root finding or any numerical intergartion.
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Applying Algorithm 1 to A(0)(t) and A(1)(t) for a = 0 and b = 1, we obtain the Sturm
sequence {Ψk(t)}5

k=0 as

Ψ0(t) = t3− 111
100 t2 + 89

250 t− 51
2000 ,

Ψ1(t) = t4− 101
40 t3 + 45999

20000 t2− 226543
250000 t + 65611

500000 ,

Ψ2(t) =−t3 + 111
100 t2− 89

250 t + 51
2000 ,

Ψ3(t) =− 3733
10000 t2 + 94233

250000 t− 190279
2000000 ,

Ψ4(t) =− 27788829033
260102169185000 t + 15335859

278705780000 ,

Ψ5(t) = 3391452647840106395584666460779211811
119967177270575015975354069525774695200000 .

From A(0)(0) = 0 and A(1)(0) = 65611
500000 , we have θA(0) = π/2. Moreover, from

sgn(Ψ0(0)Ψ1(0)) = sgn
(
− 3346161

1000000000

)
= −1 and V{Ψ(0)} = V

{
− 51

2000 ,
65611

500000 ,
51

2000 ,

− 190279
2000000 ,

15335859
278705780000 ,

3391452647840106395584666460779211811
119967177270575015975354069525774695200000

}
= 3, the unwrapped phase

θA(t) in (9) is expressed as

θA(t) = π+

{
arctan{QA(t)}+[V{Ψ(t)}−3]π if A(0)(t) 6= 0,

π/2+[V{Ψ(t)}−3]π if A(0)(t) = 0,

which is depicted in Fig. 1. The correctness of the above result is confirmed by applying the
alternative expression (7) if the following information is available.

A(t) := t(t−0.1)(t−0.5)(t−0.51)+ j(t−0.49)(t−0.515)(t−0.52)(t−1).

From Fig. 1, we observe that the unwrapped phase function θA can vary rapidly even if
deg(A) is small, which suggests the inherent difficulty in phase unwrapping problem. More-
over, we also observe that the necessary number of digits to express the coefficients of
{Ψk(t)}q

k=0 grows quickly. This phenomenon is called the coefficient growth, which causes
numerical instabilities in the direct computer implementation of Algorithm 1 (Sturm-R)
(see Section 4.1).

Theorem 1 can also be applied to the computation of the unwrapped phase for bivariate
polynomials. Although the two-dimensional phase unwrapping will be discussed much more
in detail in Section 3.3, we present here a straightforward application of Theorem 1 to the
two-dimensional phase unwrapping.

Example 2 (Phase unwrapping for a bivariate complex polynomial along γ) Let us con-
struct the unwrapped phase, along the path γ(t) := (t,2t + 1) (0 ≤ t ≤ 1), of the bivariate
polynomial

f (x,y) := (x2y3− xy2− x2−9x−5y+16)+ j(x4y+ x2y3−3x4 +10xy−25x−3).

In this case, F(t) := f (γ(t)) = F(0)(t)+ jF(1)(t) is given by

F(0)(t) = t2(2t +1)3− t(2t +1)2− t2−9t−5(2t +1)+16
= 8t5 +12t4 +2t3−4t2−20t +11,

F(1)(t) = t4(2t +1)+ t2(2t +1)3−3t4 +10t(2t +1)−25t−3
= 10t5 +10t4 +6t3 +21t2−15t−3.

Applying Algorithm 1 to F(0)(t) and F(1)(t), we can compute the unwrapped phase θF(t).
Figure 2a depicts θF(t), and 2b depicts θ f along γ on the x-y plane. From Fig. 2, we observe
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(b) Exact unwrapped phase on x-y plane

Fig. 2 Phase unwrapping for a bivariate complex polynomial along γ

that the two-dimennsional unwrapped phase can vary rapidly even for bivariate polyno-
mials of low degrees. Obviously, this notable feature is hardly detectable by most exiting
phase unwrapping algorithms, i.e., Busbee et al. (1970), Goldstein et al. (1988), Judge and
Bryanston-Cross (1994), Lin et al. (1994), Pritt and Shipman (1994), Buckland et al. (1995),
Ghiglia and Romero (1996), Flynn (1997), Costantini (1998), Ying (2006), essentially based
on discrete approximations.

3.2 Extension of the algebraic phase unwrapping for a pair of piecewise polynomials

The unwrapped phase of a pair of piecewise polynomials (S(0),S(1)) can be computed by
using Theorem 1 repeatedly in each subinterval, which is divided at the knots of the piece-
wise polynomials. (Note: In the next proposition, for simplicity, we assume A〈l〉

(0)(t) 6≡ 0 and
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A〈l〉
(1)(t) 6≡ 0 in each subinterval [ξl ,ξl+1]. However, even if this condition is violated, we can

compute the unwrapped phase θS(t) by using Proposition 1).

Proposition 2 (Algebraic phase unwrapping for a pair of continuous piecewise polynomi-
als) Let S(i) : [ξ0,ξn]→ R (i = 0,1) be a pair of continuous piecewise polynomials with

knots ξl ∈ (ξ0,ξn) (ξ1 < ξ2 < · · · < ξn−1), i.e., S(i)(t) = A〈l〉
(i)(t) ∈ R[t] in each subinterval

[ξl ,ξl+1] and A〈l〉
(i)(ξl+1) = A〈l+1〉

(i) (ξl+1) (i = 0,1 and l = 0,1, . . . ,n− 2), satisfying S(t) :=

S(0)(t)+ jS(1)(t) 6= 0, A〈l〉
(0)(t) 6≡ 0 and A〈l〉

(1)(t) 6≡ 0 in each subinterval [ξl ,ξl+1]. Define the

sequence of real polynomials {Ψ〈l〉k (t)}
q〈l〉
k=0 (l = 0,1, . . . ,n− 1) by applying Algorithm 1 to

A〈l〉
(0)(t) and A〈l〉

(1)(t) for a := ξl and b := ξl+1. Then, for each t∗ ∈ (ξl ,ξl+1] (l = 0,1, . . . ,n−1)
we have

θS(t∗) = θS(ξ0)+
∫ t∗

ξ0

S′(1)(t)S(0)(t)−S(1)(t)S′(0)(t)

{S(0)(t)}2 +{S(1)(t)}2 dt

= θS(ξl)+
∫ t∗

ξl

(A〈l〉
(1)(t))

′A〈l〉
(0)(t)−A〈l〉

(1)(t)(A
〈l〉
(0)(t))

′

{A〈l〉
(0)(t)}2 +{A〈l〉

(1)(t)}2
dt

= θS(ξl)−

 arctan{Q〈l〉A (ξl)} if A〈l〉
(0)(ξl) 6= 0,

sgn(Ψ〈l〉0 (ξl)Ψ
〈l〉
1 (ξl))π/2 if A〈l〉

(0)(ξl) = 0,


+

 arctan{Q〈l〉A (t∗)}+[V{Ψ〈l〉(t∗)}−V{Ψ〈l〉(ξl)}]π if A〈l〉
(0)(t

∗) 6= 0,

π/2+[V{Ψ〈l〉(t∗)}−V{Ψ〈l〉(ξl)}]π if A〈l〉
(0)(t

∗) = 0,

where (i) Q〈l〉A (t) :=
A〈l〉
(1)(t)

A〈l〉
(0)(t)

(l = 0,1, . . . ,n− 1), (ii) θS(ξ0) ∈ (−π,π] satisfies S(ξ0) =

|S(ξ0)|e jθS(ξ0), and (iii) θS(ξl) is given by

θS(ξl) = θS(ξ0)+
∑l−1

i=0

∫ ξi+1

ξi

(A〈i〉
(1)(t))

′A〈i〉
(0)(t)−A〈i〉

(1)(t)(A
〈i〉
(0)(t))

′

{A〈i〉
(0)(t)}2 +{A〈i〉

(1)(t)}2
dt

= θS(ξ0)+
∑l−1

i=0

−
 arctan{Q〈i〉A (ξi)} if A〈i〉

(0)(ξi) 6= 0,

sgn(Ψ〈i〉0 (ξi)Ψ
〈i〉
1 (ξi))π/2 if A〈i〉

(0)(ξi) = 0,


+

 arctan{Q〈i〉A (ξi+1)}+[V{Ψ〈i〉(ξi+1)}−V{Ψ〈i〉(ξi)}]π if A〈i〉
(0)(ξi+1) 6= 0,

π/2+[V{Ψ〈i〉(ξi+1)}−V{Ψ〈i〉(ξi)}]π if A〈i〉
(0)(ξi+1) = 0

 .
Proof The proof is obvious from Theorem 1 and the definition of (S(0),S(1)).
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(c) Exact unwrapped phase by Proposition 2

Fig. 3 Phase unwrapping for a pair of piecewise polynomials

Example 3 (Phase unwrapping for a pair of piecewise polynomials) Let us construct the
unwrapped phase of the function S(t) := S(0)(t)+ jS(1)(t), where

S(0)(t) :=


8t2−8t
8t3−8t2−16t +16
−19t +54

if 0≤ t ≤ 1,
if 1≤ t ≤ 2,
if 2≤ t ≤ 3,

S(1)(t) :=


2t4−3t3 +5t2− t−2
−3t +4
−9t2 +46t−58

if 0≤ t ≤ 1,
if 1≤ t ≤ 2,
if 2≤ t ≤ 3.

Figure 3a, b depict S(0)(t) and S(1)(t) respectively. From Proposition 2, by applying the al-
gebraic phase unwrapping (Theorem 1) repeatedly in each subinterval [0,1], [1,2] and [2,3],
we can compute the unwrapped phase θS(t) for t ∈ [0,3]. Figure 3c depicts the obtained
unwrapped phase θS(t).
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3.3 Extension of the algebraic phase unwrapping to a pair of bivariate polynomials

In this section, we consider the two-dimensional phase unwrapping problem. Unlike one-
dimensional cases in Sects. 3.1 and 3.2, the continuity of the unwrapped phase can not
necessarily be guaranteed globally in R2. Let us start with such a simplest example.

Example 4 (Path dependence of two-dimensional unwrapped phase I) We consider the phase
unwrapping for f (x,y) := f(0)(x,y)+ j f(1)(x,y) := x+ jy along different piecewise C1 paths

γI
(x∗,y∗)(t) :=

{
(t−1,−1) if 0≤ t ≤ x∗+1,
(x∗, t− x∗−2) if x∗+1≤ t ≤ x∗+ y∗+2,

and

γII
(x∗,y∗)(t) :=

{
(−1, t−1) if 0≤ t ≤ y∗+1,
(t− y∗−2,y∗) if y∗+1≤ t ≤ x∗+ y∗+2.

in [−1,1]× [−1,1]⊂ R2. Both paths connect (−1,−1) ∈ R2 and (x∗,y∗) ∈ R2 in [−1,1]×
[−1,1]⊂ R2. By the definition, for each (x∗,y∗) ∈ [−1,1]× [−1,1], the unwrapped phase

θ
[γK ]
f (x∗,y∗) for f along γK

(x∗,y∗) (K = I, II) are expressed respectively by

θ
[γI]
f (x∗,y∗) := θ

[γI]
f (−1,−1)+

∫ x∗+y∗+2

0
ℑ

{ (
f(0)(γI

(x∗ ,y∗)(t))
)′
+ j
(

f(1)(γI
(x∗ ,y∗)(t))

)′
f(0)(γI

(x∗,y∗)(t))+ j f(1)(γI
(x∗ ,y∗)(t))

}
dt

= −3π
4

+
∫ x∗+1

0
ℑ

{
(t−1)′

t−1− j

}
dt +

∫ x∗+y∗+2

x∗+1
ℑ

{
j(t− x∗−2)′

x∗+ j(t− x∗−2)

}
dt,

and

θ
[γII]
f (x∗,y∗) := θ

[γII]
f (−1,−1)+

∫ x∗+y∗+2

0
ℑ

{ (
f(0)(γII

(x∗ ,y∗)(t))
)′
+ j
(

f(1)(γII
(x∗,y∗)(t))

)′
f(0)(γII

(x∗ ,y∗)(t))+ j f(1)(γII
(x∗ ,y∗)(t))

}
dt

= −3π
4

+
∫ y∗+1

0
ℑ

{
j(t−1)′

−1+ j(t−1)

}
dt +

∫ x∗+y∗+2

y∗+1
ℑ

{
(t− y∗−2)′

t− y∗−2+ jy∗

}
dt.

