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Abstract– In this report, we introduce the main ideas of our approach [Kitahara and Yamada, IEEE Transactions on
Signal Processing, (accepted for publication)] for high-resolution 2D phase unwrapping. In the first step (SPS: SPline
Smoothing), we construct a pair of the smoothest spline functions which minimize the energies of their local changes while
interpolating respectively the cosine and the sine of given wrapped phase. If these functions have no common zero over
the domain of our interest, the proposed estimate of the unwrapped phase can be obtained by algebraic phase unwrapping
in the second step (APU: Algebraic Phase Unwrapping) as a continuous function. The smoothness of the proposed
unwrapped phase function is guaranteed globally over the domain without losing any consistency with the wrapped phase.
Numerical experiments for terrain height estimation demonstrate the effectiveness of the proposed method.
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1 Introduction
Two-dimensional (2D) phase unwrapping1), 2) is an esti-

mation problem of an unknown continuous phase function
Θ : Ω → R from its noisy wrapped samples

ΘW (x, y) := W (Θ(x, y) + ν(x, y)) ∈ (−π, π] (1)

observed at (x, y) ∈ G (⊂ Ω), where Ω (⊂ R2) is a simply
connected closed region, G is the set of finite sampling
points, ν is additive phase noise, and W : R → (−π, π] is
the wrapping operator defined by

∀ϑ ∈ R ∃η ∈ Z ϑ = W (ϑ)+2πη and W (ϑ) ∈ (−π, π].

Θ and ΘW are respectively called the unwrapped phase
and the wrapped phase. 2D phase unwrapping is important
for signal and image processing applications such as ter-
rain height estimation and landslide identification by inter-
ferometric synthetic aperture radar (InSAR)3)–10), seafloor
depth estimation by interferometric synthetic aperture
sonar (InSAS)11)–14), 3D shape measurement by fringe
projection15)–18) or X-ray19)–22), and water/fat separation
in magnetic resonance imaging (MRI)23)–26).

As remarked clearly in [27], all commonly used phase
unwrapping algorithms are based on the assumption that
the true unwrapped phase field varies slowly enough that
in most places, neighboring phase values are within one-
half cycle (π rad) of one another, i.e., it is assumed that
∆Θi := Θ(x̃, ỹ)−Θ(x, y) ∈ (−π, π] for most neighbor-
ing pairs of samples i := ((x, y), (x̃, ỹ)) ∈ G × G. Such
algorithms have been designed to suppress a certain func-
tion J measuring the unwrapped phase differences ∆Θi

for all neighboring pairs i ∈ G × G as

J(Θ) :=
∑
i

wi

∣∣∆Θi −W
(
∆ΘW

i

)∣∣p,

where wi > 0, p > 0, Θ := vec(Θ(x, y))(x,y)∈G stands
for the vectorization of Θ(x, y) on G, and ∆ΘW

i :=
ΘW (x̃, ỹ)−ΘW (x, y) is the wrapped phase difference be-
tween a neighboring pair of samples i = ((x, y), (x̃, ỹ)).

For example, branch cut (BC) algorithm5) and minimum
spanning tree (MST) algorithm27) employ p → +0, min-
imum cost flow (MCF) algorithm28) employs p = 1, and
least squares (LS) algorithm29) employs p = 2. Such a
specification of J is introduced on the basis of a simple
property that, under the assumption ν = 0,

∆Θi = W (∆ΘW
i ) ⇔ ∆Θi ∈ (−π, π].

Then the algorithms try to use a minimizer of J as an esti-
mate of the unwrapped phase.

BC, MST and MCF algorithms assume that noise ν in
(1) is small enough and try to find a minimizer of J under
the condition

∀(x, y) ∈ G W (Θ(x, y)) = ΘW (x, y) (2)

This type of optimization problem is combinatorial and in-
tractable due to condition (2). In order to solve this prob-
lem, these algorithms use an elegant technique developed
originally for network flow in graph theory2), 27). In this
approach, if the observed wrapped phase has only small
noise and the unwrapped phase difference is sufficiently
small with respect to sampling interval, we can construct
a very good estimate. However, otherwise, condition (2)
is violated due to noise ν in (1), and the minimizer of J is
hard to compute due to condition (2).

LS algorithm directly computes a minimizer Θ∗ of J
without requiring condition (2). In this approach, even
if the observed wrapped phase is noisy, Θ∗ can be ob-
tained. However the consistency between Θ∗ and ΘW ,
i.e., W (Θ∗(x, y)) ≈ ΘW (x, y) is not guaranteed at many
sampling points (x, y) ∈ G.

