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ABSTRACT

Spline is a continuous function piecewise-defined by polynomials
and is widely used for interpolation and smoothing of observed data.
In 1994, Heß and Schmidt proposed a positive quartic C2-spline in-
terpolation for estimation of a non-negative and twice continuously
differentiable function. In this paper, first we generalize the posi-
tive quartic C2-spline interpolation to the positive quartic C2-spline
smoothing. Then we propose two estimation methods of a proba-
bility density function from its histogram by extending the ideas of
the positive quartic C2-spline interpolation and smoothing. Finally
numerical experiments show the effectiveness of the proposed meth-
ods.

Index Terms— Probability density function estimation, spline
function, positive quartic C2-spline smoothing

1. INTRODUCTION

The probability density function (PDF) estimation [1]–[3] is a clas-
sical but has been central problem of significant impact to many
branches of mathematical sciences and engineerings including the
Bayesian signal processing [4], pattern recognition [5], [6], quan-
tization [7], filtering [8], data analysis [9], and combustion science
[10], etc. Inherently, the PDF estimation requires construction of
a positive continuous function from given finite data. The estima-
tion of continuous functions has been a common task in many areas
of signal processing where the spline function, a smooth piecewise
polynomial, has often been used [11], e.g., in super-resolution of
images or videos [12], [13], computer aided design [14], [15], and
regression analysis of data [16], [17], due to its flexibility and opti-
mality (see, e.g., Fact 1) in many senses.

However the spline function interpolation has been hardly ap-
plicable to the PDF estimation because (i) the data point to be in-
terpolated is not available, and (ii) the positivity of the interpolating
spline function is not guaranteed in general. On guaranteeing the
positivity of the spline function, Heß and Schmidt showed a way
to construct a positive quartic C2-spline function which interpolates
given non-negative data samples [18]. These situations suggest that
the remaining issue for solid applications of the spline function to
the PDF estimation is to establish a more flexible construction of a
positive spline function than just interpolating data points.

In this paper, we propose two novel PDF estimations by using
positive quartic C2-splines. For this purpose, in Section 2, as a pre-
liminary, we first extend the standard spline smoothing to the posi-
tive quartic C2-spline smoothing where the obtained spline function
is guaranteed to satisfy an optimality in the sense of a balance be-
tween the data fidelity and the smoothness. The proposed PDF esti-
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mations are given in Section 3, the first method, for a use in the sit-
uation where a relatively rough histogram is available, is realized by
modifying the positive quartic C2-spline smoothing shown in Sec-
tion 2. The second one, for a use in the situation where an almost
ideal histogram of which each bin approximates sufficiently corre-
sponding area of the PDF to be estimated is available, is realized by
modifying the idea found in [18]. In Section 4, by numerical experi-
ments, we compare the performances of the proposed methods with
the kernel density estimation [1], [2] which has been used widely for
the PDF estimation. The experiments for a Gaussian mixture show
the effectiveness of the proposed methods.

2. PRELIMINARIES

Let R, R+ and Z+ denote respectively the set of all real numbers,
non-negative real numbers and non-negative integers. A boldface
letter denotes a vector or a matrix depending on the situation. For
any vector x ∈ Rn, [x]i denotes the ith component of x, and
‖x‖ :=

√∑n
i=1[x]2i .

2.1. Spline Function

Let ∆n := {xi}ni=0 be a grid on an area Ω := [x0, xn] ⊂ R s.t.
x0 < x1 < · · · < xn, and let d, ρ ∈ Z+ s.t. 0 ≤ ρ < d. Define

Sρd (∆n) := {f ∈ Cρ(Ω) | ∀i f = fi ∈ Pd over [xi, xi+1]}

as the set of all spline functions of degree d and smoothness ρ on
∆n, where Cρ(Ω) stands for the set of all ρ-times continuously dif-
ferentiable functions over the interior of Ω, and Pd denotes the set of
all polynomials whose degree is d at most.

