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Abstract Spline function is a piecewise polynomial and
has been widely used for interpolation and smoothing of
observed two-dimensional data. In this paper, by using
the sufficient condition, derived by Heß and Schmidt, for
the nonnegativity of biquartic C2-splines on square grid,
we propose positive biquartic C2-spline interpolation and
smoothing on square grid for estimation of non-negative
and twice continuously differentiable functions. Moreover,
we newly derive a sufficient condition for the nonnegativity
of quartic C2-splines on triangular grid and also propose
quartic C2-spline interpolation and smoothing on triangular
grid. Then we estimate a two-dimensional probability den-
sity function (PDF) from its histogram by extending the idea
of the positive quartic and biquartic C2-spline smoothing.
Numerical experiments show the effectiveness of the newly
derived sufficient condition and the proposed PDF estimator.

1 INTRODUCTION

Spline is a function in a class of piecewise polynomials
and has been widely used for designs of continuous models
in many signal and image processing applications [1], e.g.,
super-resolution [2], [3], computer aided design [4], [5],
and regression analysis [6], [7], due to its flexibility and
optimality (see, e.g., Fact 1). On the other hand, designs
of positive continuous functions such as probability density
function (PDF) [8], [9] and power spectral density [10],
[11] are also required in many applications, e.g., pattern
recognition [12], [13], quantization [14], filtering [15], data
analysis [16], speech enhancement [17], speech recognition
[18] and sound source separation [19]. However spline
interpolation and smoothing has been hardly applicable to
the designs of positive functions because the nonnegativity
of splines is not guaranteed in general.

In our previous work [20], by using the sufficient con-
dition [21] for the nonnegativity of univariate splines, we
proposed one-dimensional positive spline smoothing and its
application to PDF estimation. However, trying to extend
this results to higher dimensions, we encounter nonobvious
questions even in two-dimensional case, e.g., which grids are
suitable for defining bivariate splines and which functionals
are suitable as cost of optimization problems.

In this paper, as an extension of [20], we propose two-
dimensional positive spline smoothing and its application to
PDF estimation. In Section 2, as preliminaries, we introduce
two kinds of bivariate spline spaces using square grid or
triangular grid (Section 2.1), and define two-dimensional
positive spline interpolation and smoothing as optimization
problems (Section 2.2). In Section 3, on the basis of the
derivation of the sufficient condition [21] for the nonneg-

ativity of bivariate splines over squares (Section 3.1), we
newly derive a sufficient condition for the nonnegativity
over triangles (Section 3.2). Then we solve the optimization
problems under the sufficient condition as quadratic pro-
gramming problems (Section 3.3). Moreover, by modifying
the idea of the positive spline smoothing, we estimate a two-
dimensional PDF from its histogram as a bivariate spline
(Section 3.4). In Section 4, first we numerically evaluate
the effectiveness of the newly derived sufficient condition by
experiments for the positive spline interpolation/smoothing
(Section 4.1). Second we show the effectiveness of the
proposed PDF estimator compared with the kernel density
estimation [8], [9], which has been widely used for non-
parametric PDF estimation, by experiments for a Gaussian
mixture (Section 4.2). In Section 5, we conclude this paper.

Notation Let R, R+ and Z+ be respectively the set of
all real numbers, nonnegative real numbers and nonneg-
ative integers. Boldface small and capital letters respec-
tively express a vector and a matrix. The norm of x :=
(x1, x2, . . . , xn)T ∈ Rn is defined as ‖x‖ :=

√∑n
i=1 x

2
i .

2 POSITIVE SPLINE INTERPOLATION AND SMOOTHING

2.1 Bivariate Spline Spaces

Let �n,m := {Ri,j := [xi−1, xi] × [yj−1, yj ]}i=1,2,...,n
j=1,2,...,m

be a set of all squares Ri,j on Ω := [x0, xn]×[y0, ym] ⊂ R2

s.t. xi− xi−1 = 1 for all i = 1, 2, . . . , n and yj − yj−1 = 1
for all j = 1, 2, . . . ,m. For ρ, dZ+ s.t. 0 ≤ ρ < d, define

