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ABSTRACT along the real axis, is a problem of estimating the unwrapped phase

The phase unwrapping, which is a problem to reconstruct the con- o , o
tinuous phase function of an unknown complex function from its (v, « « O ()= o Foy () +JF(1)(15)
finite observed samples, has been a key for estimating useful phys+ (@7, y"):=0r(t"):=0r(a)+ ~ Fuoy(t) + jF (t)
i(r:]al Iquhant}tyhinfmany siglndal and inlwage .pr.ocessing| applic.ationsf.. In @
the light of the functional data analysis, It is natural to estimate firs .

the u?lknown complex function by 2 certain piecewise complex polyi:’y using the data(dq) (7(Ck)): diay (7(¢r))), where 0r(a) €
nomial and then to compute the exact unwrapped phase of the piece-r 7] satisfiesF'(a) = |F(a)|eﬂeF(a),

wise complex polynomial with the algebraic phase unwrapping al-  pegpite the tremendous effort made so far, a technically reli-

gorithms. In this paper, we propose several useful extensions a . ; . .
numerical stabilization of the algebraic phase unwrapping along th e phase unwrapping has not yet been established for its practical

real axis. The proposed extensions include (i) removal of a certaiHSe in wide range of signal and image processing. This is mainly
critical assumption premised in the original algebraic phase unwraghecaus&r(t) (a < t < b) is continuously defined along the arc
ping, and (ii) algebraic phase unwrapping for a pair of bivariate poly-y([a, b]) as in (2) while most existing phase unwrapping algorithms,
nomials. Moreover, in order to resolve certain numerical |nstab|I|tlezg., path-following methods [4, 20, 21, 22], minimum-norm meth-

caused by the coefficient growth in an inductive step in the origina .
algorithm, we propose to compute directly a certain subresultant s ds [23, 24, 25] and network flow methods [26, 27] estimate the

quence without passing through the inductive step. unwrapped phasér only at(x (k = 1,2,...,s) without checking
) . . the consistency withr att € (Cx, Crt1)-
Index Terms— Algebraic phase unwrapping, Functional data |, this paper, in the spirit of functional data analysis [28, 29, 30,

analysis, Two-dimensional phase unwrapping, Path independen@q‘ 32, 33], we consider the situation where the functidhs :

condition, Numerical stabilization [a,b] — R (i = 0,1) have been approximated respectively by
piecewise polynomials (i.e., Spline functions);, : [a,b] — R
1. INTRODUCTION (i = 0,1) through some smoothing techniques. In such a case, it is

. . . natural to estimatér(t*) in (2) by
In many signal and image processing problems, the phase unwrap-

ping has been a key for estimating some physical quantity [1, 2], for ¢ 7 (t) + jf’ (t)
example, surface topography in synthetic aperture radar (SAR) (and ~ 0x(t") := 0z (a) +/ R H dt. (3)
synthetic aperture sonar (SAS)) interferometry [3, 4, 5, 6, 7], wave a Floy(t) +3F)(t)

front distortion in adaptive optics [8, 9, 10], the degree of magnetic. . ) N )

field inhomogeneity in the water/fat separation problem of magneti®Y dividing the intervala, b] into finite subintervals, the unwrapped
resonance imaging (MRI) [11, 12, 13], the relationship between th@hasedz(¢") in (3) can be computed [34] by the algebraic phase
object phase and the bispectrum phase in astronomical imaging [14nWrapping along the real axis [19, 35] without requiring any nu-
15] and the accurate profiling of mechanical parts by x-ray [16, 17)merical root finding or numerical integration technique. _
Recently the phase unwrapping has been applied to a frequency es- However, ina direct computer implementation of the algorithms

timation problem [18] and a DOA estimation problem [19]. in the algebraic phase unwrapping [19, 36,'3% well as in a direct
Suppose that implementation of Algorithm 1 (Sturr®) in Sect. 2.2, we encounter
numerical instabilities, especially for polynomials of relatively large
(d(O) (v(Ck))s dy (’Y(Ck))) degree, due to the unavoidable gap between theoretical value and nu-