Assume that we observe samples of a twice continuously differ-
entiable function f∗ : Ω → R with additive noise εi ∈ R on ∆n,
i.e., we observe ζi := f∗(xi) + εi at xi (i = 0, 1, . . . , n). In this
situation, the spline function is often used as an approximation of
f∗ because it guarantees the optimality shown in the following fact
[19].

Fact 1 (Spline function as a solution of a variational problem) In
the set of all twice continuously differentiable functions over the
interior of Ω, i.e., C2(Ω), there is a unique function s∗ ∈ C2(Ω)
minimizing

n∑
i=0

|ζi − s(xi)|2 + λ

∫ xn

x0

∣∣s′′(x)
∣∣2 dx,

and it is a natural cubic spline s∗ ∈ S2
3 (∆n), where λ > 0 is a

parameter controlling the trade-off between the data fidelity and
the smoothness of the solution.



2.2. Positive Quartic C2-Spline

The problem of our interest is to approximate a non-negative func-
tion f∗ : Ω → R+ with use of its non-negative data ζi :=
f∗(xi) + εi ≥ 0. In [18], the positive C2-spline interpolation is
considered, and it is shown that the lowest degree is d = 4 for guar-
anteeing the existence of a spline function s ∈ S2

d(∆n) which sat-
isfies s(x) ≥ 0 for all x ∈ Ω and s(xi) = ζi (i = 0, 1, . . . , n).
Therefore in this paper, we use S2

4 (∆n) as the set of all candidates
of estimate of f∗ and introduce the following problem as a natural
extension of the standard spline smoothing.

Problem 1 (One-dimensional positive spline smoothing) Find s∗ ∈
S2
4 (∆n) minimizing

n∑
i=0

|ζi − s(xi)|2 + λ

∫ xn

x0

∣∣s′′(x)
∣∣2 dx

subject to
s(x) ≥ 0 for all x ∈ Ω.

In order to solve the above problem, we employ the quadratic
expression of the integral in the cost function and a sufficient con-
dition [18] for the positivity of s ∈ S2

4 (∆n). Define zi := s(xi),
pi := s′(xi) and Pi := s′′(xi) for i = 0, 1, . . . , n, and define
hi := xi+1 − xi for i = 0, 1, . . . , n − 1. Then for ensuring the
existence of s ∈ S2

4 (∆n), zi, pi, and Pi have to satisfy

12(zi − zi+1) + 6hi(pi + pi+1) + h2
i (Pi − Pi+1) = 0 (1)

for i = 0, 1, . . . , n− 1. The integration in each interval [xi, xi+1] is
expressed as ∫ xi+1

xi

∣∣s′′(x)
∣∣2 dx = bTi Aibi,

where bi := (pi, pi+1, Pi, Pi+1)T ∈ R4 and

Ai :=
1

30hi

 36 −36 3hi 3hi
−36 36 −3hi −3hi
3hi −3hi 4h2

i −h2
i

3hi −3hi −h2
i 4h2

i

 .

A sufficient condition in [18] for the positivity of s ∈ S2
4 (∆n) over

Ω is expressed as

z0 ≥ 0,
4zi + hipi ≥ 0 (i = 0, 1, . . . , n− 1),

12zi + 6hipi + h2
iPi ≥ 0 (i = 0, 1, . . . , n− 1),

4zi − hi−1pi ≥ 0 (i = 1, 2 . . . , n),
zn ≥ 0.

(2)

2.3. Solution of Problem 1 under Sufficient Condition

Define ζ,z,p,P ∈ Rn+1, b ∈ R2n+2 and s ∈ R3n+3 as

ζ := (ζ0, ζ1, . . . , ζn)T

z := (z0, z1, . . . , zn)T

p := (p0, p1, . . . , pn)T

P := (P0, P1, . . . , Pn)T

 ,

b := (pT ,P T )T and s := (zT ,pT ,P T )T = (zT , bT )T . We
solve Problem 1 under (2) by reducing to the following convex opti-
mization problem for s.