Sρd (�n,m) := {f ∈ C2ρ
ρ (Ω) | ∀Ri,j ∈ �n,m f |Ri,j

∈ Pd,d}

as the set of all bisplines of degree d and smoothness ρ
on �n,m, where C2ρ

ρ (Ω) stands for the set of all con-
tinuous functions f : Ω → R whose partial derivatives
∂i+jf
∂xi∂yj (i, j = 0, 1, . . . , ρ) are also continuous over Ω,
f |Ri,j

: Ri,j → R denotes the restriction of f to Ri,j ,
and Pd,d is the set of all bivariate polynomials whose
degree is d at most with regard to each variable, i.e.,
Pd,d := {f : (x, y) 7→

∑d
p=0

∑d
q=0 cp,qx

pyq | cp,q ∈ R}.
Assume that we observe samples of a twice continuously

differentiable function g : Ω→ R with additive noise εi,j ∈
R at (xi, yj), i.e., we observe zi,j := g(xi, yj) + εi,j (i =
0, 1, . . . , n and j = 0, 1, . . . ,m). In this situation, a natural1

bicubic spline f ∈ S2
3 (�n,m) is often used to approximate g

due to its optimality shown in the following fact [22], [23].

1A bispline f ∈ S23 (�n,m) is natural if ∂2f
∂x2 (x, y) = 0 ∀(x, y) ∈

{x0, xn}× [y0, ym] and ∂2f
∂y2 (x, y) = 0 ∀(x, y) ∈ [x0, xn]×{y0, ym}.



Fact 1 (Bicubic spline as a solution of a variational problem)
There always exists a unique minimizer f∗ ∈ C4

2 (Ω) of

n∑
i=0

m∑
j=0

|f(xi, yj)− zi,j |2 + λ

∫∫
Ω

∣∣∣∣ ∂4f

∂x2∂y2

∣∣∣∣2 dxdy

and it is a natural bicubic spline f∗ ∈ S2
3 (�n,m), where

smoothing parameter λ > 0 controls the trade-off between
data fidelity and smoothness.

In order to achieve more flexibility with respect to the
resolution of the discretization in Ω, partitioning of Ω into
triangles has been studied [24]–[28]. Define a triangle T
on R2, by specifying three vertices vk := (xk, yk) ∈ R2

(k = 1, 2, 3) which are not arranged linearly, i.e., x1y2 −
y1x2 + x2y3 − y2x3 + x3y1 − y3x1 6= 0, as

T := 〈v1,v2,v3〉

:=

{
rv1 + sv2 + tv3 ∈ R2

∣∣∣∣ r, s, t ∈ [0, 1]

r + s+ t = 1

}
.

Then create four kinds of triangles
Ti,j,1 := 〈(xi−1, yj−1), (xi, yj−1), (xi−1+xi

2 ,
yj−1+yj

2 )〉
Ti,j,2 := 〈(xi−1, yj), (xi−1, yj−1), (xi−1+xi

2 ,
yj−1+yj

2 )〉
Ti,j,3 := 〈(xi, yj), (xi−1, yj), (

xi−1+xi

2 ,
yj−1+yj

2 )〉
Ti,j,4 := 〈(xi, yj−1), (xi, yj), (

xi−1+xi

2 ,
yj−1+yj

2 )〉

by diagonally cutting every square Ri,j . Let �n,m :=
{Ti,j,1, Ti,j,2, Ti,j,3, Ti,j,4}i=1,2,...,n

j=1,2,....m be a set of all triangles
Ti,j,k on Ω. For ρ, d ∈ Z+ s.t. 0 ≤ ρ < d, define

Sρd (�n,m) := {f ∈ Cρ(Ω) | ∀Ti,j,k ∈ �n,m f |Ti,j,k ∈ Pd}

as the set of all bivariate splines of degree d and smoothness
ρ on �n,m, where Cρ(Ω) stands for the set of all ρ-times
continuously differentiable functions over Ω, and Pd is the
set of all bivariate polynomials whose degree is d at most,
i.e., Pd := {f : (x, y) 7→

∑d
p=0

∑d−p
q=0 cp,qx

pyq | cp,q ∈ R}.

Remark 1 For the above spaces, Sρd (�n,m) ⊂ Sρ2d(�n,m),
C2ρ(Ω) ⊂ C2ρ

ρ (Ω) ⊂ Cρ(Ω), and Pd ⊂ Pd,d ⊂ P2d hold.