In this paper, we propose a completely different alge-
braic approach to 2D phase unwrapping by exploiting the
property of ΘW ∈ (−π, π]:

ΘW = W (Θ + ν)

⇔
(
cosΘW , sinΘW

)
=

(
cos(Θ + ν), sin(Θ + ν)

)
.
(3)



The proposed scheme achieves a high-resolution esti-
mate of the unwrapped phase Θ unlike many existing
algorithms5), 10), 25)–29). We estimate Θ as the continuous
phase function θf ∈ C2(Ω) of a twice continuously dif-
ferentiable complex function f := f(0) + ıf(1) = |f |eıθf ,
where f(0) ∈ C2(Ω) and f(1) ∈ C2(Ω) have no com-
mon zero over Ω (see Notation in the end of this section).
Then the estimation problem of Θ is replaced with those
of f(0) and f(1) which respectively approximate cosΘ and
sinΘ. Clearly, by (3), f(0) and f(1) are desired to inter-
polate respectively cos(ΘW (x, y)) = cos(Θ(x, y)) and
sin(ΘW (x, y)) = sin(Θ(x, y)) if ν(x, y) = 0 at (x, y) ∈
G. Motivated by the main idea of functional data analy-
sis30)–32), we assume that f is “smooth” which means that
the energy of local change is small over Ω, and adopt the
bivariate spline space as the set of all candidates of f(0)
and f(1). After finding the smoothest spline functions f∗

(0)

and f∗
(1) which are consistent with the wrapped phase in-

formation cos(ΘW (x, y)) and sin(ΘW (x, y)) at (x, y) ∈
G (SPline Smoothing (SPS)), the continuous phase func-
tion θf∗ of f∗ := f∗

(0) + ıf∗
(1) = |f∗|eıθf∗ is analytically

computed, as the proposed estimate of Θ, by Algebraic
Phase Unwrapping (APU)33)–37). This approach is partic-
ularly effective in the case where phase noise ν is rela-
tively small and f∗ has no zero over Ω. Indeed, by this
approach, we can maximize a certain smoothness of θf
subject to the condition W (θf (x, y)) ≈ ΘW (x, y) for all
sampling points (x, y) ∈ G unlike other algorithms. Nu-
merical experiments for InSAR terrain height estimation
demonstrate the effectiveness of the proposed scheme.

Notation Let Z, Z+, R, R+ and C be the set of all in-
tegers, non-negative integers, real numbers, non-negative
real numbers, and complex numbers, respectively. We use
ı ∈ C to denote the imaginary unit, i.e., ı2 = −1, and
use i, j ∈ Z+ for general indices. For any set S, card(S)
stands for its cardinal number. For ρ ∈ Z+, Cρ(Ω) stands
for the set of all ρ-times continuously differentiable real-
valued functions over a simply connected region Ω ⊂ R2.
A boldface letter expresses a vector or a matrix.

2 Preliminaries—Bivariate Spline Function
We restrict ourselves to partitioning a polygonal domain

Ω ⊂ R2 into triangles because these have the most flexi-
bility with respect to the resolution of discretization in Ω.

Define a triangle T ⊂ R2, by specifying three vertices
vk := (xk, yk) ∈ R2 (k = 1, 2, 3) which are not arranged
linearly, i.e., ϱ := x1y2 − y1x2 + x2y3 − y2x3 + x3y1 −
y3x1 ̸= 0, as

T := ⟨v1,v2,v3⟩

:=

{
rv1 + sv2 + tv3 ∈ R2

∣∣∣∣∣ r, s, t ∈ [0, 1]

r + s+ t = 1

}
.

Let ∆ := {Ti}Ni=1 be a collection of triangles Ti ⊂ R2

whose union forms a simply connected closed region Ω ⊂
R2, i.e.,

∪N
i=1 Ti = Ω. If, for any pair of triangles Ti ∈ ∆

and Tj ∈ ∆ (i ̸= j), Ti ∩ Tj is either empty or a com-
mon edge or a common vertex, the collection ∆ is called a

regular triangulation. Given a regular triangulation ∆ and
ρ, d ∈ Z+ s.t. 0 ≤ ρ < d, define

Sρ
d (∆) := {f ∈ Cρ(Ω) | ∀Ti ∈ ∆ f = fi ∈ Pd over Ti}

as the set of all bivariate spline functions of degree d and
smoothness ρ on ∆, where Pd stands for the set of all bi-
variate polynomials whose degree is d at most, i.e., Pd :=
{f : R2 → R : (x, y) 7→

∑d
i=0

∑d−i
j=0 ci,jx

iyj | ci,j ∈ R}.
For T = ⟨v1,v2,v3⟩ s.t. vk = (xk, yk) ∈ R2 (k =

1, 2, 3), every (x, y) ∈ R2 can be expressed in the form

(x, y) = rv1 + sv2 + tv3 s.t. r + s+ t = 1,

where (r, s, t) is called barycentric coordinate38), 39) of
(x, y) with respect to T and expressed as

r = ((y2 − y3)x− (x2 − x3)y + x2y3 − y2x3)/ϱ

s = ((y3 − y1)x− (x3 − x1)y + x3y1 − y3x1)/ϱ

t = ((y1 − y2)x− (x1 − x2)y + x1y2 − y1x2)/ϱ

 .