Problem 1.A (Problem 1 under sufficient condition (2)) Find s∗ =
(z∗T , b∗T )T ∈ R3n+3 minimizing

‖ζ − z‖2 + λbTAb

subject to
E1s = 0 and Gs ≥ 0,

where A ∈ R(2n+2)×(2n+2) is a symmetric positive semi-definite
matrix constructed by using the components of Ai, and the two
constrains E1s = 0 (s.t. E1 ∈ Rn×(3n+3)) and Gs ≥ 0 (s.t.
G ∈ R(3n+2)×(3n+3)) are respectively equivalent to (1) and (2).

Problem 1.A can be solved with use of the alternating direction
method of multipliers (ADMM) [20]. The ADMM computes s∗ by
the following iteration:

sk+1 = Λ1

(
I −ET

1

(
E1Λ1E

T
1

)−1
E1Λ1

)
·
((

2ζ
0

)
+

1

γ
GT (νk − ξk)

)
νk+1 = PC(Gsk+1 + ξk)

ξk+1 = ξk +Gsk+1 − νk+1

with γ > 0 and any initialization s0 ∈ R3n+3, ν0 ∈ R3n+2 and
ξ0 ∈ R3n+2, where I is the identity matrix

Λ1 :=

((
2I O
O 2λA

)
+

1

γ
GTG

)−1

,

C := R3n+2
+ , and PC is the metric projection onto C and defined as

[PC(ν)]i :=

{
[ν]i if [ν]i ≥ 0,
0 if [ν]i < 0.

Finally, we obtain s∗ ∈ S2
4 (∆n) uniquely from s∗ by computing the

coefficients of s∗ (see (3) in Section 3.2).

3. PDF ESTIMATION BY QUARTIC C2-SPLINE

In this section, we propose two estimation methods of a twice contin-
uously differentiable probability density function f∗ : R → R+ by
using the ideas of the positive quarticC2-spline. In this situation, we
cannot observe values of f∗ but construct a histogram from observed
samples which are generated from f∗ (or we can obtain only the his-
togram which is published by e.g., the public institution). Hence we
reconstruct f∗ from the histogram based on the observed samples.

3.1. Reconstruction of PDF from Its Histogram

Assume that {ηk}Kk=1 are the observed samples and a grid ∆n :=
{xi}ni=0 is used as the bins of the histogram s.t. x0 < x1 <
. . . < xn, x0 < min {ηk}, and xn > max {ηk}. Let Ki

(i = 0, 1, . . . , n − 1) be the number of ηk which belongs to ith
bin [xi, xi+1), i.e., xi ≤ ηk < xi+1. Then the histogram roughly
approximates samples, and we can expect

Ki

K
≈
∫ xi+1

xi

f∗(x) dx.

Therefore we reconstruct f∗ ∈ C2(R) by a function s ∈ C2(R)
satisfying the following properties.

• s(x) ≥ 0 for all x ∈ [x0, xn].

• s(x) = 0 for all x ∈ (−∞, x0] ∪ [xn,∞).

•

∫ xi+1

xi

s(x) dx ≈ Ki

K
(i = 0, . . . , n− 1).

Then from s = 0 over (−∞, x0] and [xn,∞), we only have to
construct s over [x0, xn] =: Ω. Moreover from s ∈ C2(R), s has to
satisfy s(x0) = s(xn) = s′(x0) = s′(xn) = s′′(x0) = s′′(xn) =
0. The following problem is a generalization of the positive spline
smoothing in Problem 1.



Problem 2 (PDF estimation by positive spline smoothing) Find
s∗ ∈ S2

4 (∆n) minimizing
n−1∑
i=0

∣∣∣∣Ki

K
−
∫ xi+1

xi

s(x) dx

∣∣∣∣2 + λ

∫ xn

x0

|s′′(x)|2 dx

subject to

s(x) ≥ 0 for all x ∈ Ω,

∫ xn

x0

s(x) dx = 1

and

s(x0) = s(xn) = s′(x0) = s′(xn) = s′′(x0) = s′′(xn) = 0,

where λ > 0.

If we can expect

Ki

K
=

∫ xi+1

xi

f∗(x) dx,

then the formulation in Problem 2 is not enough, and the following
formulation is suitable for such cases.