2.2 Two-Dimensional Positive Quartic and Biquartic
Spline Interpolation/Smoothing

The problem of our interest is to reconstruct a nonnegative
function g : Ω → R+ with the use of its nonnegative
samples zi,j := g(xi, yj) + εi,j ≥ 0. In [21], Heß and
Schmidt considered the positive C2-bispline interpolation,
and they shown that the lowest degree is d = 4 for
guaranteeing the existence of a bispline f ∈ S2

d(�n,m)
satisfying f(xi, yj) = zi,j (i = 0, 1, . . . , n and j =
0, 1, . . . ,m) and f(x, y) ≥ 0 for all (x, y) ∈ Ω. However,
they did not show which functionals are suitable as cost
of optimization problems. In this paper, we employ not∫∫

Ω
| ∂4f
∂x2∂y2 |

2 dxdy in Fact 1 but the energy of local changes∫∫
Ω

[|∂
2f
∂x2 |2 + 2| ∂

2f
∂x∂y |

2 + |∂
2f
∂y2 |

2] dxdy used in [26] as the
cost, and consider the following two problems.

Problem 1 (Two-dimensional positive spline interpolation)
Find f∗ ∈ S2

4 (�n,m) (or f∗ ∈ S2
4 (�n,m)) minimizing∫∫

Ω

[∣∣∣∣∂2f

∂x2

∣∣∣∣2 + 2

∣∣∣∣ ∂2f

∂x∂y

∣∣∣∣2 +

∣∣∣∣∂2f

∂y2

∣∣∣∣2
]

dxdy

subject to f(xi, yj) = zi,j (i = 0, 1, . . . , n and j =
0, 1, . . . ,m) and f(x, y) ≥ 0 for all (x, y) ∈ Ω.

Problem 2 (Two-dimensional positive spline smoothing)
Find f∗ ∈ S2

4 (�n,m) (or f∗ ∈ S2
4 (�n,m)) minimizing

n∑
i=0

m∑
j=0

|f(xi, yj)− zi,j |2

+ λ

∫∫
Ω

[∣∣∣∣∂2f

∂x2

∣∣∣∣2 + 2

∣∣∣∣ ∂2f

∂x∂y

∣∣∣∣2 +

∣∣∣∣∂2f

∂y2

∣∣∣∣2
]

dxdy

subject to f(x, y) ≥ 0 for all (x, y) ∈ Ω, where λ > 0.

In the next section, in order to solve the above problems,
we use the sufficient condition for the nonnegativity of
f ∈ S2

4 (�n,m) in [21]. Moreover, on the basis of the
derivation in [21], we newly derive a sufficient condition
for the nonnegativity of f ∈ S2

4 (�n,m).

3 POSITIVE SPLINE SMOOTHING UNDER SUFFICIENT
CONDITION AND APPLICATION TO PDF ESTIMATION

3.1 Sufficient Condition for Nonnegativity on Squares

To summarize the discussion in [21], the sufficient con-
dition for the nonnegativity of f ∈ S2

4 (�n,m) over Ω was
derived as follows. Suppose that a bispline f ∈ S2

4 (�n,m)
is expressed, over Ri,j , as

f(x, y) =

4∑
p=0

4∑
q=0

ci,jp,qs
ptq , (1)

where ci,jp,q ∈ R, s := x−xi ∈ [0, 1] and t := y−yj ∈ [0, 1].
Substitute s = α

1+α and t = β
1+β , which imply that s, t ∈

[0, 1] if and only if α, β ∈ R+ ∪ {∞} =: [0,∞]. After
some algebra, we can obtain vectors gp,q ∈ Z25

+ (p, q =
0, 1, 2, 3, 4) satisfying

(1 + α)4(1 + β)4f(x, y) =

4∑
p=0

4∑
q=0

gTp,qci,jα
pβq ,

where ci,j = (ci,j4,4, c
i,j
4,3, . . . , c

i,j
4,0, c

i,j
3,4, . . . , c

i,j
0,0)T ∈ R25.