The unwrapped phases θ[γ
K ]

f (x∗,y∗) (K = I, II) for (x∗,y∗) ∈ [−1,1]× [−1,1] can be com-
puted, through the equivalent expression in (3), by Theorem 1 or by Proposition 2. The
results are depicted in Fig. 4a, b.

From Fig. 4, we observe that both unwrapped phases θ[γ
I]

f (x,y) and θ[γ
II]

f (x,y) are contin-
uous along the paths γI

(x∗,y∗) and γII
(x∗,y∗) respectively, but are not continuous as real valued

functions defined over [−1,1]× [−1,1]. Moreover, the values of θ[γ
I]

f (x,y) and θ[γ
II]

f (x,y)
behave very differently over [0,1]× [0,1]. This example implies that the two-dimensional
unwrapped phase generally depends on the path along which it is defined. (Note: In Fig. 4a,

the unwrapped phase θ[γ
I]

f (x,y) =−π/2 for x = 0 based on the definition (4). Hence, the un-

wrapped phase θ[γ
I]

f does not guarantee f (x,y) = | f (x,y)|e jθ[γ
I ]

f (x,y) for (x,y) ∈ {0}× (0,1].

Similarly, in Fig. 4b, θ[γ
II]

f does not guarantee f (x,y) = | f (x,y)|e jθ[γ
II ]

f (x,y) for (x,y)∈ (0,1]×
{0}).

Next, we revisit the bivariate polynomial defined in Example 2, and observe the path
dependence of the two-dimensional phase unwrapping again.
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Fig. 4 Two different unwrapped phases for f (x,y) = x+ jy

Example 5 (Path dependence of two-dimensional unwrapped phase II) We revisit the bivari-
ate polynomial, defined in Example 2,

f (x,y) := (x2y3− xy2− x2−9x−5y+16)+ j(x4y+ x2y3−3x4 +10xy−25x−3).

This polynomial has a zero at (x,y) = (0.642303812449619,2.252655013605015). For any
(x∗,y∗) ∈ [0,∞)× [0,∞), we define two piecewise C1 paths γI

(x∗,y∗) : [0,x∗+ y∗]→ R2 and
γII
(x∗,y∗) : [0,x∗+ y∗]→ R2 as

γI
(x∗,y∗)(t) :=

{
(t,0) if 0≤ t ≤ x∗,
(x∗, t− x∗) if x∗ ≤ t ≤ x∗+ y∗,

and

γII
(x∗,y∗)(t) :=

{
(0, t) if 0≤ t ≤ y∗,
(t− y∗,y∗) if y∗ ≤ t ≤ x∗+ y∗.

The paths γK
(x∗,y∗) (K = I, II) have same initial points γI

(x∗,y∗)(0) = γII
(x∗,y∗)(0) = (0,0) and

final points are γI
(x∗,y∗)(x

∗+ y∗) = γII
(x∗,y∗)(x

∗+ y∗) = (x∗,y∗). By defining KF(i)(t) ∈ R[t]
and KF(t) ∈ R[t]+ jR[t] (K = I, II and i = 0,1) as

KF(i)(t) := f(i)(γ
K
(x∗,y∗)(t)) and KF(t) := KF(0)(t)+ jKF(1)(t).

Let us compute, for K = I, II,

θ
[γK ]
f (x∗,y∗) := θKF(x

∗+ y∗) := θKF(0)+
∫ x∗+y∗

0
ℑ

{KF ′(0)(t)+ jKF ′(1)(t)
KF(0)(t)+ jKF(1)(t)

}
dt

by using Proposition 2. Figure 5a, b depict θ[γ
I]

f and θ[γ
II]

f respectively.
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(b) The unwrapped phase θ f along γII
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Fig. 5 Two different unwrapped phases for the bivariate complex polynomial defined in Example 2

From Examples 4 and 5, we verify that the unwrapped phase θ f in general depends on
the path of integral.

The next theorem presents a condition which guarantees (i) the unique existence of the
two-dimensional unwrapped phase as a C2 function and (ii) the path independence of the
unwrapped phase.
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Theorem 2 (Path independence of two-dimensional phase unwrapping) Let D ⊂ R2 be a
simply connected domain. Suppose that f(i) : R2→R (i = 0,1) are C2(D) functions satisfy-
ing f (x,y) := f(0)(x,y)+ j f(1)(x,y) 6= 0 for all (x,y) ∈ D. Then the following hold.

(a) (A symmetry of second derivatives)

∂

∂x

ℑ


∂ f(0)

∂y (x,y)+ j
∂ f(1)

∂y (x,y)

f(0)(x,y)+ j f(1)(x,y)


=

∂

∂y

ℑ


∂ f(0)

∂x (x,y)+ j
∂ f(1)

∂x (x,y)
f(0)(x,y)+ j f(1)(x,y)




for all (x,y) ∈ D.

(b) (Unique existence of two-dimensional unwrapped phase) Suppose that θ0 ∈ (−π,π]
satisfying f (x0,y0) = | f (x0,y0)|e jθ0 is given at some (x0,y0) ∈ D, then there exist a
unique function θ f ∈C2(D) satisfying

θ f (x0,y0) = θ0,

∂θ f

∂x
(x,y) = ℑ


∂ f(0)

∂x (x,y)+ j
∂ f(1)

∂x (x,y)
f(0)(x,y)+ j f(1)(x,y)

 for all (x,y) ∈ D,

and

∂θ f

∂y
(x,y) = ℑ


∂ f(0)

∂y (x,y)+ j
∂ f(1)

∂y (x,y)

f(0)(x,y)+ j f(1)(x,y)

 for all (x,y) ∈ D.

θ f is the scalar potential of the vector fieldℑ


∂ f(0)

∂x (x,y)+ j
∂ f(1)

∂x (x,y)
f(0)(x,y)+ j f(1)(x,y)

 ,ℑ


∂ f(0)

∂y (x,y)+ j
∂ f(1)

∂y (x,y)

f(0)(x,y)+ j f(1)(x,y)


 over D.

(c) (Path independence of two-dimensional unwrapped phase I) Suppose that Ω is a closed
subset of D, with positively oriented boundary ∂Ω. Then we have

∮
∂Ω

ℑ


∂ f(0)

∂x (x,y)+ j
∂ f(1)

∂x (x,y)
f(0)(x,y)+ j f(1)(x,y)

dx+ℑ


∂ f(0)

∂y (x,y)+ j
∂ f(1)

∂y (x,y)

f(0)(x,y)+ j f(1)(x,y)

dy


=
∮

∂Ω

[
∂θ f

∂x
(x,y)dx+

∂θ f

∂y
(x,y)dy

]
= 0.

In particular, if γI and γII are piecewise C1 paths in D with the same initial and final
points, we have

∫
γI

[
∂θ f

∂x
(x,y)dx+

∂θ f

∂y
(x,y)dy

]
=
∫
γII

[
∂θ f

∂x
(x,y)dx+

∂θ f

∂y
(x,y)dy

]
.

(d) (Path independence of two-dimensional unwrapped phase II) Suppose γI and γII are
piecewise C1 paths in D with the same initial and final points, i.e., γI : [a,b]→ D and
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γII : [c,d]→ D satisfy γI(a) = γII(c) = (x0,y0) ∈ D and γI(b) = γII(d) = (x1,y1) ∈ D.
Then

θ f (x1,y1) = θ f (x0,y0)+
∫ b

a
ℑ

{(
f(0)(γI(t))

)′
+ j
(

f(1)(γI(t))
)′

f(0)(γI(t))+ j f(1)(γI(t))

}
dt

= θ f (x0,y0)+
∫ d

c
ℑ

{(
f(0)(γII(τ))

)′
+ j
(

f(1)(γII(τ))
)′

f(0)(γII(τ))+ j f(1)(γII(τ))

}
dτ .

Proof See Appendix 5.

Theorem 2 guarantees that for any bivariate polynomial f (x,y) ∈ R[x,y]+ jR[x,y] not
having any zero in a simply connected domain D⊂ R2, the unwrapped phase function θ f ∈
C2(D) can be defined uniquely with line integrals along any piecewise C1 path in D. This fact
naturally leads to the following algebraic phase unwrapping for f (x,y) ∈ R[x,y]+ jR[x,y]
over D.

Proposition 3 (Algebraic phase unwrapping for a pair of bivariate polynomials) Let f(i)
(x,y) ∈ R[x,y] (i = 0,1) be a pair of bivariate polynomials satisfying f (x,y) := f(0)(x,y)+
j f(1)(x,y) 6= 0 for all (x,y) in a simply connected domain D⊂R2. Suppose that θ0 ∈ (−π,π]
satisfying f (x0,y0) = | f (x0,y0)|e jθ0 at some (x0,y0) ∈ D is given. Suppose also that two
points (x0,y0),(xn,yn) ∈ D are connected by a piecewise C1 path γ : [0, tn]→ D having
only horizontal and vertical displacements, satisfying xi = xi+1 or yi = yi+1 at (xi,yi) ∈ D
(i = 0,1, . . . ,n−1). More precisely γ is given by

γ(t) :=



γ
〈0〉
(x0,y0)

(t) for 0≤ t ≤ t1,

γ
〈1〉
(x1,y1)

(t) for t1 ≤ t ≤ t2,
...

γ
〈n−1〉
(xn−1,yn−1)

(t) for tn−1 ≤ t ≤ tn,

where

γ
〈l〉
(xl ,yl)

(t) :=


(t− tl + xl ,yl) if xl+1 > xl and yl+1 = yl ,
(−t + tl + xl ,yl) if xl+1 < xl and yl+1 = yl ,
(xl , t− tl + yl) if yl+1 > yl and xl+1 = xl ,
(xl ,−t + tl + yl) if yl+1 < yl and xl+1 = xl ,

t0 := 0 and tl :=
l−1∑
i=0

(|xi+1− xi|+ |yi+1− yi|) (l = 1,2, . . . ,n). Define the univariate polyno-

mials

Fyl(i)(t) := f(i)(t,yl) and Fxl(i)(t) := f(i)(xl , t) (i = 0,1 and l = 0,1, . . . ,n−1),

and define the sequences of real polynomials {Ψylk(t)}
qyl
k=0 and {Ψxlk(t)}

qxl
k=0 (l =

0,1, . . . ,n−1) by applying Algorithm 1 to nonzero polynomials (Fyl(0)(t),Fyl(1)(t)) for
(a,b) = (min{xl ,xl+1},max{xl ,xl+1}), and (Fxl(0)(t),Fxl(1)(t)) for (a,b) = (min{yl ,yl+1},
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max{yl ,yl+1}). Then the two-dimensional unwrapped phase θ f (in Theorem 2(b)) at
(xn,yn) ∈ D can be expressed by

θ f (xn,yn) = θ0 +
∫ tn

t0

(
f(1)(γ(t))

)′ f(0)(γ(t))− f(1)(γ(t))
(

f(0)(γ(t))
)′

{ f(0)(γ(t))}2 +{ f(1)(γ(t))}2 dt

= θ0 +
n−1∑
l=0

Υ (l),

where, for l = 0,1, . . . ,n−1,

Υ (l) :=
∫ tl+1

tl

(
f(1)(γ(t))

)′ f(0)(γ(t))− f(1)(γ(t))
(

f(0)(γ(t))
)′

{ f(0)(γ(t))}2 +{ f(1)(γ(t))}2 dt

=



∫ xl+1

xl

(
Fyl(1)(t)

)′Fyl(0)(t)−Fyl(1)(t)
(
Fyl(0)(t)

)′
{Fyl(0)(t)}2 +{Fyl(1)(t)}2 dt if xl+1 > xl ,

−
∫ xl

xl+1

(
Fyl(1)(t)

)′Fyl(0)(t)−Fyl(1)(t)
(
Fyl(0)(t)

)′
{Fyl(0)(t)}2 +{Fyl(1)(t)}2 dt if xl+1 < xl ,∫ yl+1

yl

(
Fxl(1)(t)

)′Fxl(0)(t)−Fxl(1)(t)
(
Fxl(0)(t)

)′
{Fxl(0)(t)}2 +{Fxl(1)(t)}2 dt if yl+1 > yl ,

−
∫ yl

yl+1

(
Fxl(1)(t)