Problem 3 (PDF estimation by positive spline interpolation) Find
s∗ ∈ S2

4 (∆n) minimizing∫ xn

x0

|s′′(x)|2 dx

subject to

s(x) ≥ 0 for all x ∈ Ω,

∫ xi+1

xi

s(x) dx =
Ki

K
(i = 0, . . . , n− 1),

and

s(x0) = s(xn) = s′(x0) = s′(xn) = s′′(x0) = s′′(xn) = 0.

Note that function s∗ automatically satisfies the condition of the
probability density function because∫ ∞

−∞
s∗(x) dx =

n−1∑
i=0

∫ xi+1

xi

s∗(x) dx =

n−1∑
i=0

Ki

K
= 1.

3.2. Solutions of Problems 2 and 3 under Sufficient Condition

Suppose that a spline function s ∈ S2
4 (∆n) is expressed as

s(x) = si(t) = ci4t
4 + ci3t

3 + ci2t
2 + ci1t+ ci0

for x ∈ [xi, xi+1] (i = 0, 1, . . . , n − 1), where t := x−xi
hi
∈ [0, 1]

and cik ∈ R (k = 0, 1, . . . , 4) are coefficients of polynomial si.
Then by the relation

ci4
ci3
ci2
ci1
ci0

=
1

12


6hi −6hi 3h2

i 3h2
i

−12hi 12hi −8h2
i −4h2

i

6h2
i

12hi
12




zi
pi
pi+1

Pi
Pi+1

 ,

(3)

there exists a vector hi ∈ R3n+3 (i = 0, 1, . . . , n− 1) which satis-
fies∫ xi+1

xi

s(x) dx = hi

(
ci4
5

+
ci3
4

+
ci2
3

+
ci1
2

+ ci0

)
=
h2
i

10
(pi − pi+1) +

h3
i

20
(Pi + Pi+1)− h2

i

4
(pi − pi+1)

− h3
i

6
(Pi + 2Pi+1) +

h3
iPi
6

+
h2
i pi
2

+ hizi

= hizi +
7h2

i pi
20

+
3h2

i pi+1

20
+
h3
iPi
20
− h3

iPi+1

30
= hTi s.

Moreover by redefining ζ ∈ Rn as

ζ :=

(
K0

K
,
K1

K
, . . . ,

Kn−1

K

)T
,

Problem 2 under (2) is expressed as the following convex optimiza-
tion problem for s.

Problem 2.A (Problem 2 under sufficient condition (2)) Find s∗ =
(z∗T , b∗T )T ∈ R3n+3 minimizing

‖ζ −Hs‖2 + λbTAb

subject to

E2s = 0, Gs ≥ 0 and 1THs = 1,

where H := (h0,h1, . . . ,hn−1)T ∈ Rn×(3n+3), G is de-
fined in Problem 1.A, and the condition E2s = 0 (s.t. E2 ∈
R(n+6)×(3n+3)) is equivalent to (1) and s(x0) = s(xn) =
s′(x0) = s′(xn) = s′′(x0) = s′′(xn) = 0, i.e., z0 = zn = p0 =
pn = P0 = Pn = 0, 1 denotes the vector whose all components
are 1, and the other condition means 1THs =

∫ xn
x0

s(x) dx = 1.

The ADMM computes s∗ in the same manner as Section 2.3:

sk+1 = Λ2J
T
1

(
J1Λ2J

T
1

)−1
(

0
1

)
+ Λ2

(
I − JT1

(
J1Λ2J

T
1

)−1
J1Λ2

)
·
(

2HT ζ +
1

γ
GT (νk − ξk)

)
νk+1 = PC(Gsk+1 + ξk)

ξk+1 = ξk +Gsk+1 − νk+1

with γ > 0 and any initialization s0 ∈ R3n+3, ν0 ∈ R3n+2 and
ξ0 ∈ R3n+2, where

J1 :=
(
E2

1TH

)
and Λ2 :=

(
2HTH+

(
O O
O 2λA

)
+

1

γ
GTG

)−1

.

Similarly, Problem 3 under (2) is expressed as follows.

