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Abstract– Fringe projection is a technique to measure three-dimensional (3D) shapes of objects by projecting structured
light patterns onto the objects. Many fringe projection techniques first compute, by using at least three fringe patterns, the
cosine and the sin of the continuous phase distribution which corresponds to the 3D shape of the object, and then estimate
the continuous phase by some phase unwrapping algorithm. In the last two decades, for 3D measurement of transient
phenomena, reconstruction of the continuous phase from a single fringe pattern has been challenged. In this case, since
we can use only the cosine of the continuous phase, we have to estimate sign function of the sine of the continuous
phase. In this report, inspired by Goldstein’s branch cut phase unwrapping algorithm, we formulate this sign estimation
problem as a binary optimization problem, and propose a branch cut type algorithm for solving the optimization problem.
Numerical experiments show the effectiveness of the proposed sign estimator compared with a state-of-the-art estimator.
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1 Introduction
Fringe projection is a major technique to obtain three-

dimensional (3D) surface information of objects in a non-
contact manner1)–3), and widely used in biomedical4)–6),
industrial7)–9), kinematics10), 11), and biometric12), 13) ap-
plications. A typical fringe projection profilometry system
is illustrated in Fig. 1. It consists of a projector, a camera
and a digital computer. First, the projector projects sinu-
soidal fringe patterns onto an object. Second, the camera
records images of the fringe patterns which are distorted
due to the surface profile of the object. Third, from the
recorded images, the digital computer estimates the con-
tinuous phase distribution which corresponds to the hori-
zontal projector pixels by using some fringe analysis com-
posed of wrapped phase detection and phase unwrapping
steps. Finally, a 3D surface is computed from the camera
pixels and the projector pixels on the basis of triangulation.

A most popular fringe projection technique is the fol-
lowing three-step phase-shifting method14) because it can
obtain 3D information stably from only three simple fringe
patterns. Three different fringe images Ik (k = 1, 2, 3),
whose phases are shifted by 2π/3 from each other, are
recorded on two-dimensional lattice points (x, y) ∈ L as

I1(x, y)=a(x, y)+b(x, y) cos(ϕ(x, y))+n1(x, y)

I2(x, y)=a(x, y)+b(x, y) cos(ϕ(x, y)− 2π
3 )+n2(x, y)

I3(x, y)=a(x, y)+b(x, y) cos(ϕ(x, y)+ 2π
3 )+n3(x, y)

,

(1)
where L is the set of all lattice points captured by the cam-
era, a is a slowly varying background illumination, b is
the fringe amplitude that is also a low-frequency signal,
ϕ is the continuous phase distribution (the so-called un-
wrapped phase) to be estimated, and nk (k = 1, 2, 3) are
independent additive noises. The noisy wrapped phase

ϕW (x, y) := W (ϕ(x, y) + ν(x, y)) ∈ (−π, π] (2)

is computed from cos(ϕW ) = 2I1−I2−I3√
(2I1−I2−I3)2+3(I2−I3)2
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Fig. 1: Typical fringe projection profilometry system

and sin(ϕW ) =
√
3(I2−I3)√

(2I1−I2−I3)2+3(I2−I3)2
, where ν ∈

(−π, π] is phase noise and W : R → (−π, π] is defined by

∀φ ∈ R ∃η ∈ Z φ = W (φ)+2πη and W (φ) ∈ (−π, π].

ϕ is estimated from ϕW by using some two-dimensional
phase unwrapping algorithm15)–18), and 3D information is
obtained from the camera pixel (x, y) ∈ L and the hori-
zontal projector pixel θ = ϕ(x, y) by using triangulation.

However, the phase-shifting method requires that the
physical quantities a, b and ϕ remain constant during the
time needed to record the images Ik (k = 1, 2, 3), i.e.,
a, b and ϕ must be common for all indices k = 1, 2, 3
in (1). This condition is not satisfied when transient phe-
nomena are measured19) or the environment is hostile. To
deal with such situations, reconstruction of ϕ from a sin-
gle fringe image I1 in (1) is studied, and several phase re-
covery algorithms have been proposed19)–25). These algo-
rithms usually use a high pass filter20) to remove the back-
ground illumination a, and then use Hilbert transform26)

to normalize the fringe amplitude b. As a result, from I1
in (1), we can obtain the normalized fringe image

I(x, y) = cos(ϕ(x, y) + ν(x, y)) ∈ [−1, 1]. (3)



From (2) and (3), the absolute value of the wrapped phase
is computed as

|ϕW (x, y)| = arccos(I(x, y)) ∈ [0, π].