)′Fxl(0)(t)−Fxl(1)(t)
(
Fxl(0)(t)

)′
{Fxl(0)(t)}2 +{Fxl(1)(t)}2 dt if yl+1 < yl ,

=



−

 arctan{QFyl
(xl)} if Fyl (0)

(xl)6=0,

sgn(Ψyl 0(xl)Ψyl 1(xl))π/2 if Fyl (0)
(xl)=0,


+

 arctan{QFyl
(xl+1)}+[V{Ψyl (xl+1)}−V{Ψyl (xl)}]π if Fyl (0)

(xl+1)6=0,

π/2+[V{Ψyl (xl+1)}−V{Ψyl (xl)}]π if Fyl (0)
(xl+1)=0,

 if xl+1 > xl ,

+

 arctan{QFyl
(xl+1)} if Fyl (0)

(xl+1)6=0,

sgn(Ψyl 0(xl+1)Ψyl 1(xl+1))π/2 if Fyl (0)
(xl+1)=0,


−

 arctan{QFyl
(xl)}+[V{Ψyl (xl)}−V{Ψyl (xl+1)}]π if Fyl (0)

(xl)6=0,

π/2+[V{Ψyl (xl)}−V{Ψyl (xl+1)}]π if Fyl (0)
(xl)=0,

 if xl+1 < xl ,

−

 arctan{QFxl
(yl)} if Fxl (0)

(yl)6=0,

sgn(Ψxl 0(yl)Ψxl 1(yl))π/2 if Fxl (0)
(yl)=0,


+

 arctan{QFxl
(yl+1)}+[V{Ψxl (yl+1)}−V{Ψxl (yl)}]π if Fxl (0)

(yl+1)6=0,

π/2+[V{Ψxl (yl+1)}−V{Ψxl (yl)}]π if Fxl (0)
(yl+1)=0,

 if yl+1 > yl ,

+

 arctan{QFxl
(yl+1)} if Fxl (0)

(yl+1)6=0,

sgn(Ψxl 0(yl+1)Ψxl 1(yl+1))π/2 if Fxl (0)
(yl+1)=0,


−

 arctan{QFxl
(yl)}+[V{Ψxl (yl)}−V{Ψxl (yl+1)}]π if Fxl (0)

(yl)6=0,

π/2+[V{Ψxl (yl)}−V{Ψxl (yl+1)}]π if Fxl (0)
(yl)=0,

 if yl+1 < yl ,

QFxl
(t) :=

Fxl(1)(t)
Fxl(0)(t)

and QFyl
(t) :=

Fyl(1)(t)
Fyl(0)(t)

(l = 0,1, . . . ,n−1).

Proof The proof is obvious from Theorems 1, 2 and the definitions of γ, Fyl and Fxl .
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Fig. 6 Exact two-dimensional unwrapped phase by Proposition 3

Example 6 (Phase unwrapping for a pair of bivariate polynomials over R2) Let us construct
the unwrapped phase of the bivariate complex polynomial f (x,y) := f(0)(x,y)+ j f(1)(x,y)
over [0,1.3]× [0,1.3] by using Proposition 3, where

f(0)(x,y) := x4y−4x4−2x3y−3xy+10x−2y3,

f(1)(x,y) := x4y−4x4−2x3y−3xy+10x−2y3 +1.

Since f(1)(x,y) = f(0)(x,y)+1 for all (x,y) ∈R2, we have f (x,y) 6= 0 for all (x,y) ∈R2. For
any (x∗,y∗) ∈ [0,1.3]× [0,1.3], we choose the piecewise C1 path γ(x∗,y∗) as

γ(x∗,y∗)(t) :=
{
(t,0) if 0≤ t ≤ x∗,
(x∗, t− x∗) if x∗ ≤ t ≤ x∗+ y∗,

that is (x0,y0) = (0,0), (x1,y1) = (x∗,0) and (x2,y2) = (x∗,y∗).
By applying Algorithm 1 to Fy0(0)(t) := f(0)(t,0) = −4t4 + 10t and Fy0(1)(t) :=

f(1)(t,0) =−4t4 +10t +1, we obtain the Sturm sequence {Ψy0k(t)}
qy0
k=0 as

Ψy00(t) =−4t3 +10,
Ψy01(t) =−4t4 +10t +1,
Ψy02(t) = 4t3−10,
Ψy03(t) =−1.

From Fy0(0)(0) = 0, sgn(Ψy00(0)Ψy01(0)) = 1, V{Ψy0(0)} = V{10,1,−10,−1} = 1 and
Fy0(0)(x

∗) =−4x∗4 +10x∗ 6= 0 for all 0 < x∗ ≤ 1.3, we have

Υ (x∗,y∗)(0)=

−π/2+ arctan
{
−4x∗4 +10x∗+1
−4x∗4 +10x∗

}
+[V{Ψy0(x

∗)}−1]π if 0 < x∗ ≤ 1.3,

0 if x∗ = 0.

Similarly, for 0 < x∗ ≤ 1.3, by applying Algorithm 1 to Fx1(0)(t) := f(0)(x∗, t) = −2t3 +
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(x∗4−2x∗3−3x∗)t−4x∗4 +10x∗ and Fx1(1)(t) := f(1)(x∗, t) =−2t3 +(x∗4−2x∗3−3x∗)t−
4x∗4 +10x∗+1, we obtain the Sturm sequence {Ψx1k(t)}

qx1
k=0 as

Ψx10(t) =−2t3 +(x∗4−2x∗3−3x∗)t−4x∗4 +10x∗,
Ψx11(t) =−2t3 +(x∗4−2x∗3−3x∗)t−4x∗4 +10x∗+1,
Ψx12(t) = 1,

where we used Fx1(0)(0) = −4x∗4 + 10x∗ 6= 0 and Fx1(1)(0) = −4x∗4 + 10x∗ + 1 6= 0 for
0 < x∗ ≤ 1.3. Therefore by noting Ψx10(0) = −4x∗4 + 10x∗ > 0 and Ψx11(0) = −4x∗4 +
10x∗+ 1 > 0 for 0 < x∗ ≤ 1.3, we have V{Ψx1(0)} = 0. Moreover, for x∗ = 0, we have
Fx1(0)(0) = 0, Fx1(0)(y

∗) = f(0)(0,y∗) =−2y∗3 6= 0 for 0 < y∗ ≤ 1.3 and

Ψx10(t) =−2,
Ψx11(t) =−2t3 +1,
Ψx12(t) = 2,

which implies sgn(Ψx10(0)Ψx11(0)) = −1 and V{Ψx1(0)} = V{Ψx1(y
∗)} = 1. To summa-

rize, we have

Υ (x∗,y∗)(1)=



−arctan
{
−4x∗4+10x∗+1
−4x∗4+10x∗

}
+

 arctan
{

f(1)(x
∗ ,y∗)

f(0)(x
∗ ,y∗)

}
+V{Ψx1 (y

∗)}π if f(0)(x
∗,y∗)6=0,

π/2+V{Ψx1 (y
∗)}π if f(0)(x

∗,y∗)=0,

 if 0<x∗≤1.3 and 0<y∗≤1.3,

π/2+arctan
{
−2y∗3+1
−2y∗3

}
if x∗=0 and 0<y∗≤1.3,

0 if y∗=0.

Finally, the unwrapped phase θ f (x∗,y∗) is expressed as

θ f (x∗,y∗) = π/2+Υ (x∗,y∗)(0)+Υ (x∗,y∗)(1)

because f(0)(0,0) = 0 and f(1)(0,0) = 1 imply θ f (0,0) = π/2. Figure 6 depicts the un-
wrapped phase θ f (x,y) for (x,y) ∈ [0,1.3]× [0,1.3].

4 Stabilizations of the algebraic phase unwrapping along the real axis

4.1 Numerical Instabilities of Algorithm 1

To implement Algorithm 1 (Sturm-R) precisely, we need large number of digits to express
the rational coefficients of the polynomials Ψk(t) (e.g., see Example 1). This phenomenon
is exactly same as the coefficient growth well-known in the computation of the polynomial
remainder sequence through the Euclidean algorithm (Brown and Traub 1971). In com-
puter implementation of θA(t) in Eq. (9) through Algorithm 1, the coefficient growth causes
the truncation error in the floating-point expression of the rational coefficients (or memory
shortages by increasing number of digits for exact expression of the rational coefficients).
In particular, once a serious information loss (by the addition or subtraction among num-
bers of ill-balanced absolute values) or catastrophic cancellation (by the subtraction num-
ber very close numbers) occurs, the gap between theoretical values and numerical values of
{Ψk(t)}q

k=0 by digital computer becomes unacceptably large (see Example 7).
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Example 7 (Catastrophic cancellation) The Sturm sequence {Ψk(t)}5
k=0 obtained in Exam-

ple 1 is expressed in decimal number expression as

Ψ0(t) = t3−1.11t2 +0.356t−0.0255,
Ψ1(t) = t4−2.525t3 +2.29995t2−0.906172t +0.131222,
Ψ2(t) =−t3 +1.11t2−0.356t +0.0255,
Ψ3(t) =−0.3733t2 +0.376932t−0.0951395,

Ψ4(t) =−1.0683812872 . . .×10−4t +5.5025263559 . . .×10−5,

Ψ5(t) = 2.8269837842 . . .×10−5.

From Example 1 and the above decimal expression of {Ψk(t)}5
k=0, we observe that the

absolute value of the coefficients of Ψk(t) decreases drastically from k = 3 to k = 4. It is
well-known that such a phenomenon often happens in particular when there exists a close
root pair among the roots of Ψ0(t) and those of Ψ1(t) (Sasaki and Sasaki 1997, 1989).

In order to deal with the coefficient growth observed widely in the Euclidean algo-
rithm (Brown and Traub 1971), consider the situation where we compute {Ψk(t)}5

k=0 with
a digital computer based on 64-bit floating point operations. From 1, we expect |lc(Ψ4)| =

27788829033
260102169185000

can be approximated in the computer as(
27788829033

260102169185000

)
f64

= 1.11000000000111001001000100110100101010001100110011012×2−14

= 1.068381287248509910×10−4,

where (α) f64 stands for the 64-bit floating point expression of α ∈ R. Unfortunately, in the
process of computation of lc(Ψ4) from the coefficients of Ψ2(t) and of Ψ3(t), we encounter
a severe loss of significant digits (this phenomenon is so-called the catastrophic cancella-
tion) as follows.−(0.356) f64−

(
(−1)×(−0.0951395)

−0.3733

)
f64

−


(

1.11− (−1)×0.376932
−0.3733

)
f64
×0.376932

−0.3733


f64


f64

= 1.11000000000111001001000100110100101011010100000000002×2−14

= 1.068381287250980110×10−4.

This fact suggests that it is hard to compute the coefficients of {Ψk(t)}q
k=0 by a direct

computer implementation of Algorithm 1 (Sturm-R). Indeed, such inaccurate computations
of the coefficients lead to failure in counting the sign changes in the Sturm sequence, causing
thus numerical instability of the algebraic phase unwrapping.

Once the information loss or the catastrophic cancellation occurs, this influences in-
ductively in the process of Algorithm 1, which results in the loss of the central property in
Lemma 1(c)

Ψk(t∗) = 0 at t∗ ∈ [0,1]⇒Ψk−1(t∗)Ψk+1(t∗)< 0 (k = 1,2, . . . ,q−1),

leading thus to the failure of the computation of (9). This situation restricts the practical
applicability of Theorem 1 especially for polynomials of large degree.
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4.2 Stabilization of the algebraic phase unwrapping by subresultant sequence

In Section 4.1, we introduced a typical phenomenon causing the considerable gap between
theoretical values and numerical values of {Ψk(t)}q

k=0 by a digital computer implementation
of Algorithm 1 (Sturm-R). In this subsection we present an idea to stabilize the algebraic
phase unwrapping along the real axis by replacing Algorithm 1 with new algorithms based
on subresultant sequence.

By using Fact 2 repeatedly, we have the following propositions and theorem.

Proposition 4 (Relation between the subresultant sequence and the polynomial remainder
sequence) Let {Pk(t)}q

k=0 (q≥ 2) be the polynomial remainder sequence defined inductively
as in Remark 3 for deg(P0)≥ deg(P1).

