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Abstract This paper proposes a fast iterative algorithm
for solving convexly constrained spline smoothing. The
update of the proposed algorithm has two desired properties:
achievements for fast spline interpolation can be directly
incorporated; it can be performed on an efficient dimensional
space, of which dimension is the same as the number
of given observations. These properties are established by
extending the so-called Gauss-Seidel method in linear alge-
bra to nonlinear system of equations. The efficacy of the
proposed algorithm is demonstrated in a numerical example
in InSAR signal processing.

1 Introduction

Spline smoothing is a regression technique of observed
noisy data with a smooth piecewise-polynomial function
[1]–[4], which aims not only to denoise smoothly observed
data, but also to explore the underlying system that generates
the observed data and discover properties on the system. In
fact, in feature extraction, rather than the resulting smoothed
data itself, its first- and second-order derivatives provide us
several features (of e.g. images and handwriting characters)
[5]–[7]; in the so-called phase unwrapping problem in the
SAR data processing [8]–[10], coefficients of each polyno-
mial acts significant role to recovery unwrapped phase signal
[11].

Meanwhile, designing fast algorithms for spline smooth-
ing is important in view of several (near-realtime) applica-
tions. Most of fast implementations for spline interpolation
and spline smoothing are realized through their careful
problem formalization, i.e., linearly constrained quadratic
programming w.r.t. coefficients of all the polynomials of the
spline, of which the solutions can be characterized in the
large sparse (structured) linear equation [12]. Hence the so-
lution can be obtained efficiently by suitable direct methods,
e.g., LU, Cholesky, or QR decompositions [13]–[15]. On the
other hand, to incorporate further prior information on noise
of the observed data (e.g., boundedness, nonngativity, or
probability distribution, etc.), convexly constrained quadratic
programming provides a natural problem formulation, which
can be solved by general iterative solvers [16]–[18]. How-
ever, the auxiliary problems in their updates might not share
the same structure with the spline interpolation/smoothing
problems, and therefore the aforementioned successful fast
implementations cannot be directly applied. In addition,
these algorithms in general introduce auxiliary variables
in their update, which require intensive computation and
memory complexity.

In this paper, we resolve these two weaknesses by
proposing fast iterative algorithms, for solving the con-
vexly constrained spline smoothing problem, having two
desired properties: (i) the update of the proposed algorithms
is characterized by two auxiliary problems, the standard
spline interpolation problem and computation of the met-
ric projection onto the convex constraint; (ii) the update
can be performed over the same dimensional space as
the given observed data. Clearly, these properties resolve
the above weaknesses, i.e., the first property implies that
the former auxiliary problem can be solved efficiently by
directly applying the successful fast implementations, and
the second property provides efficient computational and
memory complexity. In algorithm derivation, we extends
idea of the Gauss-Seidel method, in theory of linear system,
to nonlinear system; That is, for a nonlinear system charac-
terizing solution of the original spline smoothing problem,
we split the nonlinear system into its upper and lower trian-
gular systems and derive, with the two triangular systems,
the update of iterative algorithm. In addition, we provide
theoretical convergence analysis of the proposed algorithm.
Finally, a numerical example demonstrates that the proposed
algorithms significantly reduce the computational cost.

2 Preliminaries

Let ∆M := {ηi}M−1i=0 be a grid on an area1 Ω :=
[η0, ηM−1] ⊂ R s.t. η0 < η1 < · · · < ηM−1, and let
d, ρ ∈ Z+ s.t. 0 ≤ ρ < d. Define

Sρd (∆M ) := {f ∈ Cρ(Ω) | ∀i f = fi ∈ Pd over [ηi, ηi+1]}

as the set of all spline functions of degree d and smoothness
ρ on ∆M , where Cρ(Ω) stands for the set of all ρ-times
continuously differentiable functions over the interior of Ω
and Pd denotes the set of all polynomials whose degree is
d at most.

Assume that we observe samples of a twice continuously
differentiable function f∗ : Ω → R with additive noise
εi ∈ R on ∆M , i.e., we observe ζi = f∗(ηi) + εi at
ηi (i = 0, 1, . . . ,M − 1). In this situation, the problem of
interest is to reconstruct the unknown function f∗ ∈ C2(Ω)
by a C2-spline function s ∈ S2d(∆M ):

1Let R and Z+ denote respectively the set of all real numbers, nonneg-
ative integers. For any vector x, y ∈ RN , the inner product is defined by
〈x, y〉 = x>y. Hence its induced norm is ‖x‖ =

√
〈x, x〉 (x ∈ RN ).
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(Convexly Constrained Spline Smoothing Problem) Find
s∗ ∈ S2d(∆M ) minimizing∫ ηM

η0

|s′′(η)|2dη (1)

subject to (s(ηi) − ζi)
M−1
i=0 ∈ C, where C ⊂ RM is a

nonempty closed convex set. Note that obviously, if C =
{0} then this problem is reduced to the spline interpolation
problem.