— (f(o)(V(Ck))+€<o>(7(Ck)), f(l)(v(gk))+g(l)(7(§k))) eR? (1) merical value computed by digital compyter qsing finite digit num-
ber systems. Therefore, thoughtless direct implementation of the

(k=1,2,...,s) are given as a finite sequence D noisy real  algebraic phase unwrapping algorithms for polynomials of large de-

vectors, wheref(;) : R> — R (i = 0,1) are unknown functions, ~gree, sometimes results in the failure of the phase unwrapping.

g RZ SR (i=0,1) are additive random noise functions, and The goal of this paper is to present several extensions and nu-

~ : [a,b] — R? is a known piecewis€" function which defines a merical stabilization of the algebraic phase unwrapping along the

path along the sample poini$Cy,) €R? (a < (1 < (2 <+ - < Cs <b). real axis. [19]. In Sect. 2, we present a new algorithm (Algorithm
For simplicity, denote byF : [a,b] 3 ¢ — F(o)(t) + jF1(t) € 1) to define a newsturm sequenceinlike [19, SGA 2]. Theorem

C a univariate complex valued function defined as 1 based on Algorithm 1 can deal with a special casg) (a) = 0
which is excluded in [19, Theorem 1]. In Sect. 3, we consider the
Fiy(t) .= fay(y(t)) forall ¢t € [a,b] (i =0,1). two-dimensional phase unwrapping and elucidate the condition for

The two-dimensional phase unwrapping(gffo), f(1)) along~y 1The algebraic phase unwrapping for complex polynomials albeginit

circle was established first in [36]. As its continuatiori® algebraic phase
unwrapping along the real axis [19] and that along the imagiaais [37]
This work was supported in part by JSPS Grants-in-Aid (BERII®1). have been developed.

at(z*,y*):=~(t*) €R?, or the phase unwrapping &f att* € [a, b]




the path independence of the two-dimensional phase unwrapping. Bacht € [a, b] the number of variations in the sign ¥ (t)}{_, by

particular, if bivariate polynomial functionf;) : R* =R (i=0,1)
satisty f(x,y) := fo)(z,y) +7f)(z,y) # 0 for all (z,y) in a
simply connected domaif c R?, the two-dimensional unwrapped
phased; € C*(D) can be computed uniquely with Theorem 1. In
Sect. 4, in order to stabilize the computatio®af¢*) in Theorem 1,

VIU()} == V{T(t), Ty (t),. ..

Wq(t)}
= |{i |0 <i<qandW,(t)W,y,0)(t) <0}

I

whereg(i) := min{k € N* | ¥;1,(t) # 0}. Then, for every

we propose to replace the inductive computation of the polynomials™ € (a, b], we have

U (t) (k=0,1,...,q) in Algorithm 1, followed by their numerical

evaluation at™ € [a, b], with the direct numerical computation of the Ou(t") =

subresultant sequence [38, 39]tat For this purpose, we present
relation between the sign of the Sturm sequence and that of the sub-
resultant sequence (Proposition 1). By the proposed replacement,
the sign of the Sturm sequence can be computed without suffering
from the propagation of errors caused by the coefficient growth in
the process of Algorithm 1, and then the algebraic phase unwrapping+
is stabilized greatly even for polynomials of relatively large degree.
The extensive numerical experiments exemplify the notable perfor-
mance improvement made by the proposed numerical stabilization.

whereQ 4 (t)

Relation to Prior Work

6.4(a) / T AL A () — A DA ®)
arctan{Qa(a)}

{Ao®P + Ay O}
914(0“) - { Sgn(\lfo(a)\pl(a))ﬂ-/Q

if A(O)(a) ;é O7
if A(O)(a) = O,
arctan{Qa(¢")} + [V{¥(t")} — V{¥(a)}]7
if Aoy (t) £ 0, (4)
T2+ [VAW()} = V{¥(a)}r  if A (") =0,