(a) For any k ∈ {1,2, . . . ,q− 1}, Sresi(P0,P1, t) (i ∈ [deg(Pk+1),deg(Pk)− 1]) can be ex-
pressed as

Sresi(P0,P1, t)=



λdeg(Pk)−1Pk+1(t)

for i = deg(Pk)−1,

0 for i ∈ [deg(Pk+1)+1,deg(Pk)−2] (if deg(Pk+1)<deg(Pk)−2),

λdeg(Pk+1)(lc(Pk+1))
deg(Pk)−deg(Pk+1)−1Pk+1(t)

for i = deg(Pk+1),
(10)

where, for i = deg(Pk)−1,deg(Pk+1),

λi :=
k−2∏
n=0

(−1)(deg(Pn)−deg(Pn+1)+1)(deg(Pn+1)−i)(lc(Pn+1))
deg(Pn)−deg(Pn+2)

× (−1)(deg(Pk−1)−deg(Pk)+1)(deg(Pk)−i)(lc(Pk))
deg(Pk−1)−i 6= 0. (11)

(b) In particular, if det(Mi(P0,P1)) 6= 0 for all i ∈ [0,deg(P1)−1], we have

deg(Pk+1) = deg(Pk)−1 = deg(P1)− k

λdeg(Pk)−1 = λdeg(Pk+1) =
(
(−1)klc(P1)

)deg(P0)−deg(P1)+1
k∏

n=2

(lc(Pn))
2

 (12)

for all k ∈ [1,q−1].

Proof See Appendix 6.

Proposition 5 (Recursive computation of leading coefficients of the polynomial remainder
sequence) Let {Pk(t)}q

k=0 (q≥ 2) be the polynomial remainder sequence defined inductively
as in Remark 3 for deg(P0)≥ deg(P1).

(a) Suppose that for some l ∈ [1,q−1] the values of deg(Pi) and lc(Pi) (i = 0,1, . . . , l) are
known. Then the values of deg(Pl+1), lc(Pl+1) and sgn(Pl+1) are obtained as follows.

deg(Pl+1) = deg(Pl)−min{s ∈ N∗ | det(Mdeg(Pl)−s(P0,P1)) 6= 0},
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lc(Pl+1) =



deg(Pl)−deg(Pl+1)
√

det(Mdeg(Pl+1)(P0,P1))

λdeg(Pl+1)

if (deg(Pl)−deg(Pl+1)) is odd,

deg(Pl)−deg(Pl+1)−1
√
λdeg(Pl)−1Sresdeg(Pl+1)(P0,P1,τ)

λdeg(Pl+1)Sresdeg(Pl)−1(P0,P1,τ)

(with use of any τ ∈ R s.t. Pl+1(τ) 6= 0)

if (deg(Pl)−deg(Pl+1)) is even,

and

sgn(lc(Pl+1)) =



sgn
(
λdeg(Pl+1) det(Mdeg(Pl+1)(P0,P1))

)
if (deg(Pl)−deg(Pl+1)) is odd,

sgn
(
λdeg(Pl)−1λdeg(Pl+1)

×Sresdeg(Pl)−1(P0,P1,τ)Sresdeg(Pl+1)(P0,P1,τ)
)

(with use of any τ ∈ R s.t. Pl+1(τ) 6= 0)

if (deg(Pl)−deg(Pl+1)) is even.

(b) In particular, if det(Mi(P0,P1)) 6= 0 for all i ∈ [0,deg(P1)−1], we have

lc(Pk+1) =
det(Mdeg(P1)−k(P0,P1))(

(−1)klc(P1)
)deg(P0)−deg(P1)+1

k∏
i=2

(lc(Pi))
2

sgn(lc(Pk+1)) = sgn
((

(−1)klc(P1)
)deg(P0)−deg(P1)+1 det(Mdeg(P1)−k(P0,P1))

)


for all k ∈ [1,q−1].

Proof See Appendix 7.

Theorem 3 (Relation between the sign of the Sturm sequence and the sign of the subre-
sultant sequence) Let {Ψk(t)}q

k=0 be the Sturm sequence obtained by applying Algorithm
1 to A(0)(t) and A(1)(t), and let {Pk(t)}q

k=0 be the polynomial remainder sequence defined
inductively as in Remark 3 for P0(t) :=Ψ0(t) and P1(t) :=Ψ1(t).

(a) If deg(Ψ0)≥ deg(Ψ1) and q≥ 2, we have

sgn(Ψk(t∗)) = (−1)
(k−1)k

2 κ
〈0〉
deg(Ψk)

(
sgn(lc(Pk))

)deg(Ψk−1)−deg(Ψk)−1

× sgn
(
Sresdeg(Ψk)(Ψ0,Ψ1, t∗)

)
(k = 2,3, . . . ,q), (13)

where

κ
〈0〉
deg(Ψk)

:=
k−2∏
n=0

[
(−1)(deg(Ψn)−deg(Ψn+1)+1)(deg(Ψn+1)−deg(Ψk))

×
(
sgn(lc(Pn+1))

)deg(Ψn)−deg(Ψn+2)
]
.
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In particular, if det(Mi(Ψ0,Ψ1)) 6= 0 for all i∈ [0,deg(Ψ1)−1], we have q= deg(Ψ1)+
1 and

sgn(Ψk(t∗)) = (−1)
(k−1)k

2 +(k−1)(deg(Ψ0)−deg(Ψ1)+1)

×
(
sgn(lc(Ψ1))

)deg(Ψ0)−deg(Ψ1)+1sgn
(
Sresdeg(Ψ1)−k+1(Ψ0,Ψ1, t∗)

)
(k = 2,3, . . . ,deg(Ψ1)+1). (14)

(b) If deg(Ψ0)< deg(Ψ1) and q≥ 3, we have sgn(Ψ2(t∗)) =−sgn(Ψ0(t∗)) and

sgn(Ψk(t∗)) = (−1)
(k−1)k

2 κ
〈1〉
deg(Ψk)

(
sgn(lc(Pk))

)deg(Ψk−1)−deg(Ψk)−1

× sgn
(
Sresdeg(Ψk)(Ψ1,Ψ0, t∗)

)
(k = 3,4, . . . ,q), (15)

where

κ
〈1〉
deg(Ψk)

:=
k−2∏
n=1

[
(−1)(deg(Ψn)−deg(Ψn+1)+1)(deg(Ψn+1)−deg(Ψk))

×
(
sgn(lc(Pn+1))

)deg(Ψn)−deg(Ψn+2)
]
.

In particular, if det(Mi(Ψ1,Ψ0)) 6= 0 for all i∈ [0,deg(Ψ0)−1], we have q= deg(Ψ0)+
2 and

sgn(Ψk(t∗)) = (−1)
(k−1)k

2 +(k−2)(deg(Ψ1)−deg(Ψ0)+1)

×
(
sgn(lc(Ψ0))

)deg(Ψ1)−deg(Ψ0)+1sgn
(
Sresdeg(Ψ0)−k+2(Ψ1,Ψ0, t∗)

)
(k = 3,4, . . . ,deg(Ψ0)+2). (16)

Proof See Appendix 8.

The relations (13), (14), (15) and (16) imply that we can compute each sign of Ψk(t∗) by
{Sresi(Ψ0,Ψ1, t∗)}deg(Ψ1)−1

i=0 (or {Sresi(Ψ1,Ψ0, t∗)}deg(Ψ0)−1
i=0 ) without computing the coef-

ficients of {Ψ(t)}q
k=0.

Algorithm 2 below evaluates the signs of {Ψk(t∗)}q
k=0 based on (14) and (16). In prac-

tice, Algorithm 2 plays an adequate role because the condition:

det(Mi(Ψ0,Ψ1)) 6= 0 for all i ∈ [0,min{deg(Ψ0)−1,deg(Ψ1)−1}] (17)

holds almost always. For completeness, we present Algorithms 3 based on (13), (15) and
Proposition 5(a) for universal use to evaluate the sign of {Ψk(t∗)}q

k=0. Note that the co-
efficients of Ψk(t) ∈ R[t] (k = 2,3, . . . ,q) are not necessary for evaluating the signs of
{Ψk(t∗)}q

k=0 in Algorithm 2 and 3. In Algorithms 2 and 3, we use for simplicity, the fol-
lowing notations: degk := deg(Ψk) and slck := sgn(lc(Pk)).The computational complex-
ity for each determinant Sresi(Ψ0,Ψ1, t∗) is at most O

(
(deg(Ψ0)+deg(Ψ1)−2i)log27

)
≈

O
(
(deg(Ψ0)+deg(Ψ1)−2i)2.81

)
(Aho et al. 1974).
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Algorithm 2 Proposed algorithm for computing (9) under Condition (17)

Input: A(0)(t),A(1)(t) ∈ R[t] and a,b ∈ R (s.t. A(0)(t)+ jA(1)(t) 6= 0 for all t ∈ [a,b] and A(0)(t),A(1) 6≡ 0)

1:
Ψ0(t)←

A(0)(t)
(t−a)e0

, Ψ1(t)←
A(1)(t)
(t−a)e1

(where ei denotes the order of t = a as a zero of polynomial A(i)(t) (i = 0,1))

2: deg0← deg(Ψ0), deg1← deg(Ψ1), slc0← lc(Ψ0), slc1← lc(Ψ1)

3: if deg0 ≥ deg1 then
4: for k = 2 to (deg1 +1) do
5: sgn(Ψk(t∗)) ← (−1)

(k−1)k
2 +(k−1)(deg0−deg1+1)slcdeg0−deg1+1

1 sgn(Sresdeg1−k+1(Ψ0,Ψ1, t∗))
6: end for
7: else
8: sgn(Ψ2(t∗))←−sgn(Ψ0(t∗))
9: for k = 3 to (deg0 +2) do

10: sgn(Ψk(t∗)) ← (−1)
(k−1)k

2 +(k−2)(deg1−deg0+1)slcdeg1−deg0+1
0 sgn(Sresdeg0−k+1(Ψ1,Ψ0, t∗))

11: end for
12: end if
Output: {sgn(Ψk(t∗))}

min{deg0+2,deg1+1}
k=0

5 Numerical Example

In this section, we examine the numerical performance of the algebraic phase unwrapping,
based on Theorem 1 using Algorithm 2, in 64-bit floating point arithmetic (which has 53
bits of precision) and multiple precision (MP) arithmetic with 80 and 100 bits of precision.
(Note: MP arithmetic enables us to compute with designated precision although it takes in
general much longer time than the floating point arithmetic). To make the situation likely to
cause numerical instability of the algebraic phase unwrapping over [0,1], based on Theorem
1 using Algorithm 1, we generate randomly a pair of polynomials:

A(0)(t) := (t−0.1)(t−0.21)(t−0.5)(t−0.75)(t−0.8)Â(0)(t)

A(1)(t) := (t−0.15)(t−0.2)(t−0.34)(t−0.35)(t−0.81)Â(1)(t)

}
, (18)

where (i) Â(0)(t) is a polynomial of degree 35 whose 5 roots are generated by the uniform
distribution over {(−5,−1)∪ (1,5)} and 15 complex conjugate pairs of roots are gener-
ated by the uniform distribution over {(−1,−0.5)∪ (0.5,1)}± j{(−1,−0.5)∪ (0.5,1)},
(ii) Â(1)(t) is a polynomial of degree 15 whose 5 roots are generated by the uniform dis-
tribution over {(−5,−1)∪ (1,5)} and 5 complex conjugate pairs of roots are generated by
the uniform distribution over {(−1,−0.5)∪ (0.5,1)}± j{(−1,−0.5)∪ (0.5,1)}, and (iii)
mmc(A(0)) = mmc(A(1)) = 1. Note that polynomials A(0)(t) and A(1)(t) in (18) have close
root pairs (0.21,0.8) ≈ (0.2,0.81), which likely causes the catastrophic cancellation ex-
plained in Sect. 4.1. In this numerical simulation, since all roots of A(0)(t) and A(1)(t) are
known, we can compute the exact unwrapped phase by using Eq. (7). Hence we can ver-
ify whether Algorithms 1 and 2 succeed or not in phase unwrapping with Eq. (9). Figure 7
depicts one example where Algorithm 1 fails in phase unwrapping at t = 0.2 and t = 0.81
while Algorithm 2 succeeds in phase unwrapping over [0,1]. Table 1 summarizes the result
for 1000 trials, where we observe that (i) in 64-bit floating point arithmetic, the total number
of pairs of polynomials (A(0),A(1)) in failure by Algorithm 1 is reduced to less than 1/24 by
replacing it with Algorithm 2, and (ii) Algorithms 1 and 2, using MP arithmetic with 80 and
100 bits of precision, reduce further the total number of failures.



