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Abstract Nguyen, Takahashi and Yamada [NTY’12] pro-
posed a scheme for solving generalized Hermitian eigen-
value problem (GHEP) based on nested orthogonal com-
plement structure. In this paper, we first point out that the
previous estimate is not used properly in the time varying
coordinate system in [NTY’12] for estimation of the non-
first eigenvectors. For the proper use, we propose a projec-
tion step by introducing further multiplications of orthogonal
complement matrices. Numerical experiments show that the
convergence of non-first generalized eigenvectors become
stable by the modification.

1 Introduction

Generalized Hermitian eigenvalue problem (GHEP) is an
estimation problem, for a pair of Hermitian positive definite
matrices (Ry, Rx) ∈ CN×N ×CN×N , of vectors vi ∈ CN \
{0} satisfying

Ryvi = λiRxvi s.t. vH
i Rxvj = δi,j (i, j = 1, 2, . . . , N ),

(1)
where λi (0 < λ1 ≤ λ2 ≤ · · · ≤ λN ) is called the ith
minor generalized eigenvalue, (·)H stands for the conjugate
transpose of a vector or a matrix, and δi,j is the Kronecker
delta function. In this paper, (Ry, Rx) and vi are respec-
tively called a matrix pencil and the ith minor generalized
eigenvector of (Ry, Rx). The GHEP has been attracting
great attention in many branches of signal processing, e.g.,
subspace tracking [1], [2], blind source separation [3],
fault detection [4], pattern recognition [5], and array signal
processing [6]–[10].

Adaptive estimation of vi is also required and some adap-
tive estimators are proposed [11]–[13]. In our previous work,
we also proposed the scheme for tracking the first r minor
(or principal) generalized eigenvectors, which achieved the
lower estimation error and the robustness against additive
noise compared with [11]–[13] (see [14, Figs. 1 and 3])
while keeping the orthogonality. This scheme reduced esti-
mation problem of vi (i = 1, . . . , r) of (Ry, Rx) to that of
the first minor generalized eigenvector v

(i)
1 ∈ CN−i+1 of

a certain smaller matrix pencil (R
(i)
y , R

(i)
x ) (i = 1, . . . , r)

by using the nested orthogonal complement structure (Sec-
tion 2.1). The ith minor generalized eigenvector vi can
be calculated from v

(i)
1 because v

(i)
1 is an expression of

vi in a certain coordinate system ⊥i ∈ CN×(N−i+1),
i.e., vi = ⊥iv

(i)
1 . In application to adaptive estimation,

this relation is extended with the use of the time-varying
coordinate system ⊥i(k). However, we recently found that
the scheme [14] sometimes causes numerical instability in
certain situations.

In this paper, we analyse the reason of such instability
and propose an effective way to resolve this issue. Since
the scheme [14] assumed implicitly that the time-varying
coordinate system changes smoothly, the expression in the
previous coordinate system is reused in the current coordi-
nate system. However, if the time-varying coordinate system
changes relatively fast, then the consistency between the
previous expression and the current coordinate system is
lost, which leads to the numerical instability. To cope with
this significant change of the coordinate system, we propose
to use the expression of the nearest vector from the previous
estimate in the current coordinate system. This modification
can be done with low computational complexity just by
multiplying orthogonal complement matrices. Numerical ex-
periments in a scenario of adaptive subspace tracking show
the excellent performance of the proposed stabilization.

2 Preliminaries

Let R and C be respectively the set of all real numbers
and complex numbers. Capital and bold face small letters
respectively express a matrix and a vector. The Euclidean
norm and the B-norm of x := (x1, x2, . . . , xn)T ∈ CN are
respectively defined as ‖x‖ :=

√∑n
i=1 |xi|2 and ‖x‖B :=√

xHBx, where B ∈ CN×N is a Hermitian positive definite
matrix and (·)T stands for the transpose.