_An®

= andda(a)€(—m, ] s.t.A(a)=|A(a)|e?%4@),

The work presented here focuses on the extension and stabilizatid§gorithm 1 Sturm generating algorithm (Stur®)

of the algebraic phase unwrapping along the real axis [19]. The worknput: A (t), A1)(t) € R[t] anda € R

by Yamada and Oguchi [19] does not consider the path independence
of the two-dimensional phase unwrapping, and the original algo- ,
rithm [19, SGA 2] sometimes causes certain numerical instabilities ™
in the computer implementation. Therefore in this paper, we eluci- _
date the condition for the path independence of the two-dimensional’
phase unwrapping, and extend the algebraic phase unwrapping for &
pair of bivariate polynomials. Moreover we stabilize the algebraic 4.
phase unwrapping with the subresultant sequence.

5:
6:

2. ALGEBRAIC PHASE UNWRAPPING FOR
POLYNOMIALS 7.

ot — O ) —

the order oft = a as a zero of polynomiadl ;) (¢) (i = 0, 1))

(wheree; denotes

2. k—1
3: while deg(¥y) # 0do

Whi1(t) — —Wra(t) + Hi(t)Vi(t)
(whereHy(t) € R[t] and deg(Wiy1) < deg(Wy))

k—k+1
end while
k if Uy(t) £ 0
q‘_{ k—1 ifT(t)=0

2.1. Notations

Output: {Wx(t)}?_,

Let N*, R andC denOte respeCtively the set Of a” pOSitive integerS,Examp|e 1 (Expression of the exact unwrapped phase by Theorem
1) Let us construct the unwrapped phasgt) (0 < ¢ < 1) of the
univariate complex polynomial

real numbers and complex numbers. We gise C to denote the
imaginary unit satisfying? = —1. For anyc € C, R(c) and(c)
stand respectively for the real and imaginary partg.ofFor any
C(t) =Y 1" ct” € C[t] (St cm # 0 andm > 0), we define
deg(C) :=m andlc(C) := cm. ForanyC(t) = 3" cxt® € C[t],
we use the expressidafi(t) = C(o) (t) +5C 1) (t), whereCg (t) :=
ZZ:O ?R(Ck)tk S R[t] andC(1>(t) = ZZ;O S(Ck)tk c R[t] For
anyz € R, its sign is defined by

sgn(z) := { g/m

if x #0,
if x =0,

and arctan denotes the principle value inverse tangent satisfying g (t) = ¢3

tan(arctan(z)) = z and—% < arctan(z) < 3.

2.2. Algebraic Phase Unwrapping

The next theorem presents an exact solution of the phase unwrapping
problem for complex polynomials along the real axis. This theorem
is a relaxation of [19, Theorem 1]. Indeed, Theorem 1 can deal with
a special casél o) (a) = 0 which is excluded in [19, Theorem 1].

Theorem 1 (Algebraic phase unwrapping for a univariate complex
polynomial along the real axid)et {¥(¢)};_, be the Sturm se-
quence generated by applying Algorithm 1 (StuRto A o) (t) €
R[t] and A(1)(t) € R[t] under the assumptiond(t) := A (t) +
jA(l)(t) #0 (t S [a, b]), A(()) (t) Z0 andA(1>(t) # 0. Define at

A(t)

From A()(0) = 0 and A(1)(0) =
Moreover, fromsgn(¥o(0)¥:(0)) = sgn (

= Aoy (t) + 7 A (1)
= (t* — 1.11¢> + 0.356t> — 0.0255¢)
+j(t" — 2.525t° + 2.29995¢° — 0.906172¢ + 0.131222)

without using any root finding or numerical integration technique.
Applying Algorithm 1 toAy(t) and A (t) for a = 0 and

b = 1, we obtain the Sturm sequenf®,.(t)}7_, as

11, 89 51
— o o2 2y
1000 250 2000
101 , 4 22654 11
() — 100y 45999 5 226543 65611
40 20000 250000 500000
111 89 51
Uo(t) = -3+ —t2 — —t+ ——,
2(t) T 100" " 250" " 2000
42 1902
() — _ 373 o, 94233 190279
10000 250000 2000000
Wty — _ 27788829033 15335859
T T960102169185000 | 278705780000
s(t) 3391452647840106395584666460779211811
S() =

