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Abstract: Two-dimensional (2D) phase unwrapping is a reconstruction problem of a continuous phase, defined 

over 2D domain, from its wrapped samples, and has been a common key for estimations of some physical 

information, e.g., the terrain height estimation by the interferometric synthetic aperture radar (InSAR). In this 

paper, we propose a novel convex cost function for the 2D phase unwrapping. By the newly adding the 

smoothness measure to the existing cost, we achieve a smooth continuous phase as a minimizer of the proposed 

convex cost. The simulation of the terrain height estimation by InSAR shows the effectivity of the proposed method.

1 Introduction

Two-dimensional (2D) phase unwrapping [1] is a 

reconstruction problem of a continuous phase function 

Θ: ℝ2 → ℝ from its noisy wrapped samples

Θ𝑊 ≔ 𝑊(Θ + 𝜈)

observed at (𝑥𝑖, 𝑦𝑗) ∈ ℝ2 such that 𝑥𝑖+1 − 𝑥𝑖 = ℎ𝑥 >

0 ( 𝑖 = 0, 1, … , 𝑛 − 1 ) and 𝑦𝑗 − 𝑦𝑗−1 = ℎ𝑦 > 0 ( 𝑗 =

1, 2, … , 𝑚), where 𝜈 is additive noise and 𝑊: ℝ →
(−𝜋, 𝜋] is the wrapping operator satisfying

∀𝜃 ∈ ℝ ∃𝜂 ∈ ℤ   𝜃 = 𝑊(𝜃) + 2𝜋𝜃 and 𝑊(𝜃) ∈ (−𝜋, 𝜋].

The continuous phase Θ𝑖,𝑗 ≔ Θ(𝑥𝑖 , 𝑦𝑗) is called the 

unwrapped phase, and its noisy wrapped sample 

Θ𝑖,𝑗
𝑊 ≔ Θ𝑊(𝑥𝑖 , 𝑦𝑗) is called the wrapped phase. In 

many applications, the 2D phase unwrapping has been 

a common key for estimations of some physical 

information [1], e.g., the terrain height estimation or the 

landslide identification by the interferometric synthetic 

aperture radar (InSAR) [2], [3], and the accurate 3D

shape measurement by the fringe projection [4].

All existing 2D phase unwrapping algorithms assume 

that the unwrapped phase difference ΔΘ between two 

neighboring samples is within ±𝜋 almost everywhere. 

Hence most existing algorithms have been designed to 

suppress a certain cost function 𝐽: ℝ(𝑛+1)×(𝑚+1) → ℝ+

measuring the unwrapped phase difference as

𝐽(𝚯) ≔ ∑ ∑ 𝑤𝑖,𝑗
𝑥 |Θ𝑖+1,𝑗 − Θ𝑖,𝑗 − 𝑊(Θ𝑖+1,𝑗

𝑊 − Θ𝑖,𝑗
𝑊 )|
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𝑚
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𝑛
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,   (1)

where 𝚯 ≔ (Θ𝑖,𝑗) ∈ ℝ(𝑛+1)×(𝑚+1), 𝑤𝑖,𝑗
𝑥 > 0, 𝑤𝑖,𝑗

𝑦
> 0, 

and 𝑝 > 0. Specifically, the branch cut [2] employs 

𝑝 → +0, the minimum cost flow [5] employs 𝑝 = 1,

and the least squares [6] employs 𝑝 = 2 . Such a 

specification of 𝐽 is introduced on the basis of a 

simple property that ΔΘ = 𝑊(ΔΘ𝑊) holds if |ΔΘ| <
𝜋 and 𝜈 = 0. Then algorithms finds a minimizer 𝚯∗

of 𝐽 and use it as an estimate of the unwrapped phase. 

However, if the wrapped phase Θ𝑊 has large additive

noise, the minimizer 𝚯∗ is also noisy. This is because 

the cost in (1) is designed on the ideal situation 𝜈 = 0.

  In this paper, we propose a novel convex cost 

function for the 2D phase unwrapping. In Section 2, we 

assume that the shape of the unwrapped phase is 

smooth. Here the word “smooth” means that the 

absolute value of the second-order difference, i.e.,

|Δ2Θ|, is small over ℝ2 . Hence the proposed cost 

function is defined as the sum of (1) and the square of 

the weighted ℓ2-norm of the second-order difference, 

where the values of the weights can be determined by 

only the wrapped phase information. Then we find a

minimizer of the proposed cost by the alternating 
direction method of multipliers [7]. In Section 3, a 

numerical simulation of the terrain height estimation by 

InSAR system shows the effectiveness of the proposed 

method. Finally, in Section 4, we conclude this paper.

2 Recover of Smooth Unwrapped Phase

Assume that the unwrapped phase difference between 

neighboring samples is within ±𝜋 almost everywhere. 

Then in the nearly noise-free area, we can expect ΔΘ ≈
𝑊(ΔΘ𝑊). However, in the following situation, there is 

a possibility that we encounter ΔΘ ≉ 𝑊(ΔΘ𝑊).

 When |ΔΘ| is close to 𝜋, 𝑊(ΔΘ𝑊) can be easily 

changed from ΔΘ even by small additive noise, e.g., 

if ΔΘ = 0.95𝜋 and Δ𝜈 = 0.1 , then 𝑊(ΔΘ𝑊) =
𝑊(ΔΘ + Δ𝜈) = 𝑊(1.05𝜋) = −0.95𝜋 ≉ ΔΘ.

On the other hand, in noisy area, the value of 𝑊(ΔΘ𝑊)
is unreliable due to 𝜈, and the following holds (see [1]).