By using the above expression of (x, y), the Bernstein-
Bézier polynomial of degree d is defined, for T and
(l,m, n) ∈ Z3

+ satisfying l +m+ n = d, as

BT
l,m,n : R2 → R : (x, y) 7→ d!

l!m!n!
rlsmtn.

It is known that {BT
l,m,n | l,m, n ∈ Z+ and l+m+n = d }

is a basis of Pd, and hence any piecewise polynomial f ,
whose restriction fi to Ti ∈ ∆ satisfies fi ∈ Pd (i =
1, 2, . . . , N ), can be expressed uniquely as

fi(x, y) =
∑

l+m+n=d

cTi

l,m,n

d!

l!m!n!
rlsmtn,

where (r, s, t) is barycentric coordinate with respect to Ti.
Such a representation of piecewise polynomials is called
the Bernstein-Bézier form, and cTi

l,m,n ∈ R is called the
Bernstein-Bézier coefficient (or B-coefficient). We define
the B-coefficient vector as c := vec(cTi

l,m,n)
i=1,2,...,N
l+m+n=d .

3 Algebraic Recovery of Unwrapped Phase
3.1 General Idea of The Proposed Scheme

In this section, we propose an algebraic approach for
high-resolution 2D phase unwrapping. We estimate the
unwrapped phase Θ as a continuous function defined
over Ω unlike many existing algorithms. In our previ-
ous works36), 37), by using Poincaré’s lemma40), we clar-
ified the condition for the unique existence of the contin-
uous phase function θf ∈ C2(Ω) of a complex function
f := f(0) + ıf(1) : Ω → C s.t. f(k) ∈ C2(Ω) (k = 0, 1).

Fact 1 ([36]) Let Ω be a simply connected closed region
on R2. Suppose that f(k) : Ω → R (k = 0, 1) are twice
continuously differentiable functions, i.e., f(k) ∈ C2(Ω),
and satisfy f(x, y) := f(0)(x, y) + ıf(1)(x, y) ̸= 0 for all
(x, y) ∈ Ω. Then for arbitrarily fixed (x0, y0) ∈ Ω and θ0
satisfying f(x0, y0) = |f(x0, y0)|eıθ0 , the following hold.



(i) There exists a unique continuous function θf ∈
C2(Ω) satisfying θf (x0, y0) = θ0 and

∂θf
∂x

(x, y) = ℑ

[
∂f(0)
∂x (x, y) + ı

∂f(1)
∂x (x, y)

f(0)(x, y) + ıf(1)(x, y)

]
∂θf
∂y

(x, y) = ℑ

[
∂f(0)
∂y (x, y) + ı

∂f(1)
∂y (x, y)

f(0)(x, y) + ıf(1)(x, y)

]
 (4)

for all (x, y) ∈ Ω, where ℑ(c) stands for the imagi-
nary part of c ∈ C. θf satisfies

f(x, y) = |f(x, y)|eıθf (x,y) for all (x, y) ∈ Ω.

(ii) Let Υ : [a, b] → Ω be a piecewise C1 path s.t.
Υ(a) = (x0, y0) and Υ(b) = (x1, y1) ∈ Ω. Then
we have

θf (x1, y1) = θ0 +

∫ b

a

ℑ

[
F ′
(0)(τ) + ıF ′

(1)(τ)

F(0)(τ) + ıF(1)(τ)

]
dτ ,

where F(k)(τ) := f(k)(Υ(τ)) (k = 0, 1). □

Remark 1 (Note on Equation (4)) Note that

ℑ

[
∂f(0)
∂x (x, y)+ı

∂f(1)
∂x (x, y)

f(0)(x, y)+ıf(1)(x, y)

]
=

∂

∂x

[
arctan

(
f(1)(x, y)

f(0)(x, y)

)]

ℑ

[
∂f(0)
∂y (x, y)+ı

∂f(1)
∂y (x, y)

f(0)(x, y)+ıf(1)(x, y)

]
=

∂

∂y

[
arctan

(
f(1)(x, y)

f(0)(x, y)