The standard reformulation (see e.g. [19], [20]) of spline
smoothing problems into problems of all the coefficients,
of polynomials of the spline function, leads to a convexly
constrained quadratic programming problem

min
x∈RN

x>Qx =: φ(x) (2)

s.t. Hx = 0

Ix− ζ ∈ C,

where x ∈ RN is a coefficient vector of the spline
function, the cost function φ is nothing but the integral
of the squared second-order derivative in (1), the linear
constraint represents continuity condition of the first- and
the second-order derivatives of the spline, and the second
constraint is identical to the one introduced in the original
problem2. Here, all the matrices Q ∈ RN×N , H ∈ RMH×N ,
I ∈ RM×N are sparse. In addition, we can assume that Q
is symmetric and that I has specific properties3

II> = IM

PN (I) = IN − I>I.

We can clarify an obvious relationship of the spline
smoothing problem and the spline interpolation problem
by introducing a slack variable ξ ∈ RM which represents
difference of the observed sample ζ = (ζi)

M−1
i=0 ∈ RM and

the spline function, i.e.,

min
(ξ,x)∈RM×RN

x>Qx (3)

s.t. Hx = 0

Ix− ζ = ξ

ξ ∈ C.

Then if we fix the slack variable ξ, the problem (3) becomes
a spline interpolation problem

min
x∈RN

x>Qx (4)

s.t. Hx = 0

Ix = ζ + ξ,

of which solution can be characterized by the so-called
KKT system [21]. Then since the system becomes a large

2Although we only focus on the case where the two equality constraints
are feasible for any ξ ∈ C, such an assumption is natural (see e.g. [20]).

3We denote the identity matrix of size M as IM ∈ RM×M . For a
given matrix A, we denote its null as N (A). For a given nonempty closed
convex set S ⊂ RN , the projection PS : RN → RN onto S is defined by

PS(x) = argmin
y∈S

‖y − x‖.

sparse system of equations, the solution can be obtained
efficiently by suitable direct methods, i.e., LU, Cholesky, or
QR decompositions [15]. This fact provides us a guideline
to design iterative algorithms.

3 Proposed method
We shall propose an iterative algorithm to solve the

spline smoothing problem (3). Our derivation is two-fold:
clarifying a characterization of the problem; applying Gauss-
Seidel-like splitting to introduce a candidate operator de-
scribing the update. Applying iteratively the derived op-
erator, we can introduce an iterative algorithm of which
convergences are guaranteed.

Lemma 1 (Characterization of Solutions) The solution
of the spline smoothing problem (3) can be characterized
by4 (

IM + µ∂ιC Fµ
G J

)(
ξ∗
v∗

)
3 0, (5)

where

Fµ :=
(
−I OM×MH

−µIM IM
)

G :=


ON×M
OMH×M
IM
OM



J :=


2Q H> I> ON×M
−H OMH×MH

OMH×M OMH×M
−I OM×MH

OM IM
OM×N OM×MH

−IM ∂ι{ζ}



v∗ :=


x∗
λH∗
λζ∗
y∗

 ∈ RN × RMH × RM × RM =: H

with a user-defined parameter µ > 0. That is, if (ξ∗, v∗)
satisfies (5), then its (ξ∗, x∗) is a solution of the spline
smoothing problem (3); conversely, if (ξ∗, x∗) is a solution
of (3), then there exists a pair (ξ∗, v∗) satisfies that (5) and
the first upper block of v∗ is identical to x∗. Note that y∗ is
an auxiliary variable s.t. y∗ = Ix∗ − ξ∗, and λH∗, λζ∗ are
multipliers, i.e., λH∗ ∈ ∂ι{0}(Hx∗) and λζ∗ ∈ ∂ι{ζ}(y∗).

Theorem 1 (Gauss-Seidel-like Splitting) (a) For the char-
acterization (5), we shall define a Gauss-Seidel-like splitting
operator5: assume that the interpolation problem (4) has a
solution for any ξ ∈ C. Then there exists an operator J†G,
which maps from ξ ∈ C to v ∈ H s.t.