2.1 Nested Orthogonal Complement Structure

Definition 1 (B-orthogonal complement matrix) Let B ∈
CN×N be a Hermitian positive definite matrix. For w ∈
CN \ {0}, W⊥ ∈ CN×(N−1) is called a B-orthogonal
complement matrix of w if

WH
⊥ Bw = 0 and WH

⊥W⊥ = IN−1, (2)

where IN−1 ∈ R(N−1)×(N−1) is the identity matrix.

We can reduce the estimation problem of ith minor
generalized eigenvector u

(1)
i ∈ CN (i = 1, . . . , N ) of a

matrix pencil (A,B) ∈ CN×N × CN×N to that of the first
minor generalized eigenvector u

(i)
1 ∈ CN−i+1 a of certain

smaller matrix pencil (A(i), B(i)) (i = 1, . . . N ) by using
Fact 1 below.

Fact 1 (Nested orthogonal complement structure) Define N
matrix pencils (A(i), B(i)) recursively as (A(1), B(1)) :=
(A,B) and{

A(i+1) := (U (i)
⊥ )

H
A(i)U

(i)
⊥ ∈ C(N−i)×(N−i)

B(i+1) := (U (i)
⊥ )

H
B(i)U

(i)
⊥ ∈ C(N−i)×(N−i)

(i = 1, 2, . . . , N − 1),
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where U (i)
⊥ is a B(i)-orthogonal complement matrix of the

first minor generalized eigenvector u(i)
1 of (A(i), B(i)). Then

the ith minor generalized eigenvector u
(1)
i of (A,B) (i =

2, . . . , N ) is expressed as

u
(1)
i = U

(1)
⊥ U

(2)
⊥ · · · U

(i−1)
⊥ u

(i)
1 =: ⊥iu

(i)
1 . (3)

In (3), we can regard u
(i)
1 ∈ CN−i+1 as an expression of

u
(1)
i ∈ CN in the coordinate system ⊥i ∈ CN×(N−i+1).
By combining Fact 1 with Algorithm X which estimates

the first minor generalized eigenvector, we established the
following scheme for estimation of the first r minor gener-
alized eigenvectors [14, Scheme 1].

2.2 Adaptive estimation of generalized eigenvectors
In many signal processing applications, the matrix pencil

(Ry, Rx) in (1) are defined as a pair of covariance matrices
of input sequences (y(k))k≥0 and (x(k))k≥0, where k
denotes discrete time index. In adaptive case, we have to
estimate the matrix pencil (Ry, Rx) and its generalized
eigenvectors simultaneously. For such applications, we pro-
posed following scheme [14] where w

(1)
i (k) is the estimate

of the ith minor generalized eigenvector vi at time k.

Scheme 1 (Adaptive extraction of the first r minor gener-
alized eigenvectors)
1. Update the estimate (R

(1)
y (k), R

(1)
x (k)) of (Ry, Rx).

2. For i = 1, . . . , r,
a. Update the estimate w

(i)
1 (k), from w

(i)
1 (k−1), of the

first minor generalized eigenvector of the matrix pen-
cil (R

(i)
y (k), R

(i)
x (k)) on the basis of Algorithm X .

b. Compute a R
(i)
x (k)-orthogonal complement matrix

W
(i)
⊥ (k) of w(i)

1 (k).
c. Set R(i+1)

y (k) = (W (i)
⊥ (k))

H
R

(i)
y (k)W

(i)
⊥ (k),

R
(i+1)
x (k) = (W (i)

⊥ (k))
H
R

(i)
x (k)W

(i)
⊥ (k).

3. For i = 2, . . . , r, compute

w
(1)
i (k) =

(
i−1∏
s=1

W
(s)
⊥ (k)

)
w

(i)
1 (k).

4. k ← k+1. Repeat steps 1–4 until w(1)
i (k) (i = 1, . . . , r)

converge.