Problem 3.A (Problem 3 under sufficient condition (2)) Find s∗ =
(z∗T , b∗T )T ∈ R3n+3 minimizing

bTAb

subject to
E2s = 0, Gs ≥ 0 and Hs = ζ.

The ADMM solves Problem 3.A by the following iteration:
sk+1 = Λ3J

T
2

(
J2Λ3J

T
2

)−1
(

0
ζ

)
+

1

γ
Λ3

(
I − JT2

(
J2Λ3J

T
2

)−1
J2Λ3

)
GT (νk − ξk)

νk+1 = PC(Gsk+1 + ξk)

ξk+1 = ξk +Gsk+1 − νk+1

with γ > 0 and any initialization s0 ∈ R3n+3, ν0 ∈ R3n+2 and
ξ0 ∈ R3n+2, where

J2 :=
(
E2

H

)
and Λ3 :=

((
O O
O 2A

)
+

1

γ
GTG

)−1

.

Remark 1 In some cases, in Problem 3.A, there is no vector which
satisfies the constraint. For these cases, there is no solution of
Problem 3.A, and the iteration based on the ADMM does not con-
verge. On the other hand, in Problem 2.A, there always exists
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Fig. 1. Experiment result based on 10000 samples

s satisfying the constraint, and we can always reconstruct f∗ by
Problem 2.A.

Remark 2 In Problem 3.A, if there exists i ∈ [0, n−1] s.t. Ki = 0,
the condition

∫ xi+1

xi
s(x) dx = Ki yields s(x) = 0 for all x ∈

[xi, xi+1]. As a result, by adding the condition zi = zi+1 = pi =
pi+1 = Pi = Pi+1 = 0 into E2s = 0, the convergence speed of
the ADMM becomes faster.

4. NUMERICAL EXPERIMENTS

Let {ηk}Kk=1 be observed samples generated from a Gaussian mix-
ture defined as

f∗(x) :=
w√
2πσ2

1

e
− (x−µ1)2

2σ21 +
1− w√

2πσ2
2

e
− (x−µ2)2

2σ22 ,

where (µ1, σ1) = (5, 1), (µ2, σ2) = (9, 2) and w = 0.5. First, we
construct a histogram as shown in Fig. 1(a) by using 10000 observed
samples {ηk}10000k=1 and a grid ∆n := {xi}32i=0 s.t. xi := 0.5i+1. In
Fig. 1(b), f∗ and three estimates f̂KDE, s∗int and s∗smo, are depicted,
where f̂KDE is computed by the kernel density estimation [1], [2]
using Gaussian kernels as

f̂KDE(x) :=
1

K

K∑
k=1

1√
2πh2

e
− (x−ηk)2

2h2
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with h = 0.2371, and s∗int and s∗smo are respectively the solutions of
Problems 3.A and 2.A for λ = 0.015. In this case, since there are
enough samples, the shape of the histogram has a huge similarity to
f∗, and all estimates approximate f∗ with a high degree of accuracy.

Second, we construct a histogram as shown in Fig. 2(a) by using
500 observed samples {ηk}500k=1 and a grid ∆n := {xi}25i=0 s.t. xi :=
0.5i+ 2. In Fig. 2(b), f̂KDE and s∗smo are respectively computed by
h = 0.5048 and λ = 0.015. In this case, the shape of the histogram
is less similar to f∗, and the values of (Ki+1 − Ki) is bigger than
the first experiment. Therefore s∗int does not approximate f∗ and is
not smooth. On the other hand, s∗smo approximates f∗ better than
f̂KDE even though f̂KDE uses the same kernel, Gaussian, as f∗.

5. CONCLUSION

In this paper, first we have expanded the idea of the positive quar-
tic C2-spline interpolation to the positive quartic C2-spline smooth-
ing. Then we have proposed two estimation methods of the prob-
ability density function from the histogram by the positive quartic
C2-spline interpolation and smoothing. The proposed methods are
formulated as the convex optimization problems and solved by the
ADMM. Numerical experiments show that the method based on the
positive quartic C2-spline smoothing gives good estimates in the
both cases of enough samples and not enough samples.
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