)]


holds at every (x, y) ∈ Ω satisfying f(0)(x, y) ̸= 0, where
arctan(x) ∈ (−π

2 ,
π
2 ) denotes the principle value of the

inverse tangent for all x ∈ R, i.e., tan(arctan(x)) = x. □

Trying to estimate Θ by θf ∈ C2(Ω), from Fact 1, we
can reduce the estimation problem of Θ to those of f(0) ∈
C2(Ω) and f(1) ∈ C2(Ω) which respectively approxi-
mate cosΘ and sinΘ. In particular, under the assumption
that phase noise ν is not significant in (1), f(0) and f(1)
are desired to interpolate cos(ΘW (x, y)) ≈ cos(Θ(x, y))
and sin(ΘW (x, y)) ≈ sin(Θ(x, y)), respectively, at ev-
ery sampling point (x, y) ∈ G. Moreover, on the basis of
the idea of functional data analysis30)–32), we search for
f(0) and f(1) which are smooth. Here the word “smooth”
means that the energy of local change, i.e., the ℓ2 norm of
the second order partial derivative, is small over Ω. There-
fore we design a smooth continuous phase function θf , by
minimizing the energy of local change of f(k) (k = 0, 1):∫∫

Ω

[∣∣∣∣∂2f(k)

∂x2

∣∣∣∣2 + 2

∣∣∣∣∂2f(k)

∂x∂y

∣∣∣∣2 + ∣∣∣∣∂2f(k)

∂y2

∣∣∣∣2
]
dxdy (5)

in a suitable functional space subject to |f(x, y)| > 0 for
all (x, y) ∈ Ω and1

f(0)(x, y) = cos
(
ΘW (x, y)

)
f(1)(x, y) = sin

(
ΘW (x, y)

)} for all (x, y) ∈ G. (6)

1Of course, condition (6) can be generalized in a natural way if am-
plitude information at every sampling point (x, y) ∈ G is available.

We can guarantee W (θf (x, y)) = ΘW (x, y) for all sam-
pling points (x, y) ∈ G if (6) and |f(x, y)| > 0 for all
(x, y) ∈ Ω. Motivated by Fact 1 and the successful utiliza-
tion of spline functions in functional data analysis41)–46),
we adopt the bivariate spline space S2

d(∆) (d ≥ 3) as the
set of all possible candidates of f(k).

As a result, we propose the following 2D phase un-
wrapping scheme whose core consists of SPline Smooth-
ing (SPS) and Algebraic Phase Unwrapping (APU).

SPS: Find f∗
(k) ∈ S2

d(∆) ⊂ C2(Ω) (k = 0, 1 and d ≥
3) which minimize (5) subject to (6).

APU: For any point of interest (x, y) ∈ Ω, compute the
value of θf∗(x, y) defined in Fact 1(ii) along a
suitable piecewise C1 path Υ.

Note that SPS is a convex relaxation of an original op-
timization problem, defined with (5) and (6), which re-
quires an additional condition f(0)(x, y) + ıf(1)(x, y) ̸= 0
for all (x, y) ∈ Ω. Fortunately, if the observed wrapped
phase ΘW is not contaminated by severe phase noise and
sufficiently many sampling points are available to cap-
ture the geometric feature of Θ, the solution (f∗

(0), f
∗
(1))

of this relaxed problem tends to automatically satisfy the
additional condition. If there exists some (x, y) ∈ Ω s.t.
f∗
(0)(x, y) + ıf∗

(1)(x, y) = 0, we use a denoising step pro-
posed in Section 3.4 to avoid the occurrence of zeros.

3.2 SPline Smoothing (SPS)
Let c(k) (k = 0, 1) be the B-coefficient vectors of f(k) ∈

S2
d(∆) (see Section 2). Then the energy of local change in

(5) can be expressed as cT(k)Qc(k), where Q is a symmet-
ric positive semidefinite matrix47). The condition f(k) ∈
S2
d(∆) is equivalent to Hc(k) = 0 and condition (6) can

be expressed as Ic(k) = d(k) in terms of

d(0) := vec
(
cos

(
ΘW (x, y)

))
(x,y)∈G

d(1) := vec
(
sin

(
ΘW (x, y)

))
(x,y)∈G

}

and a sparse matrix I46). Indeed, if we assume that

every (x, y) ∈ G is a vertex of some T ∈ ∆, (7)

each row vector of I has only one non-zero component
‘1’. As a result, SPS in the proposed scheme is reduced
to the following convex optimization problem, say SPS
again, for the B-coefficient vector c(k):

SPS: Find c∗(k) (k = 0, 1) minimizing

cT(k)Qc(k)
subject to Hc(k) = 0 and Ic(k) = d(k).

Moreover, by considering the influence of phase noise
ν, we can relax SPS as a generalized Hermite-Birkhoff in-
terpolation problem44):

SPS+: Find c∗(k) (k = 0, 1) minimizing

cT(k)Qc(k)
subject to Hc(k) = 0 and −ϵ(k) ≤ Ic(k) − d(k) ≤ ϵ(k),



where ϵ(k) := vec(ϵ(k)(x, y))(x,y)∈G ∈ Rcard(G)
+ (k =

0, 1) are the acceptable interpolation errors designed to
be small if the wrapped phase ΘW (x, y) is reliable at
(x, y) ∈ G, and relatively large otherwise. SPS and SPS+
can be solved by quadratic programming solvers48)–50), if
the constraints are feasible.