In [14], R(i)
x (k)-orthogonal complement matrix W

(i)
⊥ (k)

in Scheme 1-2.(b) is calculated as

W
(i)
⊥ (k) =

IN−i − 1

1+|w̄(i)
low(k)|

w̄
(i)
up(k) (w̄(i)

up(k))
H

−θ(w̄(i)
low(k)) (w̄(i)

up(k))
H

 ,

(4)
where w̄

(i)
up(k) ∈ CN−i and w̄(i)

low(k) ∈ C satisfy w̄
(i)
1 (k) :=

R(i)
x (k)w

(i)
1 (k)

‖R(i)
x (k)w

(i)
1 (k)‖

= [(w̄
(i)
up(k))T , w̄

(i)
low(k)]T and θ : C → C

is defined as

θ(w̄
(i)
low(k)) :=

{
1, if w̄(i)

low(k) = 0;
w̄

(i)
low(k)/|w̄(i)

low(k)|, otherwise.
(5)

Moreover, examples of (R
(1)
y (k), R

(1)
x (k)) and Algorithm

X are shown in Section 4 (see (11) and Algorithm 1).

3 Proper use of the previous estimate by a projection
We find that Scheme 1 has certain instability in the

estimation of the non-first minor generalized eigenvectors
vi (i = 2, . . . , r). In Scheme 1, since the non-first minor
generalized eigenvector is estimated by using the time-
varying coordinate system

⊥i(k) :=

i−1∏
s=1

W
(s)
⊥ (k) (6)

as w
(1)
i (k) = ⊥i(k)w

(i)
1 (k), the significant change of

⊥i(k) (e.g. caused by the discontinuity of θ (5)) directly
influences the estimation accuracy of vi. To see this, we
focus on Scheme 1-2a. In this step, the expression w

(i)
1 (k)

in the current coordinate system ⊥i(k) is updated from
w

(i)
1 (k − 1). However, the previous expression w

(i)
1 (k − 1)

in the current coordinate system ⊥i(k) does not stand for
the previous estimate precisely when the significant changes
of time-varying coordinate system occurs. In other words,
Scheme 1 disposes the previous estimate in such a case.

We stabilize Scheme 1 by maximumly utilizing the in-
formation of the previous estimate w

(1)
i (k − 1) = ⊥i(k −

1)w
(i)
1 (k−1) for the update of w(i)

1 (k). To take over previ-
ous estimate properly, we take a projection of w

(1)
i (k − 1)

onto the current coordinate system ⊥i(k), i.e.,

arg min
w∈R(⊥i(k))

∥∥w(1)
i (k − 1) −w

∥∥2

= ⊥i(k)
(
(⊥i(k))H⊥i(k)

)−1
(⊥i(k))

H
w

(1)
i (k − 1) (7)

= ⊥i(k) (⊥i(k))
H
w

(1)
i (k − 1), (8)

where R(⊥i(k)) stands for the range space of ⊥i(k) and
(8) is derived from (2) and (6). Since w

(1)
i (k−1) = ⊥i(k−

1)w
(i)
1 (k − 1) ≈ ⊥i(k) (⊥i(k))

H
w

(1)
i (k − 1), it is stable

to update w
(i)
1 (k) from (⊥i(k))Hw

(1)
i (k − 1) in stead of

w
(i)
1 (k− 1). More precisely, we propose to update w

(i)
1 (k)

from a R(i)
x (k)-normalized vector

w̃
(i)
1 (k − 1) :=

(⊥i(k))
H
w

(1)
i (k − 1)∥∥(⊥i(k))

H
w

(1)
i (k − 1)

∥∥
R

(i)
x (k)

(9)

instead of w(i)
1 (k−1), and we propose the following scheme.

Scheme 2 (Proposed scheme for stable adaptive estimation)
1. Update the estimate (R

(1)
y (k), R

(1)
x (k)) of (Ry, Rx).