From (1 + α)4(1 + β)4 ≥ 1 and αpβq ≥ 0 for all
α, β ∈ [0,∞], the sufficient condition for the nonnegativity
of f in (1) is

gTp,qci,j ≥ 0 for all i, j, p and q. (2)

Therefore, by using gp,q (p, q = 0, 1, 2, 3, 4), we can create
a matrix G s.t. Gc ≥ 0 ⇒ f(x, y) ≥ 0 for all (x, y) ∈ Ω,
where c := (cT1,1, c

T
1,2, . . . , c

T
n,m)T ∈ R25mn.



3.2 Sufficient Condition for Nonnegativity on Triangles

By utilizing the above discussion, we newly derive a
sufficient condition for the nonnegativity of f ∈ S2

4 (�n,m)
over Ω. Suppose that a bivariate spline f ∈ S2

4 (�n,m) is
expressed, over Ti,j,k, as

f(x, y) =

4∑
p=0

p∑
q=0

ci,j,kp(p+1)/2+q+1

4! r4−psp−qtq

(4− p)!(p− q)!q!
, (3)

where ci,j,kp(p+1)/2+q+1 ∈ R and (r, s, t) ∈ [0, 1]3 (r+ s+ t =

1) is called barycentric coordinate of (x, y) with respect to
Ti,j,k [24], [25], e.g., the barycentric coordinate with respect
to Ti,j,1 is

(r, s, t) = (xi−1−x+yj−y, x−xi−1+yj−1−y, 2y−2yj−1).

Substitute r = α
1+α , s = β

1+β , and t = 1 − r − s =
1−αβ

(1+α)(1+β) , which imply that r, s, t ∈ [0, 1] if and only if
α, β ∈ [0,∞] and αβ =: χ ∈ [0, 1]. Then, we have

(1 + α)4(1 + β)4f(x, y) = ci,j,k1 α4 + ci,j,k11 β4

+

3∑
p=1

P i,j,k4−p (χ)αp +

3∑
q=1

Qi,j,k4−q (χ)βq +Ri,j,k4 (χ),

where P i,j,k4−p (χ), Qi,j,k4−q (χ) and Ri,j,k4 (χ) are univariate
polynomials of degree (4−p), (4−q) and 4, respectively, as
shown in (5) (the indices i, j and k are omitted for simplic-
ity). Therefore, the sufficient condition for the nonnegativity
of f in (3) is

ci,j,k1 ≥ 0, ci,j,k11 ≥ 0, P i,j,k4−p (χ) ≥ 0, Qi,j,k4−q (χ) ≥ 0

and Ri,j,k4 (χ) ≥ 0 for all i, j, k, p, q and χ ∈ [0, 1].
(4)

Finally, by substituting χ := γ
1+γ and computing the coeffi-

cients of γδ (δ = 0, 1, 2, 3, 4) in (1 + γ)4−pP i,j,k4−p (χ), (1 +

γ)4−qQi,j,k4−q (χ) and (1+γ)4Ri,j,k4 (χ), we can create a matrix
G s.t. Gc ≥ 0⇒ f(x, y) ≥ 0 for all (x, y) ∈ Ω, where c is
defined, with the use of ci,j,k := (ci,j,k1 , ci,j,k2 , . . . , ci,j,k15 )T ∈
R15, as c := (cT1,1,1, c

T
1,1,2, . . . , c

T
n,m,4)T ∈ R60mn.

3.3 Problem 1 and Problem 2 under Sufficient Condition
In Problem 1, the cost

∫∫
Ω

[|∂
2f
∂x2 |2+2| ∂

2f
∂x∂y |

2+|∂
2f
∂y2 |

2] dxdy

can be written by a quadratic form cTQc, where c is the
coefficient vector of f ∈ S2

4 (�n,m) (or f ∈ S2
4 (�n,m)) in

Section 3.1 (or Section 3.2) and Q is a symmetric positive
semidefinite matrix [28], [29]. Moreover, the conditions f ∈
C4

2 (Ω) (or f ∈ C2(Ω)) and f(xi, yj) = zi,j (i = 0, 1, . . . , n
and j = 0, 1, . . . ,m) are respectively expressed as Hc = 0
and Ic = z := (z0,0, z0,1, . . . , zn,m)T ∈ R(m+1)(n+1) with
the use of certain sparse matrices H and I [28], [30].
Therefore under the sufficient condition Gc ≥ 0, based
on (2) (or (4)), for the nonnegativity of f , Problem 1 and
Problem 2 are expressed as follows.