119967177270575015975354069525774695200000

65611 _
=o0005+ We haved (0) = /2.
3346161 ) - 1

1000000000 -
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! Fig. 2. Exact two-dimensional unwrapped phase
Fig. 1. Exact unwrapped phase by Theorem 1

O¢(x1,y1)
andV{¥(0)} = V{*23<1)o7 560506010107 28(1)0’72109000207090’ 2753??238007 ! b Y ANY
3391452647840106395584666460779211811
119967177270575015975354099525774695200000} = 3, the unwrapped =0 (z0,y0) +/ & (f(o)(v ( ))) —H‘ (f(1)(“/ ( ))) dt
phased4(t) (0 < t < 1)in (4) is expressed as " Foy (Y @) +3fay ()
. d I s I 4
Da(t) = rs ] AECE{QAO}HVIVO} =3 if A (8) 20, — 0, (c0,30) + / o { (£ (3" ()) i (fay (3 ()) } "
4 )2+ [V{¥(t)} - 3] if Ay(t)=0, c Foy () +35f 1) (Y (7))

which is depicted in Fig. 1. Example 2 Let us construct the unwrapped phase of the bivari-
From Fig. 1, we observe that the unwrapped phase fundtion ate complex polynomiaf (z,y) = fo)(z,y) + jfa)(x,y) over

can vary rapidly even ifleg(A) is small, which suggests the inher- [0, 1.3] x [0, 1.3] by using Theorem 1 repeatedly, where

ent difficulty in phase unwrapping problem. Obviously, this notable 4 4 3 3

feature is hardly detectable by most exiting phase unwrapping algo- fo (z.y) = ry- 4‘7"’4 - 213y — 3zy + 10z — 2y3,

rithms, i.e., [2, 4, 20, 21, 22, 23, 24, 25, 26, 27], essentially based fay(z,y) == 2"y — 4a* — 22°y — 3zy + 10z — 2y + 1.

on discrete approximations. Moreover, we also observe that the nesince f(1(z,y) = foy(z,y) + 1 forall (z,y) € R2, we have

essary number of digits to express the coefficientsdof(¢)}7_, fz,y) # 0forall (z,y) € R2. Forany(z*,y*) € [0,1.3] x

grows quickly. This phenomenon is called the coefficient growthiy 1 3] we choose the piecewis pathy g« ,+) as

which causes numerical instabilities in the direct computer imple- '

mentation of Algorithm 1 (SturrR) (see Sect. 4.1). ey () = (¢,0) ifo<t<z*
Yy ) = (z*,t—2*) ifz" <t<z"+y".
3. EXTENSION OF THE ALGEBRAIC PHASE Figure 2 depicts the unwrapped phadg(z,y) computed by using
UNWRAPPING ALONG THE REAL AXIS Theorem 1 repeatedly for two subintervillsz*] and [z*, z* + y*].

The two-dimensional unwrapped phase generally depends on the 4. STABILIZATION OF THE ALGEBRAIC PHASE

path of integral. 3 _ _ UNWRAPPING ALONG THE REAL AXIS
The next theorem presents a condition which guarantees (i) the

unique existence of the two-dimensional unwrapped phaseCéi’s a 4.1. Numerical Instabilities of Algorithm 1

function and (ii) the path independence of the unwrapped phase. . . )
To implement Algorithm 1 (SturniR) precisely, we need large num-

Theorem 2 (Path independence of two-dimensional phase unwrapper of digits to express the rational coefficients of the polynomials
ping)Let D C R be a simply connected domain. Suppose fhat  , (¢) (e.g., see Example 1). This phenomenon is exactly same as
R® = R (i =0, 1) are C*(D) functions satisfying (z,y) := fo)  the coefficient growthwell-known in the computation of thgoly-
(z,y)+7f1)(z,y)#0 for all (z,y) € D. Then the followings hold. nomial remainder sequendarough the Euclidean algorithm [39].