2. For i = 1, . . . , r,
a. If i ≥ 2, compute w̃

(i)
1 (k − 1) by (9).

b. Update the estimate w
(i)
1 (k), from w̃

(i)
1 (k−1), of the

first minor generalized eigenvector of the matrix pen-
cil (R

(i)
y (k), R

(i)
x (k)) on the basis of Algorithm X .

c. Compute a R
(i)
x (k)-orthogonal complement matrix

W
(i)
⊥ (k) of w(i)

1 (k).
d. Set R(i+1)

y (k) = (W (i)
⊥ (k))

H
R

(i)
y (k)W

(i)
⊥ (k),

R
(i+1)
x (k) = (W (i)

⊥ (k))
H
R

(i)
x (k)W

(i)
⊥ (k).

3. For i = 2, . . . , r, compute

w
(1)
i (k) =

(
i−1∏
s=1

W
(s)
⊥ (k)

)
w

(i)
1 (k).
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Algorithm 1 Power method based algorithm [14]
With an arbitrary initial Rx-normalized vector w0 ∈ CN ,
generate a sequence {w(k)}k≥0 by

ŵ(k + 1) =

(
1

µ
IN −R−1

x Ry

)
w(k)

w(k + 1) =
ŵ(k + 1)

‖ŵ(k + 1)‖Rx

(10)

with step size µ > 0, where w(k) is the estimate of the first
minor generalized eigenvector at time k.

4. k ← k+1. Repeat steps 1–4 until w(1)
i (k) (i = 1, . . . , r)

converge.

The complexity of Scheme 2 does not increase so much
compared with Scheme 1. To see this, we shall observe
the complexity of Scheme 2-2a. The calculation of (9)
can be separated into two steps, (⊥i(k))Hw

(1)
i (k − 1)

and R(i)
x (k)-normalization. From (6), (⊥i(k))Hw

(1)
i (k− 1)

requires (i − 1) times multiplications of vectors and or-
thogonal complement matrices. Since multiplication of a
vector t ∈ CN−s+1 and a conjugate transpose of an or-
thogonal complement matrix (W

(s)
⊥ )H ∈ C(N−s)×(N−s+1)

can be computed with O(2(N − s)) multications by (4),
(⊥i(k))Hw

(1)
i (k−1) requires O(2Ni− i2) multiplications.

The R(i)
x (k)-normalization needs O(N2 − 2Ni + i2), then

the complexity of (9) is O(N2). Since (9) is calculated
for i = 2, . . . , r, the total computational complexity of
Scheme 2-2a is O(N2r). This computational complexity
is much smaller than the total computational complexity
O(12N2r − 11Nr2 + 11r3/6) of Scheme 1 [14].

4 Application to Subspace Tracking

In Scheme 1 and Scheme 2, we estimate the matrix
pencil (Ry, Rx) as a pair of exponential weighted sample
covariance matrices{

R(1)
y (k) = βR(1)

y (k − 1) + y(k)y(k)H

R(1)
x (k) = αR(1)

x (k − 1) + x(k)x(k)H
(11)

with forgetting factors α, β ∈ (0, 1). In addition, we employ
Algorithm 1 (Power method based algorithm [14]) for
Algorithm X . 1

4.1 Performance criteria
In a scenario of application to subspace tracking, we

evaluate the performance of Scheme 2 (proposed scheme)
compared with Scheme 1 through L (= 100) independent
runs. For comparison, we observe the similarity between
vi and w

(1)
i,j (k) (the ith minor generalized eigenvector of

(Ry, Rx) and the estimate of vi at time k in the jth inde-
pendent run) in terms of Direction Cosine and its average

DCi,j(k) :=
|(w(1)

i,j (k))Hvi|

‖w(1)
i,j (k)‖‖vi‖

1We also employ Normalized Quasi-Newton Algorithm [16] for Algo-
rithm X , and its performance is submitted to IEEE ICASSP 2016.

and

ADCj(k) :=
1

r

r∑
i=1

DCi,j(k).