28 Daichi Kitahara, Isao Yamada

Algorithm 3 Proposed algorithm for computing (9) in general cases

Input: A(0)(t),A(1)(t) ∈ R[t] and a,b ∈ R (s.t. A(0)(t)+ jA(1)(t) 6= 0 for all t ∈ [a,b] and A(0)(t),A(1) 6≡ 0)

1:
Ψ0(t)←

A(0)(t)
(t−a)e0

, Ψ1(t)←
A(1)(t)
(t−a)e1

(where ei denotes the order of t = a as a zero of polynomial A(i)(t) (i = 0,1))

2: deg0← deg(Ψ0), deg1← deg(Ψ1), slc0← sgn(lc(Ψ0)), slc1← sgn(lc(Ψ1))

3: if deg0 ≥ deg1 then
4: i← 1, k← 1
5: while det(Mdegk−i(Ψ0,Ψ1)) = 0 and (degk−i)≥ 1 do
6: i← i+1
7: end while
8: while (degk−i)≥ 1 or det(M0(Ψ0,Ψ1)) 6= 0 do
9: degk+1← degk−i

10:
λdegk−1 ←

∏k−2
n=0(−1)(degn−degn+1+1)(degn+1−degk+1)(slcn+1)

degn−degn+2

× (−1)degk−1−degk+1(slck)
degk−1−degk+1

11: λdegk+1 ←
∏k−1

n=0(−1)(degn−degn+1+1)(degn+1−degk+1)(slcn+1)
degn−degn+2

12: if (degk−degk+1) is odd then
13: slck+1← sgn(λdegk+1 det(Mdegk+1 (Ψ0,Ψ1)))
14: else
15: slck+1← sgn(λdegk−1λdegk+1 Sresdegk−1(Ψ0,Ψ1,τ)Sresdegk+1 (Ψ0,Ψ1,τ))
16: end if
17: sgn(Ψk+1(t∗))← (−1)

k(k+1)
2 λdegk+1 slcdegk−degk+1−1

k+1 sgn(Sresdegk+1 (Ψ0,Ψ1, t∗))
18: i← 1, k← k+1
19: while det(Mdegk−i(Ψ0,Ψ1)) = 0 and (degk−i)≥ 1 do
20: i← i+1
21: end while
22: end while
23: else
24: deg2← deg0, slc2← slc0, sgn(Ψ2(t∗))←−sgn(Ψ0(t∗))
25: i← 1, k← 2
26: while det(Mdegk−i(Ψ1,Ψ0)) = 0 and (degk−i)≥ 1 do
27: i← i+1
28: end while
29: while (degk−i)≥ 1 or det(M0(Ψ1,Ψ0)) 6= 0 do
30: degk+1← degk−i

31:
λdegk−1 ←

∏k−2
n=1(−1)(degn−degn+1+1)(degn+1−degk+1)(slcn+1)

degn−degn+2

× (−1)degk−1−degk+1(slck)
degk−1−degk+1

32: λdegk+1 ←
∏k−1

n=1(−1)(degn−degn+1+1)(degn+1−degk+1)(slcn+1)
degn−degn+2

33: if (degk−degk+1) is odd then
34: slck+1← sgn(λdegk+1 det(Mdegk+1 (Ψ1,Ψ0)))
35: else
36: slck+1← sgn(λdegk−1λdegk+1 Sresdegk−1(Ψ1,Ψ0,τ)Sresdegk+1 (Ψ1,Ψ0,τ))
37: end if
38: sgn(Ψk+1(t∗))← (−1)

k(k+1)
2 λdegk+1 slcdegk−degk+1−1

k+1 sgn(Sresdegk+1 (Ψ1,Ψ0, t∗))
39: i← 1, k← k+1
40: while det(Mdegk−i(Ψ1,Ψ0)) = 0 and (degk−i)≥ 1 do
41: i← i+1
42: end while
43: end while
44: end if
Output: {sgn(Ψk(t∗))}q

k=0

Remark: In lines 15 and 36: τ ∈ R should satisfy Pk+1(τ) 6= 0.
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Fig. 7 Estimations of the unwrapped phase with Algorithm 1 and Algorithm 2

Table 1 Performance comparison for pairs of random polynomials

Algorithm
Total number of pairs of polynomials (A(0),A(1)) in failure

64-bit floating point MP with 80 bits of precision MP with 100 bits of precision

Algorithm 1 249 (among 1000) 9 (among 249) 5 (among 9)

Algorithm 2 10 (among 1000) 7 (among 10) 5 (among 7)

6 Concluding remarks

In this paper, we have extended and stabilized the algebraic phase unwrapping along the
real axis. First, by removing a critical assumptions premised in the original algebraic phase
unwrapping, we have extended the algebraic phase unwrapping for a pair of piecewise poly-
nomials. Second, we have elucidated the path independence of two-dimensional phase un-
wrapping completely, and extended the algebraic phase unwrapping for a pair of bivariate
polynomials. Third, after clarifying the complete relation between the Sturm sequence, gen-
erated by Algorithm 1, and the subresultant sequence, we have shown that the algebraic
phase unwrapping along the real axis can be stabilized significantly, by evaluating directly
the signs of the Sturm sequence, in the terms of the subresultant sequence.
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Appendices

Appendix 1: On the expression and the integrability of θC

Without loss of generality, we can assume G(t) := GCD(C(t),C(t)) ∈R[t] and B(t) 6= 0 for
all t ∈ R. Let ZC := {t ∈ R |C(t) = 0}. Then by C(t) = G(t)B(t), it follows that

C′(t)
C(t)

=
G′(t)
G(t)

+
B′(t)
B(t)

for t ∈ R\ZC.

Moreover, we have

ℑ

{
C′(t)
C(t)

}
= ℑ

{
B′(t)
B(t)

}
for all t ∈ R\ZC,

which, together with |ZC|<∞, ensures (3). Furthermore, by the continuity of

H(t) := ℑ

{
B′(t)
B(t)

}
=

B′(1)(t)B(0)(t)−B(1)(t)B′(0)(t)

{B(0)(t)}2 +{B(1)(t)}2 ,

the integral in (4) is well-defined. ut

Appendix 2: Proof of Proposition 1

By

(arctan{QA(t)})′ =
A′(1)(t)A(0)(t)−A(1)(t)A′(0)(t)

{A(0)(t)}2 +{A(1)(t)}2

for all t ∈ (a,b) \ZA(0) and |ZA(0) | < ∞, we can express the θA(t∗) in (5) in terms of
arctan{QA(t)} as follows.
(I) If ZA(0) =∅ or t∗ ≤ µ1, we have

θA(t∗) = θA(a)+
∫ t∗

a
(arctan{QA(t)})′ dt

= θA(a)− lim
t→a+0

arctan{QA(t)}+ lim
t→t∗−0

arctan{QA(t)}.

and Λ(t∗) =
∑

µi∈(a,t∗)

X (µi) = 0 in (7).

(II) If ZA(0) 6=∅ and t∗ > µ1, by letting µk := max({µ1,µ2, . . . ,µz}∩ [a, t∗)), we have

θA(t∗) = θA(a)+
∫ t∗

a
(arctan{QA(t)})′ dt

= θA(a)+
∫ µ1

a
(arctan{QA(t)})′ dt

+
k−1∑
i=1

∫ µi+1

µi

(arctan{QA(t)})′ dt +
∫ t∗

µk

(arctan{QA(t)})′ dt

= θA(a)− lim
t→a+0

arctan{QA(t)}+ lim
t→t∗−0

arctan{QA(t)}

+
k∑
i=1

lim
τ1→µi−0
τ2→µi+0

(arctan{QA(τ 1)}− arctan{QA(τ 2)}). (19)
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Furthermore, for µi (i = 1,2, . . . ,k) and sufficiently small ε> 0, we have the following
relations.

(i) If A(0)(t)A(1)(t)> 0 for t ∈ (µi− ε,µi) and A(0)(t)A(1)(t)< 0 for t ∈ (µi,µi + ε),
then  lim

t→µi−0
arctan{QA(t)}= π/2,

lim
t→µi+0

arctan{QA(t)}=−π/2, and X (µi) = 1.

(ii) If A(0)(t)A(1)(t)< 0 for t ∈ (µi− ε,µi) and A(0)(t)A(1)(t)> 0 for t ∈ (µi,µi + ε),
then  lim

t→µi−0
arctan{QA(t)}=−π/2,

lim
t→µi+0

arctan{QA(t)}= π/2, and X (µi) =−1.

(iii) Otherwise,

lim
t→µi−0

arctan{QA(t)}= lim
t→µi+0

arctan{QA(t)}=±π/2, and X (µi) = 0.

From (i), (ii) and (iii), we have

lim
τ1→µi−0
τ2→µi+0

(arctan{QA(τ 1)}− arctan{QA(τ 2)}) = X (µi)π. (20)

Finally, (19) and (20) yield (7). ut

Appendix 3: Proof of Lemma 1

For the readers’ convenience, we present proofs of all statements.

(A) Proof of (a): Assume Ψq(t∗) = 0 at some t∗ ∈ [a,b]. Since Ψq(t) is GCD(Ψ0,Ψ1), we

have Ψ0(t∗) =Ψ1(t∗) = 0. Moreover, Ψ0(t) :=
A(0)(t)
(t−a)e0

and Ψ1(t) :=
A(1)(t)
(t−a)e1

imply

Ψ0(a) 6= 0 and Ψ1(a) 6= 0, and hence, A(0)(t∗) = Ψ0(t∗) = Ψ1(t∗) = A(1)(t∗) = 0 at
some t∗ ∈ (a,b]. This contradicts A(t) = A(0)(t)+ jA(1)(t) 6= 0 for all t ∈ [a,b]. As a
result, Ψq(t) 6= 0 for all t ∈ [a,b].

(B) Proof of (b): Assume Ψk(t∗) =Ψk+1(t∗) = 0 at some t∗ ∈ [a,b]. Then GCD(Ψ0,Ψ1)≡
GCD(Ψk,Ψk+1) implies Ψ0(t∗) = Ψ1(t∗) = 0, which contradicts A(t) = A(0)(t) +
jA(1)(t) 6= 0 for all t ∈ [a,b].

(C) Proof of (c): Suppose Ψk(t∗) = 0. Then from (b), i.e., Ψk−1(t∗),Ψk+1(t∗) 6= 0, and
Ψk+1(t∗) =−Ψk−1(t∗)+Hk(t∗)Ψk(t∗) =−Ψk−1(t∗), we have Ψk+1(t∗)Ψk−1(t∗)< 0.

(D) Proof of (d): Since (t−a)ei > 0 (i = 0,1) for a < t ≤ b, the proof is obvious.

(E) Proof of (e): From Ψi(a) 6= 0 and the continuity of Ψi(t) (i = 0,1) , we have

lim
t→a+0

sgn(A(i)(t)) = lim
t→a+0

sgn
(

A(i)(t)
(t−a)ei

)
= lim

t→a+0
sgn(Ψi(t)) = sgn(Ψi(a)) 6= 0.

ut
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Appendix 4: Proof of Theorem 1

We derive computable expressions for

lim
t→a+0

arctan{QA(t)} and lim
t→t∗−0

arctan{QA(t)}+Λ(t∗)π

in (7) as follows.

(A) Computable expression for lim
t→a+0

arctan{QA(t)} in (7):

(I) If A(0)(a) 6= 0, we have lim
t→a+0

arctan{QA(t)}= arctan{QA(a)}.
(II) If A(0)(a) = 0, then

lim
t→a+0

arctan{QA(t)}=


π/2 if lim

t→a+0
sgn(A(0)(t)A(1)(t)) = 1,

−π/2 if lim
t→a+0

sgn(A(0)(t)A(1)(t)) =−1.
(21)

From Lemma 1(e) and (21), lim
t→a+0

arctan{QA(t)} in (7) can be expressed as

lim
t→a+0

arctan{QA(t)}= sgn(Ψ0(a)Ψ1(a))π/2.