From ϕW (x, y) ∈ (π, π], we have ϕW (x, y) = |ϕW (x, y)|
if |ϕW (x, y)| = 0 or |ϕW (x, y)| = π, and

ϕW (x, y) = sgn(ϕW (x, y))|ϕW (x, y)| (4)

otherwise, where sgn(x) := +1 for x ≥ 0 and sgn(x) :=
−1 for x < 0. Therefore, in order to compute ϕW (x, y)
for all (x, y) ∈ L, we have to resolve sign ambiguity in (4).

In this report, on the basis of the discussions in [18], we
introduce a minimization problem for the approximated
energy of local change of ϕ so that we use a minimizer
of the cost function for determination of sgn(ϕW (x, y))
(see Section 2). For solving this minimization problem,
we propose a branch cut type algorithm in Section 3. The
word “branch cut type” means that the proposed method
consists of steps similar to the steps used in Goldstein’s
branch cut17), which is a famous two-dimensional phase
unwrapping algorithm. Finally, numerical experiments in
Section 4 demonstrate the effectiveness of the proposed
method compared with the existing method in [23].

2 Minimization of Energy of Local Change
for Sign Ambiguity Resolution

Let L := {(xi, yj)}i=1,2,...,m
j=1,2,...,n s.t. x1 < x2 < · · · < xm

and y1 < y2 < · · · < yn, and let Ω := [x1, xm]× [y1, yn].
By assuming that the normalized image I is noise-free,

i.e., ν(x, y) = 0 in (3), the relation between the image
gradient ∇I(x, y) := ( ∂I∂x (x, y),

∂I
∂y (x, y))

T and the phase

gradient ∇ϕ(x, y) := (∂ϕ∂x (x, y),
∂ϕ
∂y (x, y))

T is deduced as

∇I(x, y) = − sin(ϕ(x, y))∇ϕ(x, y).

As shown above, the orientation of ∇ϕ(x, y) is the same
as or opposite to that of ∇I(x, y) depending on s(x, y) :=
sgn(W (ϕ(x, y))) = sgn(sin(ϕ(x, y))). Moreover, on the
basis of the idea of functional data analysis18), 27), by try-
ing to minimize the energy of local change of ϕ (defined
as the L2 norm of the second order partial derivative of ϕ):∫∫

Ω

[∣∣∣∣∂2ϕ

∂x2

∣∣∣∣2 + 2

∣∣∣∣ ∂2ϕ

∂x∂y

∣∣∣∣2 + ∣∣∣∣∂2ϕ

∂y2

∣∣∣∣2
]
dxdy

≈
m∑
i=1

n−1∑
j=1

∥∇ϕ(xi, yj+1)−∇ϕ(xi, yj)∥2

+

m−1∑
i=1

n∑
j=1

∥∇ϕ(xi+1, yj)−∇ϕ(xi, yj)∥2 ,

we introduce the following optimization problem, which is
similar to that proposed in [19] for estimation of s(xi, yj).

Problem 1 (Approximated energy minimization problem)
Find S∗ := (s∗i,j) ∈ {−1,+1}m×n minimizing

J(S) :=

m∑
i=1

n−1∑
j=1

∥si,j+1vi,j+1 − si,jvi,j∥2

+

m−1∑
i=1

n∑
j=1

∥si+1,jvi+1,j − si,jvi,j∥2 , (5)

where vi,j :=
∇I(xi,yj)

∥∇I(xi,yj)∥ (i = 1, 2, . . . ,m and j =
1, 2, . . . , n) are the normalized image gradient vectors at
(xi, yj), and ∇I(xi, yj) are approximately computed by
applying, e.g., the Prewitt or the Sobel operator, to I in (3).