(a) (Unique existence of two-dimensional unwrapped phSse) In computer i_mplementation @4 (t) in Eq. (4_) through_AIgorithm_
pose thatly € (—, «] satistyingf (zo, yo) = |f(zo,yo)|e?% 1, _the coeff|0|_ent growth causes the_truncatlon error in the floating-
is given at somézo, yo) € D, then there exist a unique function pomt expression of the _ra_tlonal coefficients (o_r memory sh_ortages by
0, € C2(D) satisfyingd; (zo, yo) = 6o and for all (z, y) € D increasing numl?er of digits for exgqt expression of the ratlonallcoef-

ficients). In particular, once a seriougormation losgby the addi-

9/ 9f(1) tion or subtraction among numbers of ill-balanced absolute values)
905 o) @y i (=y) , . ;
a—(a:, Yy =S - or catastrophic cancellatiorfby the subtraction number very close
z fo (@, y) +5f) (2,y) numbers) occurs, the gap between theoretical values and numerical
of . Of : * iai
00, (r,y) =S 3, (2, y) + 155> (2,9) values of¥, (¢t*) by digital computer becomes unacceptably large.
oy foy (@, y) +ifay(z,y) 4.2. Numerical Stabilization by Subresultant Sequence

(b) (Path independence of two-dimensional unwrapped pl&ge) For a pair of real polynomials

posey' : [a,b] — D and~" : [¢,d] — D satisfyy'(a) = Uo(t) := amt™ + am—1t™" " + -+ + a1t + ao,
¥1(e) = (z0,%0) € D and~'(b) =4"(d) = (x1,y1) € D. Then Uy (t) 1= bpt™ + bp_1t™ 1 4 -+ + byt + by,



s.t. am # 0andb, # 0, thei-th subresultantSres; (Yo, ¥4, t) 45 T

. i . T15 Ty
(i =0,1,...,min{m — 1,n — 1}) of Uy(t) and¥: (t) is defined A e : ]
as the determinant of @ + n — 24) x (m + n — 2i) matrix: 35¢ s L2 ]
SI‘eSZ’(\I’(), ‘1/17 t) [ 5
; E
Am Am—1 *** Qi AQi—1 *++ aQ \Ifo(t)tniz.il ®
Am Am—1""* Qi Gi—1 - Qg W ()" "2 5{
AmAm—1 " Qi QAij—1 *** \Ifo(t)ti
AmGm-1--+ a;  PYo(t)t % 02 04 06 08 1
Am " Qi41 \Ifo (t) . . . t . .
=det| , L b by by T ()t Fig. 3. Estimations of the unwrapped phase with Algorithm 1 and 2
m—i—2 —
b bn—y-o bi bi-y o bo Wi (1)t where (i) A (o) (¢) is a polynomial of degred5 whoses roots are gen-
o . . : erated by the uniform distribution ovéf—5, —1) U (1,5)} and15
b bt -+ bi biog - Ui(t)t complex conjugate pairs of roots are generated by the uniform dis-
"o T . tribution over{(—1, —0.5) U (0.5,1)} £ j{(—1, —0.5) U (0.5,1)},
- o : and (i) A(1)(t) is a polynomial of degre&5 whose5 real roots and
by b1 --- b Uy ()t 5 complex conjugate pairs of roots are generated as for the above
by b Ui() Ao (t). Note that polynomialsi ) (t) and A (t) have close root
pairs(0.21,0.8) =~ (0.2, 0.81), which likely causes the catastrophic
Itis well-known [38, 39, 40] thadleg(Sres; (o, U1, t)) < i. cancellation [41, 42] explained in Sect. 4.1. Figure 3 depicts one

The next proposition gives a relation between the sign of th&*ample where Algorithm 1 fails in phase unwrapping at 0.2

Sturm sequence, generated by applying Algorithm 1, and that of th@nd? = 0.81 while Algorithm 2 succeeds in phase unwrapping over
subresultant sequence. [0,1]. Table 1 summarizes the result for 1000 trials, where we ob-