 In noisy area there are many rectangles [𝑥𝑖 , 𝑥𝑖+1] ×
[𝑦𝑗 , 𝑦𝑗+1] having the so-called residue. By computing
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 = {
 0      (not residue);                          
 ±2𝜋  (positive/negative residue),

we find out if each rectangle has a residue or not.

In order to reconstruct the unwrapped phase in the 

area where 𝑊(ΔΘ𝑊) is unreliable, we assume that the 

shape of the unwrapped phase is smooth. As a result, 

we solve the following convex optimization problem: 



Find 𝚯∗ ∈ ℝ(𝑛+1)×(𝑚+1) minimizing

𝐽(𝚯) ≔ ∑ ∑ 𝑤𝑖,𝑗
𝑥 |Θ𝑖+1,𝑗 − Θ𝑖,𝑗 − 𝑊(Θ𝑖+1,𝑗

𝑊 − Θ𝑖,𝑗
𝑊 )|

 
𝑚

𝑗=0

𝑛−1

𝑖=0

  + ∑ ∑ 𝑤𝑖,𝑗
𝑦

|Θ𝑖,𝑗+1 − Θ𝑖,𝑗 − 𝑊(Θ𝑖,𝑗+1
𝑊 − Θ𝑖,𝑗

𝑊 )|
 

𝑚−1

𝑗=0

𝑛

𝑖=0

          

  + ∑ ∑ 𝑤𝑖,𝑗
𝑥𝑥|Θ𝑖+2,𝑗 − 2Θ𝑖+1,𝑗 + Θ𝑖,𝑗|

2
𝑚

𝑗=0

𝑛−2

𝑖=0

                           

  + ∑ ∑ 𝑤𝑖,𝑗
𝑥𝑦

|Θ𝑖+1,𝑗+1 − Θ𝑖+1,𝑗 − Θ𝑖,𝑗+1 + Θ𝑖,𝑗|
2

𝑚−1

𝑗=0

𝑛−1

𝑖=0

        

  + ∑ ∑ 𝑤𝑖,𝑗
𝑦𝑦

|Θ𝑖,𝑗+2 − 2Θ𝑖,𝑗+1 + Θ𝑖,𝑗|
2

𝑚−2

𝑗=0

𝑛

𝑖=0
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where the values of two weights 𝑤𝑖,𝑗
𝑥 > 0 and 𝑤𝑖,𝑗

𝑦
> 0

decrease with increasing values of |𝑊(Θ𝑖+1,𝑗
𝑊 − Θ𝑖,𝑗

𝑊 )|

and |𝑊(Θ𝑖,𝑗+1
𝑊 − Θ𝑖,𝑗

𝑊 )| respectively, and the values of 

the other weights 𝑤𝑖,𝑗
𝑥𝑥 > 0, 𝑤𝑖,𝑗

𝑥𝑦
> 0 and 𝑤𝑖,𝑗

𝑦𝑦
> 0

increase with increasing number of the residues in the 

neighborhood of a rectangle [𝑥𝑖 , 𝑥𝑖+1] × [𝑦𝑗 , 𝑦𝑗+1] . 

Since the cost function 𝐽 in (2) is convex, we obtain 𝚯∗

by the alternating direction method of multipliers [7].

3 Terrain Height Estimation by InSAR

The interferometric synthetic aperture radar (InSAR) [2], 

[3] is an imaging technique allowing highly accurate 

measurements of the surface topography in all weather 

conditions. In the InSAR system [8], the terrain height 

𝐻 is estimated from the unwrapped phase Θ through

    Θ ≔ Θint − Θref ≈
4𝜋𝐵 cos(𝜃𝑜 − 𝛼)

𝜆𝑅 sin 𝜃𝑖

(𝐻 − 𝐻0),    (3)

where Θint is the interferometric phase, Θref is the 

reference phase, 𝐻0 is the height of the reference plane,

𝜆 is the wavelength of the transmitted signal, 𝑅 is the 

distance from the antenna to the target, 𝜃𝑜 is the 

off-nadir angle, 𝜃𝑖 is the incident angle, and 𝛼 and 𝐵
are the parameters of the InSAR system.

Figure 1(a) shows the true 2D unwrapped phase Θ
generated from a virtual mountain in Figure 2(a), and

Figure 1(b) shows the observed noisy wrapped samples

Θ𝑖,𝑗
𝑊 . Figures 1(c), 1(d), 1(e), and 1(f) respectively depict 

the estimates by the branch cut [2], the minimum cost 

flow [5], the least squares [6], and the propose method. 

Figures 2(b), 2(c), 2(d), and 2(e) show the terrain height 

computed from (3). From Figures 1 and 2, we find out

that the proposed method gives the best performance.

4 Conclusion

In this paper, we proposed a novel convex cost for the

2D phase unwrapping. By newly adding the weighted

  
(a) Unwrapped Phase    (b) Wrapped Phase     (c) Branch Cut

(MSE = 1.7873)

(d) Minimum Cost Flow    (e) Least Squares      (f) Proposed Method

  (MSE = 0.0971)       (MSE = 36.6905)       (MSE = 0.0275)
    

Figure 1: Estimates of the unwrapped phase and their mean square errors.

         (a) Virtual Mountain     (b) Branch Cut

          (MAE = 37.9638)

(c) Minimum Cost Flow    (d) Least Squares      (e) Proposed Method

(MAE = 27.1063)     (MAE = 212.8230)     (MAE = 25.4376)
   

Figure 2: Estimates of the terrain height and their mean absolute errors.

sum of the square of the second-order difference as the 

cost, a minimizer of the proposed convex cost can be

expect to be smooth. The simulation of the terrain 

height estimation by InSAR showed the effectivity of 

the proposed cost function. Finally, we remark that the 

proposed method can be utilized as an effective 

preprocessing of the 2D algebraic phase unwrapping
[9] to satisfy the wrapped phase condition.
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