Even if the constraint in SPS (or SPS+) is infeasible, it
can be relaxed in the following sense of hierarchical con-
vex optimization problem:

SPS++: Find c∗∗(k) (k = 0, 1) minimizing

c∗T(k)Qc∗(k)
subject to c∗(k) ∈ argmin

Hc(k)= 0
∥Ic(k) − d(k)∥22.

SPS++ is solved by hybrid steepest descent method51)–56).

3.3 Algebraic Phase Unwrapping (APU)
Let ∆ := {Ti := ⟨v⟨i⟩

1 ,v
⟨i⟩
2 ,v

⟨i⟩
3 ⟩}Ni=1 be a regu-

lar triangulation satisfying (7), and let θ0 ∈ R satisfy
f∗(v

⟨1⟩
1 ) := f∗

(0)(v
⟨1⟩
1 ) + ıf∗

(1)(v
⟨1⟩
1 ) = |f∗|eıθ0 . Suppose

that we are interested in θf∗ of f∗ at v⟨K⟩
2 (1 ≤ K ≤ N ),

where we assume, without loss of generality, v⟨i+1⟩
1 =

v
⟨i⟩
2 (i = 1, 2, . . . ,K − 1) by renumbering the indices of

triangles and their vertices if necessary. Define a piecewise
C1 path Υ : [0,K] →

∪K
i=1 Ti by

Υ(τ) := (τ − i+1)(v
⟨i⟩
2 −v

⟨i⟩
1 )+v

⟨i⟩
1 for τ ∈ [i−1, i],

and then, from Fact 1(ii), θf∗(v
⟨K⟩
2 ) is expressed as

θf∗(v
⟨K⟩
2 ) = θ0 +

∫ K

0

ℑ

[
F ′
(0)(τ) + ıF ′

(1)(τ)

F(0)(τ) + ıF(1)(τ)

]
dτ ,

= θ0 +

K∑
i=1

∫ 1

0

ℑ

[
F

⟨i⟩′
(0) (τ) + ıF

⟨i⟩′
(1) (τ)

F
⟨i⟩
(0)(τ) + ıF

⟨i⟩
(1)(τ)

]
dτ , (8)

where F(k)(τ) := f∗
(k)(Υ(τ)) (k = 0, 1) and F

⟨i⟩
(k)(τ) :=

F(k)(τ + i− 1) = f∗
(k)(Υ(τ + i− 1)) (τ ∈ [0, 1], k = 0, 1

and i = 1, 2, . . . ,K). Since F
⟨i⟩
(k)(τ) ∈ R[τ ] (k = 0, 1) are

univariate polynomials of degree d at most, all integrals in
(8) can be computed analytically by the following method
called algebraic phase unwrapping33)–37).

Fact 2 ([36]) Let P(k)(τ) (k = 0, 1) be univariate real
polynomials, and let P (τ) := P(0)(τ) + ıP(1)(τ) be a
univariate complex polynomial satisfying P (τ) ̸= 0 for
all τ ∈ [a, b]. Then, for every τ∗ ∈ (a, b], we have∫ τ∗

a

ℑ

[
P ′
(0)(τ) + ıP ′

(1)(τ)

P(0)(τ) + ıP(1)(τ)

]
dτ

=


arctan(Q(τ∗)) +

[
V (Ψ(τ∗))− V (Ψ(a))

]
π

if P(0)(τ
∗) ̸= 0;

π

2
+
[
V (Ψ(τ∗))− V (Ψ(a))

]
π if P(0)(τ

∗) = 0;

−

{
arctan(Q(a)) if P(0)(a) ̸= 0;

sgn(Ψ0(a)Ψ1(a))
π

2
if P(0)(a) = 0,

(9)

Input: P(0)(τ) ∈ R[τ ], P(1)(τ) ∈ R[τ ] and a ∈ R
Output: (Ψj(τ))

q
j=0

1: Ψ0(τ)←
P(0)(τ)

(τ−a)e0
(e0: order of a as a zero of polynomial P(0))

2: Ψ1(τ)←
P(1)(τ)

(τ−a)e1
(e1: order of a as a zero of polynomial P(1))

3: j ← 1
4: while deg(Ψj) ≥ 1 (deg(Ψj): degree of polynomial Ψj ) do
5: Ψj+1 ← −rem(Ψj−1,Ψj)

(rem(Ψj−1,Ψj): remainder of division of Ψj−1 by Ψj )
6: j ← j + 1
7: end while
8: q ← j
9: Return (Ψj(τ))

q
j=0

Fig. 1: Algorithm generating (Ψj(τ))
q
j=0 in Fact 2.