- ) ] serve that the total number of polynomials in failure by Algorithm 1
Proposition 1 (Relation between the sign of the Sturm sequencqs reduced to less thairy24 by replacing it with Algorithm 2.
and that of the subresultant sequerioef{ ¥, (¢)}{_, be the Sturm
sequence obtained by applying Algorithm 14g, () and A« (¢). Algorithm 2 Proposed algorithm for computing (4)
If deg(Wo) > deg(V¥1), ¢ > 2 anddeg(Sres; (Yo, V1,t)) =4 : »
forall i € [0, deg(¥) — 1], we have; = deg(¥1) + 1 and Input: A)(t), Ay (t) € R[t], a € Randt” € (a, b]
A (1) An(®)

Wo(t) « ) Uy (t) - o) (wheree; denotes

the order oft = a as a zero of polynomial ;)(t) (i = 0, 1))
. 2: m — deg(¥o), n «— deg(¥1), lci « lc(¥y)
Sresdeg(wy)—k+1(Yo, ¥1,t7) 3: for k= 2to (n+ 1) do

(k—1k

sgn(We(t")) — (=1)~ = FrDimmnsy)
X sgn (lc’ln’”“Sresn,kH(‘llo, \Ill,t*))

(k—1)k ) .
sgn(\Pk(t*)) = sgn (_1)fﬂk*l)(deg(‘l’o)*deg(‘l’l)+1) 1:

deg(Wo)—deg(¥1)+1

x (le(¥y))
(k=2,3,...,deg(¥1) +1). (5) 4

The relations (5) implies that we can compute each sign of 9 end for
{\Ilk(_t*_)}Z:Q by {Sresi(\Ifo,\lfl_7 t*) ?:‘01 without computing the  Output: {Sgn(q’k(t*))}zﬁfq’”“
coefficients of ¥ (¢) }{_,. Algorithm 2 below evaluates the signs of

{Wr(t")}{_, based on (5). In practice, Algorithm 2 plays an ade- ) ) ]
quate role becausieg(Sres; (Yo, ¥1,t)) =14 (¢ €[0, deg(¥1) —1]) Table 1. Performance comparison for pairs of random polynomials

holds almost always. (Note: In [35], we have given an algorithm|__Algorithm Total number of pairgA o), A1) in failure
application to general cases includidgg(Vo) < deg(W¥:) or Algorithm 1 | 249(among 1000, in 64-bit floating point arithmetic)
deg(Sres; (Vo, ¥1,t)) < i for some: € [0,deg(¥o) — 1]). The Algorithm 2 | 10 (among 1000, in 64-bit floating point arithmetic

computational complexity for eacBres;(¥o,¥1,t*) is at most
O((deg(Wo)+deg (W) —24)'*%27). 5. CONCLUSION

In this paper, we have extended and stabilized the algebraic phase
) ] ) ] unwrapping along the real axis. First, we have removed a assump-
In this section, we examine the numerical performance of the alg&ion premised in the original algebraic phase unwrapping. Second,
braic phase unwrapping, based on Theorem 1 using Algorithm Zye have elucidated the path independence of two-dimensional phase
To make the situation ||ke|y to cause numerical InStablllty of the al'unwrapping Completely’ and extended the a|gebraic phase unwrap-
gebraic phase unwrapping ovi, 1], based on Theorem 1 using ping for a pair of bivariate polynomials. Third, after clarifying the
Algorithm 1, we generate randomly a pair of polynomials: relation between the Sturm sequence and the subresultant sequence,
— we have shown that the algebraic phase unwrapping along the real
A<0>(t)::(t’()'l)(tfo'ﬂ)(t’0'5)(t70'75)(tfo'S)A@(t) axis can be stabilized significantly, by evaluating directly the signs
Ay (t):=(t—0.15)(t—0.2)(t—0.34)(t—0.35)(t—0.81) A1y () [ of the Sturm sequence, in the terms of the subresultant sequence.

4.3. Numerical Examples
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