After finding a minimizer S∗ = (s∗i,j) ∈ {−1,+1}m×n,
the wrapped phase ϕW at (xi, yj) ∈ L is estimated by

ϕW (xi, yj) =


0 if |ϕW (xi, yj)| = 0;

π if |ϕW (xi, yj)| = π;

s∗i,j |ϕW (xi, yj)| otherwise.

Remark 1 There are at least two minimizers of (5) be-
cause J(S) = J(−S) for any S ∈ {−1,+1}m×n. Actu-
ally, we need other information to judge which minimizer
should be used for the above wrapped phase estimation.

3 Branch Cut Type Sign Estimator
3.1 Transformation of Problem 1 to Another Problem

Let Jh
i,j(si,j , si,j+1) := ∥si,j+1vi,j+1 − si,jvi,j∥2 and

Jv
i,j(si,j , si+1,j) := ∥si+1,jvi+1,j − si,jvi,j∥2 in (5).

Then Jh
i,j and Jv

i,j depend only sign changes between
neighboring pairs (si,j , si,j+1) and (si,j , si+1,j), respec-
tively. For a sign matrix S = (si,j) ∈ {−1,+1}m×n, we
define sign change matrices Ch = (chi,j) ∈ {0, 1}m×(n−1)

and Cv = (cvi,j) ∈ {0, 1}(m−1)×n as

chi,j :=

{
0 if si,j+1 = si,j ;

1 if si,j+1 = −si,j ,
(6)

and

cvi,j :=

{
0 if si+1,j = si,j ;

1 if si+1,j = −si,j .
(7)

Moreover, by defining new cost functions Ĵh
i,j : {0, 1} →

R+ and Ĵv
i,j : {0, 1} → R+ as{
Ĵh
i,j(0) := Jh

i,j(+1,+1) = Jh
i,j(−1,−1);

Ĵh
i,j(1) := Jh

i,j(+1,−1) = Jh
i,j(−1,+1),

and {
Ĵv
i,j(0) := Jv

i,j(+1,+1) = Jv
i,j(−1,−1);

Ĵv
i,j(1) := Jv

i,j(+1,−1) = Jv
i,j(−1,+1),

Problem 1 can be replaced with Problem 2 below.

Problem 2 (Alternative expression of Problem 1) Find
(C∗

h,C
∗
v) ∈ {0, 1}m×(n−1) × {0, 1}(m−1)×n minimizing

Ĵ(Ch,Cv) :=

m∑
i=1

n−1∑
j=1

Ĵh
i,j(c

h
i,j) +

m−1∑
i=1

n∑
j=1

Ĵv
i,j(c

v
i,j)

(8)
subject to

chi,j ⊕ cvi,j+1 ⊕ chi+1,j ⊕ cvi,j = 0 (9)

for all i = 1, 2, . . . ,m− 1 and j = 1, 2, . . . , n− 1, where
⊕ denotes the exclusive disjunction, i.e., 0⊕0 = 1⊕1 = 0
and 0⊕ 1 = 1⊕ 0 = 1 hold.



(a) (b)
Fig. 2: Illustration of the idea of the proposed branch cut type sign estimator: (a) detection of every closed loop satisfying
(10) by using the locally ideal sign changes ch,min

i,j and ch,min
i,j computed from vi,j (i = 1, 2, . . . , 5 and j = 1, 2, . . . , 6) and

(b) constructions of branches, sign changes chi,j and cvi,j , and corresponding signs si,j (i = 1, 2, . . . , 5 and j = 1, 2, . . . , 6).

3.2 Branch Cut Type Algorithm for Solving Problem 2
To minimize (8) under condition (9), we propose the

following branch cut type algorithm, which consists of
steps similar to residue detection, branch construction and
path integration steps in Goldstein’s branch cut17) for two-
dimensional phase unwrapping. In what follows, assume
that Ĵh

i,j(0) ̸= Ĵh
i,j(1) and Ĵv

i,j(0) ̸= Ĵv
i,j(1) for all i and j.