Problem 1.S (Problem 1 under the sufficient condition)
Find c∗ ∈ R25mn (or c∗ ∈ R60mn) minimizing

cTQc

subject to Gc ≥ 0, Hc = 0 and Ic = z.

Problem 2.S (Problem 2 under the sufficient condition)
Find c∗ ∈ R25mn (or c∗ ∈ R60mn) minimizing

‖Ic− z‖2 + λcTQc

subject to Gc ≥ 0 and Hc = 0, where λ > 0.

Problem 1.S and Problem 2.S are quadratic programming
problems and can be solved in polynomial time [31]–[33].

Remark 2 In Problem 1.S and Problem 2.S, the vector c
and the matrices G, H , I , and Q depend on which
bivariate spline space (S2

4 (�n,m) or S2
4 (�n,m)) we use. In

this paper, these dependencies are omitted for readability.

Remark 3 We can reduce the size of the above problems
by using ∂p+qf

∂xp∂yq (xi, yj) (and ∂p+qf
∂xp∂yq (xi−1+xi

2 ,
yj−1+yj

2 ))
(p, q = 0, 1, 2), instead of c, as parameters [21].

3.4 Two-Dimensional PDF Estimation by Positive Spline
In this subsection, we estimate a two-dimensional proba-

bility density function (PDF) g : R2 → R+ s.t. g ∈ C2(R2)
by extending the idea of the positive spline smoothing. In
this situation, we cannot observe values of g directly but
construct a histogram from observed samples which are



P1(χ) := 4 {(c1 + c2 − c3)χ+ c3}
P2(χ) := 2

{
3(c1 + 2c2 − 2c3 + c4 − 2c5 + c6)χ2 + 2(c2 + 3c3 + 3c5 − 3c6)χ+ 3c6

}
P3(χ) := 4

{
(c1 + 3c2 − 3c3 + 3c4 − 6c5 + 3c6 + c7 − 3c8 + 3c9 − c10)χ3

+ 3(c2 + c3 + c4 + c5 − 2c6 + c8 − 2c9 + c10)χ2 + 3(c5 + c6 + c9 − c10)χ+ c10

}
Q1(χ) := 4 {(c7 + c11 − c12)χ+ c12}
Q2(χ) := 2

{
3(c4 + 2c7 − 2c8 + c11 − 2c12 + c13)χ2 + 2(c7 + 3c8 + 3c12 − 3c13)χ+ 3c13

}
Q3(χ) := 4

{
(c2 + 3c4 − 3c5 + 3c7 − 6c8 + 3c9 + c11 − 3c12 + 3c13 − c14)χ3

+ 3(c4 + c5 + c7 + c8 − 2c9 + c12 − 2c13 + c14)χ2 + 3(c8 + c9 + c13 − c14)χ+ c14

}
R4(χ) := (c1 + 4c2 − 4c3 + 6c4 − 12c5 + 6c6 + 4c7 − 12c8 + 12c9 − 4c10 + c11 − 4c12 + 6c13 − 4c14 + c15)χ4

+ 4(3c2 + c3 + 6c4 − 3c5 − 3c6 + 3c7 − 3c8 − 3c9 + 3c10 + c12 − 3c13 + 3c14 − c15)χ3

+ 6(c4 + 4c5 + c6 + 4c8 − 2c9 − 2c10 + c13 − 2c14 + c15)χ2 + 4(3c9 + c10 + c14 − c15)χ+ c15

(5)



generated from g. Hence we reconstruct the PDF g from
its histogram based on the observed samples.

Let {(u`, v`)}L`=1 be samples generated from g. We
create a histogram by using Ri,j (or Ti,j,k) as bins s.t.
x0 < min {u`}, xn > max {u`}, y0 < min {v`} and ym >
max {v`}. Then by defining Li,j (or Li,j,k) as the number of
(u`, v`) in Ri,j (or Ti,j,k), we can expect

∫∫
Ri,j

g dxdy ≈
Li,j

L (or
∫∫
Ti,j,k g dxdy ≈ Li,j,k

L ). Moreover, by assuming
g(x, y) = 0 for all (x, y) ∈ R2 \ Ω, i.e.,

∫∫
Ω
g dxdy = 1,

we try to estimate g with the use of bivariate splines through
the following optimization problem.