J(v) = −Gξ. (6)

4For a given nonempty closed convex set C, the indicator function is
defined by

ιC(x) :=

{
0 if x ∈ C
+∞ otherwise.

We denote zero matrix of size M×N as OM×N . For squared zero matrix
of size M ×M , we simply denote OM .

5Inspired by the Gauss-Seidel method, we split the characterization into
its upper and lower triangular parts, and utilize them to define an operator
to satisfy the relation (9).
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Algorithm 1: A Gauss-Seidel-like splitting algorithm
Init: ξ0 ∈ RM , stepsize µ > 0

Step 1: Update
ξk+1 = PC(−FµJ†G(ξk))
for k = 0, 1, . . . ,K

Step 2: Obtain a solution by vK = J†G(ξK)

Moreover, the operator T : RM × H → C × H, (ξ, v) 7→
(ξ+, v+) defined by

ξ+ = PC(−Fµv) (7)

v+ = J†G(ξ+) (8)

satisfies that6(
IM + µ∂ιC OM×MH

G J

)(
ξ+
v+

)
3
(

OM −Fµ
OMH×M OMH

)(
ξ
v

)
.

(9)

(b) Define the iterative algorithm, with initial (ξ0, v0), by(
ξk+1

vk+1

)
= T

(
ξk
vk

)
.

Then the following two convergences are guaranteed:
(i) assume that J†G is continuous and −Fµ ◦ J†G is aver-
aged nonexpansive [22]7. Then the sequence (ξk, vk)k≥1
converges to a some (ξ∞, v∞) ∈ Fix(T ), and a pair of
x∞ in v∞ and ξ∞ is a solution of problem (3);
(ii) suppose that√

µL‖xk+1 − xk‖ ≤ ‖ξk+1 − ξk‖

holds true for a some µ > 0. Then we have

φ(xk)− φ(x∗) ≤
µ−1‖ξ1 − ξ∗‖2

k
, ∀k ∈ Z+ \ {0}. (10)

Remark 1: (First desired property) The specially designed
operator J†G in the update (8) is nothing but a map from
the slack variable to a solution of the spline interpolation
problem (4): it is easy to show that (6) is identical to
the KKT system of (4). Hence its implementation can be
realized with several successful techniques. �

Fortunately, we can reduce computational complexity
of the algorithm by explicitly eliminating (vk)k≥0 in the
update. Since the update (7), (8) has a compact expression

ξk+1 = PC(−FµJ†G(ξk)),

we do not require to store (vk)k≥0 in the update. Moreover,
the following expression of −Fµ ◦ J†G as an affine operator
reduces further computational complexity on each iteration
(see Algorithm 2).

6We denote the dimension of H as MH := N +MH + 2M .
7The operator T : RN → RN is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ RN .

In addition, the nonexpansive operator T is called averaged if there exists
some α ∈ (0, 1) and some nonexpansive mapping U such that

T = (1− α)I + αU,

where I is the identity operator.

Algorithm 2: An efficient implementation of Alg. 1
Init 1: ξ0 ∈ RM , stepsize µ > 0
Init 2: Compute the LU decomposition L,U of

M̃ :=

(
2PN (I)QPN (I) PN (I)H

>

−HPN (I) OMH

)
and construct

M := I
[(

2QPN (I) H>
)
U†L−1

(
−2PN (I)Q

H

)
+ 2Q

]
I>.

Step 1: Update
ξk+1 = PC (ξk − µM(ξk + d))

for k = 0, 1, . . . ,K − 1.
Step 2: Obtain a solution by vK = J†G(ξK)

Proposition 1 The operator −Fµ ◦ J†G is expressed by

−FµJ†G(ξ+) = ξ+ − µM(ξ+ + ζ)

for any ξ+ ∈ C, where M∈ RM×M is defined by

M := I
[(

2QPN (I) H>
)
U†L−1

(
−2PN (I)Q

H

)
+ 2Q

]
I>

(11)

using the LU decomposition L,U of

M̃ :=

(
2PN (I)QPN (I) PN (I)H

>

−HPN (I) OMH

)
.