1. Define ch,min
i,j := argminc∈{0,1}Ĵ

h
i,j(c) and cv,min

i,j :=

argminc∈{0,1}Ĵ
v
i,j(c) as locally ideal sign changes.

Detect every closed loop ((xi, yj) → (xi, yj+1) →
(xi+1, yj+1) → (xi+1, yj) → (xi, yj)) satisfying

ch,min
i,j ⊕ cv,min

i,j+1 ⊕ ch,min
i+1,j ⊕ cv,min

i,j = 1. (10)

Mark the center of such a closed loop (see Fig. 2(a)).

2. Create branches as shown in Fig. 2(b). Each branch
is defined as a path connecting two centers marked in
the first step, or a path connecting one center marked
in the first step and the outside of the image. Then
we can construct sign change matrices Ch and Cv

satisfying condition (9) by defining

chi,j :=


ch,min
i,j ⊕1 if


(xi, yj) and (xi, yj+1)

lie on the left and right

sides of some branch;

ch,min
i,j otherwise,

and

cvi,j :=


cv,min
i,j ⊕1 if


(xi, yj) and (xi+1, yj)

lie on the upper and lower

sides of some branch;

cv,min
i,j otherwise.

3. Construct a sign matrix S corresponding to the sign
change matrices Ch and Cv defined in the second
step, by using relations (6) and (7) (see Fig. 2(b)).

4 Numerical Experiments
We compare the effectiveness of the proposed sign es-

timator with that of the existing algorithm in [23] for two
objects shown in Figs. 3(a) and 4(a). In both experiments,
we set L := {(xi, yj)}i=1,2,...,256

j=1,2,...,256, and set a(x, y) = 1,
b(x, y) = 2, and n1(x, y) = 0 for all (x, y) ∈ L in (1). We
generate the normalized fringe image I(x, y) ((x, y) ∈ L)
by subtracting 1

65536

∑256
i=1

∑256
j=1 I1(xi, yj) from I1(x, y)

followed by the normalization into [−1, 1].
Figure 3(b) shows1 the normalized fringe image I(x, y)

((x, y) ∈ L) based on the object in Fig. 3(a). Figure 3(c)
shows the true sign s(x, y) = sgn(W (ϕ(x, y))), to be es-
timated (see Section 2), of the noiseless wrapped phase
W (ϕ(x, y)) in Fig. 3(f). Figures 3(d) and 3(g) respectively
depict the sign and the wrapped phase estimated by the al-
gorithm in [23] using the parameters µ = 1 and Γ = 11.
Figures 3(e) and 3(h) respectively depict the sign and the
wrapped phase estimated by the proposed method, where
we construct branches by repeatedly connecting the clos-
est pair of centers of closed loops satisfying (10). From
these figures, we observe that the proposed branch cut type
sign estimator achieves lower error rate ( 190

65536 ≈ 0.29%)
compared with the existing algorithm in [23] ( 1053

65536 ≈
1.61%) especially around the edges of the object.

Figure 4(b) shows I(x, y) for the other object (“teapot”
provided in MATLAB R⃝) in Fig. 4(a). Figure 4(c) shows
the sign s(x, y) of W (ϕ(x, y)) in Fig. 4(f). Figures 4(d)
and 4(g) depict the sign and the wrapped phase estimated
by the algorithm in [23]. Figures 4(e) and 4(h) depict the
sign and the wrapped phase estimated by the proposed
method. In this experiment, the proposed sign estimator
achieves again lower error rate ( 141

65536 ≈ 0.22%) compared
with the existing algorithm in [23] ( 1167

65536 ≈ 1.78%).
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1For each image in Figs. 3(b)–3(h) and 4(b)–4(h), the sample values
in [Min,Max] on L are rescaled into [0 (black), 255 (white)].
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Fig. 3: Experimental results (I): (a) object, (b) I(x, y),
(c) s(x, y) = sgn(W (ϕ(x, y))) (to be estimated), (d) signs
estimated by [23], (e) signs estimated by the proposed
method, (f) W (ϕ(x, y)), (g) ϕW (x, y) based on the signs
in (d), and (h) ϕW (x, y) based on the signs in (e).
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