where Q(τ) := P(1)(τ)/P(0)(τ), sgn(x) := x/|x| for
x ̸= 0, sgn(x) := 0 for x = 0, and V (Ψ(τ∗)), V (Ψ(a)) ∈
Z+ are the numbers of sign changes, at τ = τ∗ and
τ = a, in the polynomial sequence (Ψj(τ))

q
j=0 gener-

ated by the algorithm in Fig. 1 (e.g., if q = 5, τ∗ =
1 and (Ψ0(1),Ψ1(1),Ψ2(1),Ψ3(1),Ψ4(1),Ψ5(1)) =
(3,−2, 5, 1, 0,−2), V (Ψ(τ∗)) = 3 because there are three
sign changes (3 → −2), (−2 → 5) and (1 → −2)). □

In [36], we also proposed an alternative way, based on
subresultant theory57), of computation for V (Ψ(τ∗)) and
V (Ψ(a)) in (9), to resolve certain numerical instabilities
caused by polynomial division in the algorithm in Fig. 1.
In this report, we use [36, Theorem3] for fast and stable
evaluations of V (Ψ(τ∗)) and V (Ψ(a)) in (9).

Note that, under the condition f∗(x, y) ̸= 0 for all
(x, y) ∈ Ω, we can compute θf∗(x, y) not only at (x, y) ∈
G but also at any (x, y) ∈ Ω by repeatedly applying alge-
braic phase unwrapping. Therefore, unlike many existing
algorithms, the proposed scheme gives a smooth θf∗ , as
a high-resolution estimate of Θ, which is consistent with
the wrapped phase, i.e., W (θf∗(x, y)) ≈ ΘW (x, y) at
(x, y) ∈ G. This approach is particularly effective in the
case where phase noise is relatively small.

3.4 Denoising by Selective Smoothing (DSS)
It is well-known that phase noise observed at even small

portion of sampling points can create residues which influ-
ence the global feature of the results of existing 2D phase
unwrapping algorithms1), 2), 58)–60). This has been a central
reason of the difficulty in 2D phase unwrapping. In the
proposed scheme for noisy wrapped samples, the occur-
rence of common zeros of f∗

(0) and f∗
(1) in SPS (or SPS+ or

SPS++), which yields the path dependency of θf∗ in APU,
can be seen as such a type of difficulty. These facts sug-
gest that excessive fidelity to noisy wrapped samples easily
leads to poor estimates in 2D phase unwrapping problem.

To suppress the influence of noise, we denoise the
wrapped phase ΘW (x, y) to obtain Θ̃W (x′, y′) ∈ (−π, π]
((x′, y′) ∈ G′ ⊃ G) by smoothing ΘW while keeping
the condition Θ̃W (x, y) = ΘW (x, y) for all (x, y) ∈ GI

(⊂ G), where GI is the set of all reliable sampling points.
The reliability of each sampling point is judged on the ba-
sis of the wrapped phase difference and the residues. The
smoothing is realized by using convex optimization. The
main idea of Denoising by Selective Smoothing (DSS) is
divided into the following two substeps.



DSS-1: Classify all sampling points in G into GI (Type I:
reliable) and GII := G\GI (Type II: unreliable) by
using the information of W (∆ΘW

i ) and residues.

DSS-2: Produce smoothed wrapped samples Θ̃W (x, y) ∈
(−π, π] at (x, y) ∈ G′ (⊃ G), where Θ̃W satisfies

Θ̃W (x, y) = ΘW (x, y) if (x, y) ∈ GI

and Θ̃W (x, y) at (x, y) ∈ G′ \ GI is determined
by interpolation of a minimizer of the following
convex function:

J̃(Θ) := ∥D1Θ− δ∥1,w1 + ∥D2Θ∥22,w2
,

where we express
∑

i wi|∆Θi−W (∆ΘW
i )| in J

as ∥D1Θ− δ∥1,w1
in J̃ , and ∥D2Θ∥22,w2

stands
for the square of an weighted ℓ2 norm of the sec-
ond order differences of Θ.

For more details on DSS, see [61].

4 Application to Terrain Height Estimation
In this section, we apply the proposed 2D phase unwrap-

ping scheme to terrain height estimation by InSAR.