(B) Computable expression for lim
t→t∗−0

arctan{QA(t)}+Λ(t∗)π in (7):

To derive the relation between V{Ψ(t)} and X (µi) (i= 1,2, . . . ,z), we have to know the
behavior of V{Ψ(t)}. Since the real polynomials Ψk(t) (0≤ k ≤ q) are all continuous,
any point where V{Ψ(t)} changes must be in the neighborhood of a zero of some Ψk(t)
(0 ≤ k ≤ q). Let us observe the behavior of V{Ψ(t)} in the neighborhood of a zero of
Ψk(t) for 0 < k < q. Suppose

Ψk(η) = 0 for η ∈ [a,b].

From Lemma 1(c) and the continuity of Ψk−1(t) and Ψk+1(t), there exists a sufficiently
small ε> 0 such that

Ψk−1(t)Ψk+1(t)< 0 for all t ∈ (η−ε,η+ε)∩ [a,b]. (22)

From (22), all the possibilities of the sign of (Ψk−1(t),Ψk(t),Ψk+1(t)) in t ∈ (η−
ε,η+ε)∩ [a,b] are (+,±,−), (−,±,+), (+,0,−) or (−,0,+). In all cases, the number
of sign changes among (Ψk−1(t),Ψk(t),Ψk+1(t)) is 1. Therefore V{Ψ(t)} does not
change in the neighborhood of a zero of Ψk(t) for 0 < k < q. Moreover from Lemma
1(a), any change of V{Ψ(t)} is caused only by the sign changes of (Ψ0(t),Ψ1(t)) in
the neighborhood of a zero of Ψ0(t).

To wrap up, for any point ξi (i = 0,1, . . . ,z) such that

a≤ ξ0 < µ1 < ξ1 < µ2 < ξ2 < · · ·< µz < ξz < b,

we have

V{Ψ(t)}=


V{Ψ(ξ0)} if a≤ t < µ1,
V{Ψ(ξ1)} if µ1 < t < µ2,

...
V{Ψ(ξz)} if µz < t < b.

(23)
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(I) If ZA(0) =∅ or t∗ ∈ (a,µ1), we have lim
t→t∗−0

arctan{QA(t)}= arctan{QA(t∗)} and

[V{Ψ(t∗)}−V{Ψ(a)}]π = [V{Ψ(ξ0)}−V{Ψ(ξ0)}]π = 0 =
∑

µi∈(a,t∗)

X (µi).

(II) If ZA(0) 6=∅, µ1 < t∗ < b and t∗ 6= µi (i = 1,2, . . . ,z), Lemma 1(b) and the conti-
nuity of Ψ1(t) ensure the existence of a sufficiently small ε> 0 for µi such that

[µi−ε,µi +ε]⊂ (a,b)
Ψ1(t) 6= 0 for all t ∈ (µi−ε,µi +ε)
Ψ0(t)Ψ1(t) 6= 0 for all t ∈ (µi−ε,µi)∪ (µi,µi +ε)

 . (24)

We fix arbitrarily ξi−1 ∈ (µi−ε,µi) and ξ′i ∈ (µi,µi +ε).

(i) If A(0)(t)A(1)(t) > 0
(Lemma 1(d)⇐⇒ Ψ0(t)Ψ1(t) > 0

)
for t ∈ (µi− ε,µi) and

A(0)(t)A(1)(t) < 0
(Lemma 1(d)⇐⇒ Ψ0(t)Ψ1(t) < 0

)
for t ∈ (µi,µi + ε), we

have sgn(Ψ0(ξi−1)) = sgn(Ψ1(ξi−1)) and sgn(Ψ0(ξ
′
i)) = −sgn(Ψ1(ξ

′
i)).

Then the number of sign changes of (Ψ0(ξi−1),Ψ1(ξi−1)) is 0, and that of
(Ψ0(ξ

′
i),Ψ1(ξ

′
i)) is 1. Moreover by (23), we have V{Ψ(ξ′i)} = V{Ψ(ξi)}.

Hence, we have

V{Ψ(ξi)}−V{Ψ(ξi−1)}=V{Ψ(ξ′i)}−V{Ψ(ξi−1)}= 1 and X (µi) = 1.

(ii) If A(0)(t)A(1)(t) < 0
(Lemma 1(d)⇐⇒ Ψ0(t)Ψ1(t) < 0

)
for t ∈ (µi−ε,µi) and

A(0)(t)A(1)(t) > 0
(Lemma 1(d)⇐⇒ Ψ0(t)Ψ1(t) > 0

)
for t ∈ (µi,µi + ε), we

have sgn(Ψ0(ξi−1)) = −sgn(Ψ1(ξi−1)) and sgn(Ψ0(ξ
′
i)) = sgn(Ψ1(ξ

′
i)).

Then the number of sign changes of (Ψ0(ξi−1),Ψ1(ξi−1)) is 1, and that of
(Ψ0(ξ

′
i),Ψ1(ξ

′
i)) is 0. Moreover by (23), we have V{Ψ(ξ′i)} = V{Ψ(ξi)}.

Hence, we have

V{Ψ(ξi)}−V{Ψ(ξi−1)}=V{Ψ(ξ′i)}−V{Ψ(ξi−1)}=−1 and X (µi)=−1.

(iii) If A(0)(t)A(1)(t) > 0
(Lemma 1(d)⇐⇒ Ψ0(t)Ψ1(t) > 0

)
for t ∈ (µi−ε,µi) and

A(0)(t)A(1)(t) > 0
(Lemma 1(d)⇐⇒ Ψ0(t)Ψ1(t) > 0

)
for t ∈ (µi,µi + ε), we

have sgn(Ψ0(ξi−1)) = sgn(Ψ1(ξi−1)) and sgn(Ψ0(ξ
′
i)) = sgn(Ψ1(ξ

′
i)).

Then the number of sign changes of (Ψ0(ξi−1),Ψ1(ξi−1)) is 0, and that of
(Ψ0(ξ

′
i),Ψ1(ξ

′
i)) is 0. Moreover by (23), we have V{Ψ(ξ′i)} = V{Ψ(ξi)}.

Hence, we have

V{Ψ(ξi)}−V{Ψ(ξi−1)}=V{Ψ(ξ′i)}−V{Ψ(ξi−1)}= 0 and X (µi) = 0.

(iv) If A(0)(t)A(1)(t) < 0
(Lemma 1(d)⇐⇒ Ψ0(t)Ψ1(t) < 0

)
for t ∈ (µi−ε,µi) and

A(0)(t)A(1)(t) < 0
(Lemma 1(d)⇐⇒ Ψ0(t)Ψ1(t) < 0

)
for t ∈ (µi,µi + ε), we

have sgn(Ψ0(ξi−1)) = −sgn(Ψ1(ξi−1)) and sgn(Ψ0(ξ
′
i)) = −sgn(Ψ1(ξ

′
i)).

Then the number of sign changes of (Ψ0(ξi−1),Ψ1(ξi−1)) is 1, and that of
(Ψ0(ξ

′
i),Ψ1(ξ

′
i)) is 1. Moreover by (23), we have V{Ψ(ξ′i)} = V{Ψ(ξi)}.

Hence, we have

V{Ψ(ξi)}−V{Ψ(ξi−1)}=V{Ψ(ξ′i)}−V{Ψ(ξi−1)}= 0 and X (µi) = 0.
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As a result, in all cases (i), (ii), (iii) and (iv), we have

V{Ψ(ξi)}−V{Ψ(ξi−1)}= X (µi).

Finally, by letting µk := max({µ1,µ2, . . . ,µz}∩ [a, t∗)) in the definition of Λ(t∗),
we have, from A(0)(t∗) 6= 0 and (23),

lim
t→t∗−0

arctan{QA(t)}+Λ(t∗)π

= arctan{QA(t∗)}+
k∑
i=1

X (µi)π

= arctan{QA(t∗)}+
k∑
i=1

[V{Ψ(ξi)}−V{Ψ(ξi−1)}]π

= arctan{QA(t∗)}+[V{Ψ(ξk)}−V{Ψ(ξ0)}]π
= arctan{QA(t∗)}+[V{Ψ(t∗)}−V{Ψ(a)}]π.

(III) If ZA(0) 6=∅ and t∗=µk for some k∈{1,2, . . . ,z}, Lemma 1(b) and (d) ensure
sgn(Ψ1(µk)) = sgn(A(1)(µk)) 6= 0, and we have

lim
t→t∗−0

arctan{QA(t)}=


π/2 if lim

t→µk−0
sgn(A(0)(t)A(1)(µk)) = 1,

−π/2 if lim
t→µk−0

sgn(A(0)(t)A(1)(µk)) =−1.
(25)

Fix ξi−1 and ξ′i (i = 1,2, . . . ,k) in exactly same way as shown in the beginning of
(II). Then we have V{Ψ(ξi)}−V{Ψ(ξi−1)}= X (µi) (i = 1,2, . . . ,k−1).

(i) If lim
t→t∗−0

arctan{QA(t)}=π/2, Lemma 1(d) and (25) ensure sgn(Ψ0(ξk−1))=

sgn(Ψ1(ξk−1)) 6= 0 and sgn(Ψ0(µk)) = 0, which imply that both of the num-
bers of sign changes in (Ψ0(ξk−1),Ψ1(ξk−1)) and in (Ψ0(µk),Ψ1(µk)) are 0.
Hence, we have

V{Ψ(µk)}=V{Ψ(ξk−1)}.

As a result, we have

lim
t→t∗−0

arctan{QA(t)}+Λ(t∗)π = π/2+
k−1∑
i=1

X (µi)π

= π/2+
k−1∑
i=1

[V{Ψ(ξi)}−V{Ψ(ξi−1)}]π

= π/2+[V{Ψ(ξk−1)}−V{Ψ(ξ0)}]π
= π/2+[V{Ψ(µk)}−V{Ψ(a)}]π. (26)

(ii) If lim
t→t∗−0

arctan{QA(t)}=−π/2, Lemma 1(d) and (25) ensure sgn(Ψ0(ξk−1))=

−sgn(Ψ1(ξk−1)) 6=0 and sgn(Ψ0(µk))=0, which imply that the number of
sign changes in (Ψ0(ξk−1),Ψ1(ξk−1)) is 1 while the number of sign changes
in (Ψ0(µk),Ψ1(µk)) is 0. Hence, we have

V{Ψ(µk)}=V{Ψ(ξk−1)}−1.
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As a result, we have

lim
t→t∗−0

arctan{QA(t)}+Λ(t∗)π = −π/2+
k−1∑
i=1

X (µi)π

= −π/2+
k−1∑
i=1

[V{Ψ(ξi)}−V{Ψ(ξi−1)}]π

= −π/2+[V{Ψ(ξk−1)}−V{Ψ(ξ0)}]π
= −π/2+[V{Ψ(µk)}+1−V{Ψ(a)}]π
= π/2+[V{Ψ(µk)}−V{Ψ(a)}]π. (27)

From (26) and (27), for both cases (i) and (ii), we have

lim
t→t∗−0

arctan{QA(t)}+Λ(t∗)π = π/2+[V{Ψ(t∗)}−V{Ψ(a)}]π.

(IV) Suppose that ZA(0) 6=∅ and t∗ = b.

(i) If A(0)(b) 6= 0, i.e., V{Ψ(ξz)} = V{Ψ(b)}, we can deduce, in almost same
way as in proof for (II),

lim
t→t∗−0

arctan{QA(t)}+Λ(t∗)π = arctan{QA(t∗)}+[V{Ψ(t∗)}−V{Ψ(a)}]π.

(ii) If A(0)(b) = 0, by imposing additionally, to the conditions of ε> 0 in (24),

b−ε> a
Ψ1(t) 6= 0 for all t ∈ (b−ε,b]
Ψ0(t)Ψ1(t) 6= 0 for all t ∈ (b−ε,b)


and fixing arbitrarily ξz ∈ (b− ε,b), we can deduce, in almost same way as
in proof for (III),

lim
t→t∗−0

arctan{QA(t)}+Λ(t∗)π = π/2+[V{Ψ(t∗)}−V{Ψ(a)}]π.