Problem 3 (Two-dimensional PDF estimation by splines)
Find f∗ ∈ S2

4 (�n,m) (or f∗ ∈ S2
4 (�n,m)) minimizing

n∑
i=1

m∑
j=1

∣∣∣∣ ∫∫
Ri,j

f dxdy − Li,j
L

∣∣∣∣2

(or
n∑
i=1

m∑
j=1

4∑
k=1

∣∣∣∣ ∫∫
Ti,j,k

f dxdy − Li,j,k
L

∣∣∣∣2)
+ λ

∫∫
Ω

[∣∣∣∣∂2f

∂x2

∣∣∣∣2 + 2

∣∣∣∣ ∂2f

∂x∂y

∣∣∣∣2 +

∣∣∣∣∂2f

∂y2

∣∣∣∣2
]

dxdy

subject to f(x, y) ≥ 0 for all (x, y) ∈ Ω,
∫∫

Ω
f dxdy =

1 and ∂p+qf
∂xp∂yq (x, y) = 0 (p, q = 0, 1, 2) for all (x, y) ∈

({x0, xn}× [y0, ym])∪ ([x0, xn]×{y0, ym}), where λ > 0.

Remark 4 Actually, for any histogram, we can design an
optimization problem like Problem 3, but here we employ
Ri,j (or Ti,j,k) as bins. This is because

∫∫
Ri,j

f dxdy

(or
∫∫
Ti,j,k f dxdy) can be easily computed by using the

coefficients ci,jp,q (or ci,j,kp(p+1)/2+q+1).

With the use of ζ := 1
L (L1,1, L1,2, . . . , Ln,m)T ∈ Rmn

(or ζ := 1
L (L1,1,1, L1,1,2, . . . , Ln,m,4)T ∈ R4mn ) and

certain sparse matrices H̃ and Ĩ , Problem 3 under the
sufficient condition Gc ≥ 0 is written as the following
convex quadratic programming problem.

Problem 3.S (Problem 3 under the sufficient condition)
Find c∗ ∈ R25mn (or c∗ ∈ R60mn) minimizing

‖Ĩc− ζ‖2 + λcTQc

subject to Gc ≥ 0, H̃c = 0 and 1T Ĩc = 1, where λ > 0.

4 NUMERICAL EXPERIMENTS

4.1 Experiments for Problem 1.S and Problem 2.S
Let {z̃i,j}i=0,1,...,5

j=0,1,...,5 be generated from the standard normal
distribution N (0, 1). Define (xi, yj) := (i, j) and zi,j :=
|z̃i,j | (i, j = 0, 1, . . . , 5). Then solve Problem 1.S and
Problem 2.S with λ = 1

50 ,
1

250 ,
1

500 for two bivariate spline
spaces S2

4 (�5,5) and S2
4 (�5,5).

Figure 1 shows an example of the results of Problem 1.S.
Figures 1(a), 1(b) and 1(c) respectively depict zi,j , f∗ ∈
S2

4 (�5,5) and f∗ ∈ S2
4 (�5,5). In this example, the proposed

sufficient condition based on (4) constructs a smoother
spline in Fig. 1(c) compared with the existing condition [21]
based on (2). Table 1 shows the mean values of the minimum

costs of Problems 1.S and 2.S in 1000 times. From Table 1,
S2

4 (�5,5) is suitable for Problem 1.S and Problem 2.S with
small λ, and S2

4 (�5,5) is suitable for Problem 2.S with large
λ. This is because the influence of the sufficient condition
is dominant for small λ, and the influence of Pd ⊂ Pd,d is
dominant for large λ.