4.1 Terrain Height Estimation by InSAR
Interferometric synthetic aperture radar (InSAR)3)–9) is

an imaging technique allowing highly accurate measure-
ments of surface topography in all weather conditions, day
or night. In InSAR system (see Fig. 2(a)), Antenna 1 and
Antenna 2 on-board an aircraft or a spacecraft platform
transmit coherent broadband radio signals and receive the
reflected signals sk := |sk|e−ı(

4πRk
λ +ϕk+νk) (k = 1, 2)

from a target corresponding to (x, y) ∈ Ω ⊂ R2, where λ
is the wavelength of the transmitted signal, Rk is the dis-
tance from Antenna k to the target, ϕk is the backscatter
phase delay, νk is additive phase noise, and the dependen-
cies of variables Rk, ϕk, νk, θo and θi on (x, y) are omitted
for notational simplicity in Fig. 2 and in the discussion be-
low. Since the backscatter phase delay ϕk is determined by
the shape of the target, geological condition, and weather
condition, we can expect ϕ1 = ϕ2 in many situations, and
hence the interferometric image is obtained as

s̄1s2 = |s1||s2|eı(
4π(R1−R2)

λ +ν), (10)

where s̄1 denotes the complex conjugate of s1 and ν :=
ν1 − ν2. The interferometric phase Θint := 4π(R1 −
R2)/λ can also be expressed, from the simple geometric
relation in Fig. 2(a) and the law of cosines, as

Θint =
4π

λ

{
R1 −

√
R2

1 +B2 − 2R1B sin(θo − α)

}
,

and its noisy wrapped samples ΘW
int := W (Θint + ν) are

observed from (10).
Suppose that we know the height at (x0, y0) as H0 (see

Fig. 2(b)). Then we compute the reference phase Θref :=
4π(R1 −RH0

2 )/λ expressed as

Θref =
4π

λ

{
R1 −

√
R2

1 +B2 − 2R1B sin(θH0
o − α)

}

(a) (b)
Fig. 2: Outline drawing of terrain height estimation by In-
SAR. (a) Sectional view for the construction of the inter-
ferometric phase. (b) Sectional view for the construction
of the reference phase.

s.t. cos θH0
o =

R2
1+(RE+HSAR)2−(RE+H0)

2

2R1(RE+HSAR) , which is a vir-
tual interferometric phase assuming that the terrain height
is always H0. Note that the reference phase can be com-
puted because we can compute θH0

o unlike θo. Define the
2D unwrapped phase as Θ := Θint − Θref . To estimate
terrain height H , as a refinement of [62, Equation A.2.3],
we newly derive the following relation:

Θ ≈ 4πB cos(θH0
o − α)(H −H0)

λ sin θH0
i

√
R2

1 +B2 − 2R1B sin(θH0
o − α)

, (11)

where θH0
i in Fig. 2(b) can be computed from sin θH0

i =
(RE+HSAR) sin θH0

o

RE+H0
. The wrapped phase ΘW := W (Θint−

Θref + ν) = W (ΘW
int − Θref) is obtained from (10) and

Θref . After reconstructing Θ from ΘW via 2D phase un-
wrapping, terrain height H is estimated from (11).
4.2 Parameter Settings of The Proposed Scheme

Assume that noisy wrapped samples ΘW are observed
on rectangular grid points G := {(xi, yj)}i=0,1,...,n

j=0,1,...,m

s.t. xi−xi−1 =: hx > 0 (i = 1, 2, . . . , n) and yj−yj−1 =:
hy > 0 (j = 1, 2, . . . ,m) in Ω := [x0, xn]× [y0, ym].

In DSS, the denoised wrapped samples Θ̃W on G′ :=
{(x′

i, y
′
j)}

i=0,1,...,ln
j=0,1,...,lm s.t. x′

0 = x0, x′
ln = xn, y′0 = y0,

y′lm = ym, x′
i − x′

i−1 = hx/l (i = 1, 2, . . . , ln), and
y′j − y′j−1 = hy/l (j = 1, 2, . . . , lm) are obtained by
using l = 3, w1 = 1 and w2 = 1

1001.
After DSS, we use SPS+ to obtain the smoothest bivari-

ate spline functions f∗
(k) ∈ S2

4 (∆†) (k = 0, 1), where ∆†
is a crisscross partition by diagonally cutting every rectan-
gle [x′

i, x
′
i+1]× [y′j , y

′
j+1] into four triangles. In SPS+, we

set ϵ(0)(x, y) = ϵ(1)(x, y) = 0 for (x, y) ∈ GI to guarantee

W (θf∗(x, y)) = ΘW (x, y) for all (x, y) ∈ GI, (12)

and we set ϵ(0)(x, y) = 0.5 − 0.5| cos(Θ̃W (x, y))| and
ϵ(1)(x, y) = 0.5−0.5| sin(Θ̃W (x, y))| for (x, y) ∈ G′ \GI

because Θ̃W is influenced by smoothing effect of DSS and
GII ⊂ G′ \ GI.



(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 3: Comparison of the proposed 2D phase unwrapping and the existing 2D phase unwrapping (I): (a) unwrapped phase
Θ (to be estimated), (b) wrapped phase ΘW , (c) estimate by BC (MSE = 1.7587), (d) estimate by MST (MSE = 8.2192),
(e) estimate by MCF (MSE = 0.0974), (f) estimate by LS (MSE = 20.4673), (g) distribution of Type I (white) and
Type II (black), and (h) estimate by the proposed scheme (DSS, SPS+ and APU) (MSE = 0.0379), where MSE is the
mean square error of each estimate, i.e, MSE := 1

32761

∑180
i=0

∑180
j=0 |Θi,j −Θ∗

i,j |2 (Θ∗: estimate).