From (A) and (B), we obtain (9) for all t∗ ∈ (a,b]. ut

Appendix 5: Proof of Theorem 2

(A) Proof of (a): From

ℑ


∂ f(0)

∂y (x,y)+ j
∂ f(1)

∂y (x,y)

f(0)(x,y)+ j f(1)(x,y)

=

(
∂ f(1)

∂y (x,y)
)

f(0)(x,y)− f(1)(x,y)
(

∂ f(0)
∂y (x,y)

)
{ f(0)(x,y)}2 +{ f(1)(x,y)}2 ,

the denominator of ∂

∂x

ℑ


∂ f(0)

∂y (x,y)+ j
∂ f(1)

∂y (x,y)

f(0)(x,y)+ j f(1)(x,y)


 is

[
{ f(0)(x,y)}2 +{ f(1)(x,y)}2]2, and

the numerator is[(
∂ 2 f(1)
∂x∂y (x,y)

)
f(0)(x,y)− f1(x,y)

(
∂ 2 f(0)
∂x∂y (x,y)

)][
{ f(0)(x,y)}2+{ f(1)(x,y)}2

]
−
[(

∂ f(1)
∂y (x,y)

)(
∂ f(0)

∂x (x,y)
)
+
(

∂ f(1)
∂x (x,y)

)(
∂ f(0)

∂y (x,y)
)][
{ f(0)(x,y)}2−{ f(1)(x,y)}2

]
−2
[(

∂ f(1)
∂x (x,y)

)(
∂ f(1)

∂y (x,y)
)
−
(

∂ f(0)
∂x (x,y)

)(
∂ f(0)

∂y (x,y)
)]

f(0)(x,y) f(1)(x,y).
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Similarly, from

ℑ


∂ f(0)

∂x (x,y)+ j
∂ f(1)

∂x (x,y)
f(0)(x,y)+ j f(1)(x,y)

=

(
∂ f(1)

∂x (x,y)
)

f(0)(x,y)− f(1)(x,y)
(

∂ f(0)
∂x (x,y)

)
{ f(0)(x,y)}2 +{ f(1)(x,y)}2 ,

the denominator of ∂

∂y

ℑ


∂ f(0)

∂x (x,y)+ j
∂ f(1)

∂x (x,y)
f(0)(x,y)+ j f(1)(x,y)


 is

[
{ f(0)(x,y)}2 +{ f(1)(x,y)}2]2, and

the numerator is[(
∂ 2 f(1)
∂y∂x (x,y)

)
f(0)(x,y)− f1(x,y)

(
∂ 2 f(0)
∂y∂x (x,y)

)][
{ f(0)(x,y)}2+{ f(1)(x,y)}2

]
−
[(

∂ f(1)
∂x (x,y)

)(
∂ f(0)

∂y (x,y)
)
+
(

∂ f(1)
∂y (x,y)

)(
∂ f(0)

∂x (x,y)
)][
{ f(0)(x,y)}2−{ f(1)(x,y)}2

]
−2
[(

∂ f(1)
∂y (x,y)

)(
∂ f(1)

∂x (x,y)
)
−
(

∂ f(0)
∂y (x,y)

)(
∂ f(0)

∂x (x,y)
)]

f(0)(x,y) f(1)(x,y).

Then, since f(i) ∈C2(D) (i = 0,1) ensure
∂ 2 f(i)
∂x∂y (x,y) =

∂ 2 f(i)
∂y∂x (x,y) for all (x,y) ∈D, we

have

∂

∂x

ℑ


∂ f(0)

∂y (x,y)+ j
∂ f(1)

∂y (x,y)

f(0)(x,y)+ j f(1)(x,y)


=

∂

∂y

ℑ


∂ f(0)

∂x (x,y)+ j
∂ f(1)

∂x (x,y)
f(0)(x,y)+ j f(1)(x,y)




for all (x,y) ∈ D.

(B) Proof of (b): Define

P(x,y) :=ℑ


∂ f(0)

∂x (x,y)+ j
∂ f(1)

∂x (x,y)
f(0)(x,y)+ j f(1)(x,y)

and Q(x,y) :=ℑ


∂ f(0)

∂y (x,y)+ j
∂ f(1)

∂y (x,y)

f(0)(x,y)+ j f(1)(x,y)

 .

Then, since f(i) (i = 0,1) are C2(D) functions, P and Q are C1(D) functions. Moreover,
from (a), P and Q satisfy ∂P

∂y (x,y) =
∂Q
∂x (x,y) for all (x,y) ∈ D. Hence, from Poincaré’s

lemma (Fact 1(b)), there exists a function θ f ∈C2(D) satisfying

∂θ f

∂x
(x,y) = P(x,y) and

∂θ f

∂y
(x,y) = Q(x,y) for all (x,y) ∈ D, (28)

and the function θ f is the scalar potential of the vector field (P(x,y),Q(x,y)) over D.
Eq. (28) implies that the function θ f is determined as

θ f (x,y) =
∫

[P(x,y)dx+Q(x,y)dy]

uniquely if we impose additionally the condition θ f (x0,y0) = θ0.

(C) Proof of (c): Define P(x,y) and Q(x,y) as in (B). From (a), i.e., ∂P
∂y (x,y) =

∂Q
∂x (x,y) for

all (x,y) ∈ D, and Green’s theorem (Fact 1(a)), we have∮
∂Ω

[P(x,y)dx+Q(x,y)dy] =
∫∫

Ω

(
∂Q
∂x

(x,y)− ∂P
∂y

(x,y)
)

dxdy = 0.
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In particular, if γI and γII are piecewise C1 paths in D with the same initial and final
points, by letting ∂Ω := γI−γII, we have∮

γI−γII
[P(x,y)dx+Q(x,y)dy] = 0,

which implies ∫
γI
[P(x,y)dx+Q(x,y)dy] =

∫
γII

[P(x,y)dx+Q(x,y)dy] .

(D) Proof of (d): By using the parameterizations γI(t) := (xI(t), yI(t)) and γII(τ) :=
(xII(τ),yII(τ)), we deduce, from (c),∫ b

a
ℑ

{(
f(0)(γI(t))

)′
+ j
(

f(1)(γI(t))
)′

f(0)(γI(t))+ j f(1)(γI(t))

}
dt

=
∫ b

a

d
dt

(
f(1)(xI(t),yI(t))

)
f(0)(xI(t),yI(t))− f(1)(xI(t),yI(t)) d

dt

(
f(0)(xI(t),yI(t)

)
{ f(0)(xI(t),yI(t))}2 +{ f(1)(xI(t),yI(t))}2 dt

=
∫ γI(b)

γI(a)


(

∂ f(1)
∂x (x,y)

)
f(0)(x,y)− f(1)(x,y)

(
∂ f(0)

∂x (0)(x,y)
)

{ f(0)(x,y)}2 +{ f(1)(x,y)}2 dx

+

(
∂ f(1)

∂y (x,y)
)

f(0)(x,y)− f(1)(x,y)
(

∂ f(0)
∂y (x,y)

)
{ f(0)(x,y)}2 +{ f(1)(x,y)}2 dy


=
∫ γII(d)

γII(c)


(

∂ f(1)
∂x (x,y)

)
f(0)(x,y)− f(1)(x,y)

(
∂ f(0)

∂x (0)(x,y)
)

{ f(0)(x,y)}2 +{ f(1)(x,y)}2 dx

+

(
∂ f(1)

∂y (x,y)
)

f(0)(x,y)− f(1)(x,y)
(

∂ f(0)
∂y (x,y)

)
{ f(0)(x,y)}2 +{ f(1)(x,y)}2 dy


=
∫ d

c

d
dτ

(
f(1)(xII(τ),yI(τ))

)
f(0)(xII(τ),yII(τ))− f(1)(xII(τ),yI(τ))

d
dτ

(
f(0)(xII(τ),yII(τ)

)
{ f(0)(xII(τ),yII(τ))}2 +{ f(1)(xII(τ),yII(τ))}2 dτ

=
∫ d

c
ℑ

{(
f(0)(γII(τ))

)′
+ j
(

f(1)(γII(τ))
)′

f(0)(γII(τ))+ j f(1)(γII(τ))

}
dτ .

ut

Appendix 6: Proof of Proposition 4

(A) Proof of (a):

(I) If k = 1, Sresi(P0,P1, t) (i ∈ [deg(P2),deg(P1)−1]) can be expressed as a constant
multiple of P2(t) as one of the first three expressions in Fact 2. Clearly, these are
special cases of (10).

(II) If 2≤ k ≤ q−1, i.e., deg(Pk+1)≤ i≤ deg(Pk)−1≤ deg(Pk−1)−2≤ deg(Pk−2)−
3≤ ·· · ≤ deg(P2)− (k−1), by using the forth expression in Fact 2 repeatedly, we
deduce
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Sresi(P0,P1, t)

= (−1)(deg(P0)−deg(P1)+1)(deg(P1)−i)(lc(P1))
deg(P0)−deg(P2)

×Sresi(P1,P2, t)

= (−1)(deg(P0)−deg(P1)+1)(deg(P1)−i)(lc(P1))
deg(P0)−deg(P2)

× (−1)(deg(P1)−deg(P2)+1)(deg(P2)−i)(lc(P2))
deg(P1)−deg(P3)

×Sresi(P2,P3, t)

= · · ·

=
k−2∏
n=0

(−1)(deg(Pn)−deg(Pn+1)+1)(deg(Pn+1)−i)(lc(Pn+1))
deg(Pn)−deg(Pn+2)

×Sresi(Pk−1,Pk, t)

=
k−2∏
n=0

(−1)(deg(Pn)−deg(Pn+1)+1)(deg(Pn+1)−i)(lc(Pn+1))
deg(Pn)−deg(Pn+2)

×



(−1)deg(Pk−1)−deg(Pk)+1(lc(Pk))
deg(Pk−1)−deg(Pk)+1Pk+1(t)

for i = deg(Pk)−1,

0 for i ∈ [deg(Pk+1)+1,deg(Pk)−2] (if deg(Pk+1)< deg(Pk)−2),

(−1)(deg(Pk−1)−deg(Pk)+1)(deg(Pk)−deg(Pk+1))(lc(Pk))
deg(Pk−1)−deg(Pk+1)

× (lc(Pk+1))
deg(Pk)−deg(Pk+1)−1Pk+1(t)

for i = deg(Pk+1),

=



λdeg(Pk)−1Pk+1(t)
for i = deg(Pk)−1,

0 for i ∈ [deg(Pk+1)+1,deg(Pk)−2] (if deg(Pk+1)< deg(Pk)−2),

λdeg(Pk+1)(lc(Pk+1))
deg(Pk)−deg(Pk+1)−1Pk+1(t)

for i = deg(Pk+1).

(B) Proof of (b): If det(Mi(P0,P1)) 6= 0 for all i ∈ [0,deg(P1)− 1], from (6), we
have det(Mi (P0, P1)) = lc(Sresi (P0, P1, t)) for all i ∈ [0, deg(P1)− 1], and hence,
deg(Sresi(P0,P1, t)) = i for all i ∈ [0, deg(P1)−1].

Assume that there exists some k ∈ [1,q− 1] s.t. deg(Pk+1) < deg(Pk)− 1. Then, from
(a), we have deg(Sresdeg(Pk)−1(P0,P1, t)) = deg(Pk+1)< deg(Pk)−1, which contradicts
deg(Sresi(P0, P1, t)) = i for all i ∈ [0,deg(P1)− 1]. Therefore, we have deg(Pk+1) =
deg(Pk)−1 = deg(P1)− k for all k ∈ [1,q−1].

Since deg(Pk+1) = deg(Pk)− 1 = deg(P1)− k for all k ∈ [1,q− 1] ensures deg(Pk)−
deg(Pk+1)+1 = 2 and deg(Pk)−deg(Pk+2) = 2 for all k ∈ [1,q−2], we have

λdeg(Pk+1) = (−1)(deg(P0)−deg(P1)+1)(deg(P1)−deg(Pk+1))(lc(P1))
deg(P0)−deg(P2)

×
k−2∏
n=1

(−1)2(deg(Pn+1)−deg(Pk+1))(lc(Pn+1))
2

× (−1)2(lc(Pk))
2

=
(
(−1)klc(P1)

)deg(P0)−deg(P1)+1 k∏
n=2

(lc(Pn))
2 .

ut
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Appendix 7: Proof of Proposition 5

(A) Proof of (a): We derive computable expressions for

deg(Pl+1), lc(Pl+1) and sgn(lc(Pl+1)).