Remark 2: (Second desired property) Algorithm 2 using
Proposition 1 realizes the second desired property: since
M is of size M ×M , the entire update is performed on
RM , which is significantly efficient compared with that
of the characterization (5) (cf. MH > M ). Moreover, M
can be computed and stored before starting iterations, such
properties are appropriate to accelerate the iterations. �

4 Numerical Example

We examine efficacy of the propose method in the sense of
computational complexity. Consider the 2D spline smooth-
ing problem for InSAR application in [11].8 C is set as a
box constraint {ξ ∈ RM | ‖ξ‖∞ ≤ 0.1} as an example. The
data ζ is generated from zero mean Gaussian distribution
with unit variance, where the size of ζ ∈ RM varies from
M = 52 to 302.

Table 1 shows CPUtime comparison for three algorithms:
Algorithm 1 with a poor implementation of J†G; Algorithm
1 with a sophisticated LU decomposition; Algorithm 2.
In the Algorithm 1 with a poor implementation of J†G,
inverse matrices are directly constructed, which results in the
intensive computation cost in the preprocessing. The second
method avoids such intensive computation by a sophisti-
cated LU decomposition (UMFPACK [14] implemented in
MATLAB) and hence the CPUtime is reduced significantly
in the preprocessing9. In the sense of the total CPUtime,
Algorithm 1 is best for relatively large problem. Meanwhile,

8In [11], the 2D spline smoothing problem is considered. The 2D space
is partitioned in triangular regions, in a way of the so-called crisscross
partition, and on each region the Bernstein-Bézier polynomial of degree 4
is utilized.

9Note that in our implementation Algorithm 1 with UMFPACK computes
all the auxiliary variables in each iteration, hence the post processing is not
required.
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Table 1: Comparison of CPUtime, which is evaluated separately
for the following three processes: “pre.” implies the preprocess (i.e.,
the computation of matrix inversion and M in (11) beforehand
iterations); “iter.” shows the CPUtime for one iteration; “post.”
implies Step 2 in Alg. 2 (i.e., generating vK from ξK ).

Algorithm 1 Algorithm 1 Algorithm 2
size (poor) (UMFPACK)
52 pre. [sec] 3.6× 10−1 2.0× 10−2 2.0× 10−2

iter. [sec/iter] 4.3× 10−3 1.1× 10−3 9.0× 10−5

post. [sec] * * 1.2× 10−3

total [sec] 5.5× 10−0 4.6× 10−1 2.2× 10−1

102 pre. [sec] 12× 10−0 9.9× 10−2 3.2× 10−1

iter. [sec/iter] 5.9× 10−2 2.9× 10−3 1.1× 10−4

post. [sec] * * 1.8× 10−3

total [sec] 89× 10−0 2.0× 10−0 1.4× 10−0

152 pre. [sec] 95× 10−0 4.1× 10−1 1.7× 10−0

iter. [sec/iter] 2.3× 10−1 6.5× 10−3 3.3× 10−4

post. [sec] * * 6.4× 10−3

total [sec] 425× 10−0 3.5× 10−0 4.0× 10−0

202 pre. [sec] too long 1.1× 10−0 6.1× 10−0

iter. [sec/iter] not eval. 1.3× 10−2 1.1× 10−3

post. [sec] * * 1.2× 10−2

total [sec] too long 10× 10−0 10× 10−0

252 pre. [sec] too long 2.5× 10−0 16× 10−0

iter. [sec/iter] not eval. 1.8× 10−2 2.7× 10−3

post. [sec] * * 2.1× 10−2

total [sec] too long 17× 10−0 24× 10−0

302 pre. [sec] too long 39× 10−0 234× 10−0

iter. [sec/iter] not eval. 1.4× 10−1 5.4× 10−3

post. [sec] * * 1.4× 10−1

total [sec] too long 71× 10−0 246× 10−0

Algorithm 2 achieves the fastest computation for the itera-
tions by eliminating vk in the update. Therefore, for (near-
)realtime InSAR application, Algorithm 2 is the best choice
because the preprocessing can be performed before starting
measurement from the sky or from the cosmic space, i.e., the
CPUtime for the iterations and postprocessing is dominant.

5 Concluding Remarks
In this paper, we have proposed a novel iterative algorithm

to solve convexly constrained spline smoothing problems.
The update of the proposed algorithm is designed as the
composition of computing the projection onto convex con-
straint and finding spline interpolation, so that we can uti-
lize fast implementation techniques for spline interpolation
problems. In addition, the update can be performed on
a reasonable dimensional space, i.e., the update variable
belongs to the same dimensional space as the size of
observation data, which reflects the computational efficacy
of the proposed algorithm.

Our future work includes further acceleration of the
proposed algorithm by extending an over-relaxation for the
Nesterov’s technique [23]–[25].
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