(a) (b) (c) (d) (e) (f)
Fig. 4: Comparison of terrain height estimations based on the proposed 2D phase unwrapping and the existing 2D phase
unwrapping (I): (a) test mountain of height H (to be estimated), (b) estimate by BC (MAE = 37.6844), (c) estimate
by MST (MAE = 87.1949), (d) estimate by MCF (MAE = 26.9321), (e) estimate by LS (MAE = 162.3990), and
(f) estimate by the proposed scheme (DSS, SPS+ and APU) (MAE = 23.2882), where MAE is the mean absolute error
of each estimate, i.e., MAE := 1

32761

∑180
i=0

∑180
j=0 |Hi,j −H∗

i,j | (H∗: estimate).

(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 5: Comparison of the proposed 2D phase unwrapping and the existing 2D phase unwrapping (II): (a) unwrapped phase
Θ (to be estimated), (b) wrapped phase ΘW , (c) estimate by BC (MSE = 2.5410), (d) estimate by MST (MSE = 49.4547),
(e) estimate by MCF (MSE = 1.4087), (f) estimate by LS (MSE = 5.8364), (g) distribution of Type I (white) and
Type II (black), and (h) estimate by the proposed scheme (DSS, SPS+ and APU) (MSE = 0.2011).

(a) (b) (c) (d) (e) (f)
Fig. 6: Comparison of terrain height estimations based on the proposed 2D phase unwrapping and the existing 2D phase
unwrapping (II): (a) test mountain of height H (to be estimated), (b) estimate by BC (MAE = 52.1210), (c) estimate
by MST (MAE = 210.7460), (d) estimate by MCF (MAE = 41.1130), (e) estimate by LS (MAE = 86.7128), and
(f) estimate by the proposed scheme (DSS, SPS+ and APU) (MAE = 30.3923).

4.3 Numerical Experiments
We demonstrate the effectiveness of the proposed 2D

phase unwrapping scheme by terrain height estimation
based on (11). Figure 3(a) shows the unwrapped phase Θ
generated from a test mountain shown in Fig. 4(a). Here
we set the parameters of InSAR system by α = π/6 [rad],
λ = 23.5 [cm], B = 500 [m], HSAR = 800 [km], RE =
6371 [km], R1(x0, y0) = 1243 [km], and H(x0, y0) =
H0 = 2530 [m]. Figure 3(b) depicts the wrapped phase
ΘW on G := {(xi, yj)}i=0,1,...,180

j=0,1,...,180 s.t. hx = 16.2 [m]
and hy = 19.5 [m], where additive phase noise ν is gener-
ated by [63]. Figures 3(c), 3(d), 3(e), and 3(f) respectively
depict the estimates of Θ by branch cut (BC)5), minimum

spanning tree (MST)27), minimum cost flow (MCF)28) (all
weights are ‘1’), and least squares (LS)29) (all weights
are ‘1’). Figures 3(g) shows the distribution of samples
of Type I and Type II from which we see that samples
of Type I distribute sparsely but almost uniformly over
Ω. Figure 3(h) depicts the estimate of Θ by the proposed
scheme (DSS, SPS+ and APU). Figures 4(b), 4(c), 4(d),
4(e), and 4(f) show the mountains constructed from the
results in Fig. 3 and (11). Figures 3 and 4 show that the
proposed scheme achieves the best performance compared
with the other algorithms visually as well as numerically.

Figure 5(a) shows the unwrapped phase Θ generated
from another test mountain in Fig. 6(a). The parameter



settings of InSAR system, the proposed scheme, and the
other algorithms are same as those used in the first simula-
tion except for R1(x0, y0) = 1244 [km] and H(x0, y0) =
H0 = 579 [m]. Figure 5(b) depicts the noisy wrapped
phase ΘW on G := {(xi, yj)}i=0,1...,180

j=0,1...,180. Figures 5(c),
5(d), 5(e), and 5(f) respectively depict the estimates of Θ
by BC, MST, MCF, and LS. Figures 5(g) shows the dis-
tribution of samples of Type I and Type II from which
we see that samples of Type I of this example also dis-
tribute sparsely but almost uniformly over Ω. Figure 5(h)
depicts the estimate by the proposed scheme (DSS, SPS+
and APU). Figures 6(b), 6(c), 6(d), 6(e), and 6(f) show
the mountains based on the results in Fig. 5 and (11). In
this example, the proposed scheme achieves again the best
performance compared with the other algorithms.
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