(I) Computable expression for deg(Pl+1):

From Proposition 4(a), for i ∈ [deg(Pl+1),deg(Pl)− 1], Sresi(P0,P1, t) can be ex-
pressed as

Sresi(P0,P1, t) =



λdeg(Pl)−1Pl+1(t)

for i = deg(Pl)−1,

0 for i ∈ [deg(Pl+1)+1,deg(Pl)−2]
(if deg(Pl+1)< deg(Pl)−2),

λdeg(Pl+1)(lc(Pl+1))
deg(Pl)−deg(Pl+1)−1Pl+1(t)

for i = deg(Pl+1).

(29)

(i) If deg(Pl+1) = deg(Pl)− 1, we have, from the third expression in (29),
deg(Sresdeg (Pl)−1(P0, P1, t)) = deg(Sresdeg (Pl+1)(P0, P1, t)) = deg(Pl+1) =
deg(Pl) − 1. Moreover, from (6), we have det(Mdeg (Pl)−1(P0, P1)) =
lc(Sresdeg(Pl+1)(P0,P1, t)) 6= 0. Hence, we have

deg(Pl+1) = deg(Pl)−min{s ∈ N∗ | det(Mdeg(Pl)−s(P0,P1)) 6= 0}.

(ii) If deg(Pl+1) = deg(Pl)−2, let us examine first the case s = 1. Then we have,
from the first expression in (29), deg(Sresdeg(Pl)−1(P0,P1, t)) = deg(Pl+1) <
deg(Pl)−1. Moreover, from (6), we have det(Mdeg(Pl)−1(P0,P1)) = 0.

Next, let us examine the case s= 2. Then we have, from the third expression in
(29), deg(Sresdeg(Pl)−2(P0,P1, t)) = deg(Sresdeg(Pl+1)(P0,P1, t)) = deg(Pl+1) =
deg(Pl) − 2. Moreover, from (6), we have det(Mdeg (Pl)−2(P0, P1)) =
lc(Sresdeg(Pl+1)(P0, P1, t)) 6= 0. Hence, we have

deg(Pl+1) = deg(Pl)−min{s ∈ N∗ | det(Mdeg(Pl)−s(P0,P1)) 6= 0}.

(iii) If deg(Pl+1)≤deg(Pl)−3, let us examine first the case s = 1. Then we have,
from the first expression in (29), deg(Sresdeg(Pl)−1(P0,P1, t)) = deg(Pl+1) <
deg(Pl)−1. Moreover, from (6), we have det(Mdeg(Pl)−1(P0,P1)) = 0.

Next let us examine the cases s= {2,3, . . . ,deg(Pl)−deg(Pl+1)−1}, we have,
from the second expression in (29), deg(Sresdeg(Pl)−s(P0,P1, t)) = deg(0) =
−∞< deg(Pl)− s. Moreover, from (6), we have det(Mdeg(Pl)−2 (P0,P1)) = 0.

Third let us examine the case s = deg(Pl)−deg(Pl+1), we have, from the third
expression in (29), deg(Sresdeg(Pl)−s(P0,P1, t))=deg(Sresdeg(Pl+1)(P0,P1, t))=
deg(Pl+1)= deg(Pl)−s. Moreover, from (6), we have det(Mdeg(Pl)−s(P0,P1))=
lc(Sresdeg(Pl+1)(P0, P1, t)) 6= 0. Hence, we have

deg(Pl+1) = deg(Pl)−min{s ∈ N∗ | det(Mdeg(Pl)−s(P0,P1)) 6= 0}.
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(II) Computable expression for lc(Pl+1) and sgn(lc(Pl+1)):

(i) If (deg(Pl)−deg(Pl+1)) is odd, from deg(Sresdeg(Pl+1)(P0,P1, t)) = deg(Pl+1),
we have, from (6)

det(Mdeg(Pl+1)(P0,P1)) = lc(Sresdeg(Pl+1)(P0,P1, t))

= λdeg(Pl+1)(lc(Pl+1))
deg(Pl)−deg(Pl+1)−1× lc(Pl+1)

= λdeg(Pl+1)(lc(Pl+1))
deg(Pl)−deg(Pl+1). (30)

Hence, we deduce

lc(Pl+1) =
deg(Pl)−deg(Pl+1)

√
det(Mdeg(Pl+1)(P0,P1))

λdeg(Pl+1)
.

Moreover, from (30), we have

sgn
(
λdeg(Pl+1) det(Mdeg(Pl+1)(P0,P1))

)
= sgn

(
λ2

deg(Pl+1)
(lc(Pl+1))

deg(Pl)−deg(Pl+1)
)

= sgn
(
(lc(Pl+1))

deg(Pl)−deg(Pl+1)
)
= sgn(lc(Pl+1)).

(ii) If (deg(Pl)−deg(Pl+1)) is even, i.e., (deg(Pl)−deg(Pl+1)−1) is odd, we have,
from the first and third expressions of (29), for any τ ∈ R,

Sresdeg(Pl)−1(P0,P1,τ) = λdeg(Pl)−1Pl+1(τ)

Sresdeg(Pl+1)(P0,P1,τ) = λdeg(Pl+1)(lc(Pl+1))
deg(Pl)−deg(Pl+1)−1Pl+1(τ)

}
. (31)

Therefore, by using any τ ∈ R, we deduce

lc(Pl+1) =
deg(Pl)−deg(Pl+1)−1

√
λdeg(Pl)−1Sresdeg(Pl+1)(P0,P1,τ)

λdeg(Pl+1)Sresdeg(Pl)−1(P0,P1,τ)
.

Moreover, from (31), we have

sgn
(
λdeg(Pl)−1λdeg(Pl+1)Sresdeg(Pl)−1(P0,P1,τ)Sresdeg(Pl+1)(P0,P1,τ)

)
= sgn

(
λ2

deg(Pl)−1λ
2
deg(Pl+1)

(lc(Pl+1))
deg(Pl)−deg(Pl+1)−1(Pl+1(τ))

2
)

= sgn
(
(lc(Pl+1))

deg(Pl)−deg(Pl+1)−1
)
= sgn(lc(Pl+1)).

(B) Proof of (b): If det(Mi(P0,P1)) 6= 0 for all i ∈ [0,deg(P1)− 1], we can regard Eq. (12)
as a special case of (A)-(II)-(i), and hence obtain, for all k ∈ [1,q−1],

lc(Pk+1) =
det(Mdeg(P1)−k(P0,P1))(

(−1)klc(P1)
)deg(P0)−deg(P1)+1 k∏

n=2

(lc(Pn))
2

.
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Moreover, since Eq.(12) ensures sgn(λdeg(Pk+1))=sgn
((
(−1)klc(P1)

)(deg(P0)−deg(P1)+1)
)
,

we have, for all k ∈ [1,q−1],

sgn(lc(Pk+1)) = sgn
(
λdeg(Pk+1) det(Mdeg(Pk+1)(P0,P1))

)
= sgn

((
(−1)klc(P1)

)deg(P0)−deg(P1)+1
det(Mdeg(P1)−k(P0,P1))

)
.

ut

Appendix 8: Proof of Theorem 3

(A) Proof of (a): If deg(Ψ0)≥ deg(Ψ1) and q≥ 2, from Proposition 4(a) and (8), we have

sgn(Ψk(t∗)) = (−1)
(k−1)k

2 sgn(Pk(t∗))

= (−1)
(k−1)k

2 sgn

(
Sresdeg(Pk)(P0,P1, t∗)

λdeg(Pk)(lc(Pk))deg(Pk−1)−deg(Pk)−1

)

= (−1)
(k−1)k

2 sgn

(
Sresdeg(Pk)(P0,P1, t∗)

λdeg(Pk)(lc(Pk))deg(Pk−1)−deg(Pk)−1

)
× sgn

(
λ2

deg(Pk)
(lc(Pk))

2(deg(Pk−1)−deg(Pk)−1)
)

= (−1)
(k−1)k

2 sgn(λdeg(Pk))
(
sgn(lc(Pk))

)deg(Pk−1)−deg(Pk)−1

× sgn
(
Sresdeg(Pk)(P0,P1, t∗)

)
= (−1)

(k−1)k
2 κ

〈0〉
deg(Ψk)

(
sgn(lc(Pk))

)deg(Ψk−1)−deg(Ψk)−1

× sgn
(
Sresdeg(Ψk)(Ψ0,Ψ1, t∗)

)
,

where we used Ψ0(t) = P0(t), Ψ1(t) = P1(t), deg(Ψk) = deg(Pk) and sgn(λdeg(Pk)) =

κ
〈0〉
deg(Ψk)

(by (11)).

In particular, if det(Mi(Ψ0,Ψ1)) 6= 0 for all i ∈ [0,deg(Ψ1)− 1], we have, from (12),
deg(Ψq)= deg(Ψ1)−(q−1)= 0, and hence q= deg(Ψ1)+1. Moreover we have, from

deg(Ψk−1) − deg(Ψk) − 1 = 0 and (12), κ〈0〉deg(Ψk)

(
sgn(lc(Pk))

)deg(Ψk−1)−deg(Ψk)−1
=

κ
〈0〉
deg(Ψk)

=sgn(λdeg(Pk))=(−1)(k−1)(deg(Ψ0)−deg(Ψ1)−1)
(
sgn(lc(Ψ1))

)deg(Ψ0)−deg(Ψ1)+1.
As a result, we have (14).

(B) Proof of (b): If deg(Ψ0)< deg(Ψ1), i.e., deg(P0)< deg(P1), and q≥ 3, P2(t) = P0(t)−
0×P1(t) = P0(t) and we have deg(P1) > deg(P2) > · · · > deg(Pq). Then by replacing
P0(t) and P1(t) in Proposition 4(a) with P1(t) and P2(t), for any k = {2,3, . . . ,q− 1},
Sresi(P1,P0, t) (i ∈ [deg(Pk+1),deg(Pk)−1]) can be expressed as

Sresi(P1,P0, t) = Sresi(P1,P2, t) =



λ
〈1〉
deg(Pk)−1Pk+1(t)

for i = deg(Pk)−1,

0 for i ∈ [deg(Pk+1)+1,deg(Pk)−2]
(if deg(Pk+1)< deg(Pk)−2),

λ
〈1〉
deg(Pk+1)

(lc(Pk+1))
deg(Pk)−deg(Pk+1)−1Pk+1(t)

for i = deg(Pk+1),
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where, for i = deg(Pk)−1,deg(Pk+1),

λ
〈1〉
i :=

k−2∏
n=1

(−1)(deg(Pn)−deg(Pn+1)+1)(deg(Pn+1)−i)(lc(Pn+1))
deg(Pn)−deg(Pn+2)

× (−1)(deg(Pk−1)−deg(Pk)+1)(deg(Pk)−i)(lc(Pk))
deg(Pk−1)−i.

As a result, we have,

sgn(Ψk(t∗)) = (−1)
(k−1)k

2 sgn(Pk(t∗))

= (−1)
(k−1)k

2 sgn

 Sresdeg(Pk)(P1,P0, t∗)

λ
〈1〉
deg(Pk)

(lc(Pk))deg(Pk−1)−deg(Pk)−1


= (−1)

(k−1)k
2 sgn

 Sresdeg(Pk)(P1,P0, t∗)

λ
〈1〉
deg(Pk)

(lc(Pk))deg(Pk−1)−deg(Pk)−1


× sgn

((
λ
〈1〉
deg(Pk)

)2
(lc(Pk))

2(deg(Pk−1)−deg(Pk)−1)
)

= (−1)
(k−1)k

2 sgn(λ〈1〉deg(Pk)
)
(
sgn(lc(Pk))

)deg(Pk−1)−deg(Pk)−1

× sgn
(
Sresdeg(Pk)(P1,P0, t∗)

)
= (−1)

(k−1)k
2 κ

〈1〉
deg(Ψk)

(
sgn(lc(Pk))

)deg(Ψk−1)−deg(Ψk)−1

× sgn
(
Sresdeg(Ψk)(Ψ1,Ψ0, t∗)

)
,

where we used Ψ0(t) = P0(t), Ψ1(t) = P1(t), deg(Ψk) = deg(Pk) and sgn(λ〈1〉deg(Pk)
) =

κ
〈1〉
deg(Ψk)

.

In particular, if det(Mi(Ψ1,Ψ0)) 6= 0 for all i ∈ [0,deg(Ψ0)−1], in almost same way as
in proof for (A), we have q = deg(Ψ0)+2 and (16). ut
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