Define the averages of DCi,j(k) and ADCj(k) in L indepen-
dent runs as DCi(k) := 1

L

∑L
j=1 DCi,j(k) and ADC(k) :=

1
L

∑L
j=1 ADCj(k). We also measure numerical stabilities by

two kinds of Sample Standard Deviations

SSDi(k) :=

√√√√ 1

L− 1

L∑
j=1

(
DCi,j(k)− DCi(k)

)2
and

SSD(k) :=

√√√√ 1

L− 1

L∑
j=1

(
ADCj(k)− ADC(k)

)2
.

4.2 Numerical Experiments
The input samples are generated by

y(k) =
√

2 sin(0.37πk + θ1) + n1(k)

and

x(k) =
√

2 sin(0.42πk+θ2)+
√

2 sin(0.65πk+θ3)+n2(k),

where the initial phase θi(i = 1, 2, 3) has the uniform
distribution in [0, 2π], n1(k) and n2(k) are white Gaus-
sian noise with variance σ2 = 0.1. The input vectors
y(k) ∈ RN and x(k) ∈ RN (N = 8) are defined
as y(k) := (y(k), y(k − 1), . . . , y(k − N + 1))T and
x(k) := (x(k), x(k − 1), . . . , x(k −N + 1))T (k ≥ N ).2

We adaptively estimate the first four (r = 4) minor
generalized eigenvectors vi (i = 1, 2, 3, 4) of the matrix
pencil (Ry, Rx) with the parameters α = β = 0.998,
η = 1/(λN + λ1), and the initial estimates R

(1)
y (0) =

R
(1)
x (0) = IN .
Figure 1 shows one of the outcomes in L (= 100) inde-

pendent runs. Figure 1(a) depicts θ(w̄(i)
low) (i = 1, 2, 3). In

this case, θ(w̄(i)
low) returns the sign of w̄(i)

low. Figures 1(b) and
1(c) respectively depict DCi,j (i = 1, 2, 3, 4) of Scheme 1
and Scheme 2. From Fig. 1, we observe that when θ(w̄(i)

low)

changes significantly (i.e., when the sign of w̄(i)
low changes

from positive/negative to negative/positive), the estimation
by Scheme 1 is unstable while the estimation by Scheme 2
is stable. Figure 2 shows the result in L (=100) independent
runs. Figures 2(a), 2(b) and 2(c) respectively depict ADC,
SSDi and SSD of Scheme 1 and Scheme 2 (note that in
Fig. 2(b), there is no difference between Scheme 1 and
Scheme 2 for the estimation of the first minor generalized
eigenvector v1). From these figures, Scheme 2 achieves the
improvement for SSD and SSDi. Especially, SSDi (i = 3, 4)
in Fig. 2(b) are significantly improved.

2The covariance matrices Ry , Rx ∈ RN×N are given as{
(Ry)i,j := cos (0.37π(j − i)) + δi,jσ

2,

(Rx)i,j := cos (0.42π(j − i)) + cos (0.65π(j − i)) + δi,jσ
2,

where (·)i,j stands for the (i, j)-component of the matrix. These matrices
are used for computing true generalized eigenvectors vi.
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Figure 1: One of the outcomes in 100 independent runs.
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Figure 2: Results in 100 independent runs (Sc.1 and Sc.2 respectively stand for Scheme 1 and Scheme 2 in (b)).

5 Conclusions

We found that the numerical instability of the original
adaptive eigenvector extraction (Scheme 1) is caused by the
significant change of the time-varying coordinate systems.
To cope with the significant change, we proposed to use the
expression of the nearest vector from the previous estimate
in the current coordinate system. This proposed stabilization
is realized by the projection of the previous estimate onto
the range space of the current coordinate system, and its
complexity is low compared with the total complexity of the
original scheme. Numerical experiments show that proposed
scheme achieved the excellent performance of the proposed
stabilization.
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