4.2 Experiments for Problem 3.S
Let {(u`, v`)}L`=1 be samples generated from a Gaussian

mixture

g(x) :=

2∑
i=1

wi

2π
√
|Σi|

e−
1
2 (x−µi)

T
Σ

−1
i (x−µi),

where w1 = w2 = 0.5, µ1 = (1, 4)T , µ2 = (6, 7)T , Σ1 =
( 3 2

2 3 ) and Σ2 = ( 2 1
1 2 ). Define x0 := bmin {u`}c, xn :=

dmax {u`}e, y0 := bmin {v`}c and ym := dmax {v`}e,
where b·c and d·e are respectively the floor and ceiling
functions. We compare the performances of Problem 3.S
using S2

4 (�n,m) and S2
4 (�n,m) with that of the kernel

density estimation [8], [9] using Gaussian kernels. The
kernel density estimation constructs an estimate of g as

fKDE(x, y) =
1

L

L∑
`=1

1

2πhxhy
e
−
{

(x−u`)
2

2h2
x

+
(y−v`)

2

2h2
y

}

with the use of the bandwidth (hx, hy) selected by [9].
Figure 2 shows an example of the results of the pro-

posed method and the kernel density estimation from
1000 samples {(u`, v`)}1000

`=1 . Figure 2(a) depicts the true
PDF g. Figure 2(b), 2(c) and 2(d) depict the estimates
fKDE, f∗ ∈ S2

4 (�n,m) and f∗ ∈ S2
4 (�n,m), respectively.

From Figs. 2(c) and 2(d), the proposed method constructs
smoother estimates and achieves the lower `1-norm errors
compared with the kernel density estimation. Table 2 shows
the mean values of the `1-norm errors in 100 times. From
Table 2, the proposed method using S2

4(�n,m) with λ = 1
75

achieves the best performance due to more flexibility of
histograms and splines based on triangular grid.

5 CONCLUSION

In this paper, first we have newly derived a sufficient
condition for the nonnegativity of f ∈ S2

4 (�n,m) by
utilizing the derivation of the existing sufficient condition
for the nonnegativity of f ∈ S2

4 (�n,m). Second we solved
two-dimensional positive spline interpolation and smoothing
under the sufficient condition as quadratic programming
problems. Third we estimated two-dimensional PDFs as pos-
itive bivariate splines by using the idea of the positive spline
smoothing. Numerical experiments show the effectiveness
of the newly derived sufficient condition and the proposed
PDF estimator compared with the existing condition and the
kernel density estimation, respectively.

As future work, we plan to apply the positive spline
smoothing to two-dimensional spectral analysis [10], [11]
which is especially important in image and speech process-
ing applications.
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Figure 1: Examples of solutions f∗ ∈ S2
4 (�5,5) and f∗ ∈ S2

4 (�5,5) of Problem 1.S and their costs c∗TQc∗.

Table 1: Mean values of minimum costs c∗TQc∗ (Problem 1.S) and ‖Ic∗−z‖2 +λc∗TQc∗ (Problem 2.S) in 1000 times.

Problem 1.S Problem 2.S (λ = 1
500 ) Problem 2.S (λ = 1

250 ) Problem 2.S (λ = 1
50 )

f∗ ∈ S2
4 (�5,5) 243.60 0.44205 0.81872 2.7522

f∗ ∈ S2
4 (�5,5) 242.60 0.44019 0.81878 2.7633
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(c) f∗ ∈ S2
4 (�n,m) (λ = 1
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(‖g − f∗‖1 ≈ 0.1238)
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(d) f∗ ∈ S2
4 (�n,m) (λ = 1

75 )
(‖g − f∗‖1 ≈ 0.1186)

Figure 2: Examples of estimates fKDE, f∗ ∈ S2
4 (�n,m) with λ = 1

25 , and f∗ ∈ S2
4 (�n,m) with λ = 1

75 from {(u`, v`)}1000
`=1

and the `1-norm errors (‖g−f‖1 :=
∫∫

R2 |g−f |dxdy ≈
∑10n
i=0

∑10m
j=0 0.01|g(x0+0.1i, y0+0.1j)−f(x0+0.1i, y0+0.1j)|).

Table 2: Mean values of the `1-norm errors between g and fKDE, f∗ ∈ S2
4 (�n,m) and f∗ ∈ S2

4 (�n,m) in 100 times.

fKDE [9] f∗ ∈ S2
4 (�n,m) (λ = 1

10 / 1
25

/ 1
50 / 1

75 / 1
100 ) f∗ ∈ S2

4 (�n,m) (λ = 1
10 / 1

25 / 1
50 / 1

75
/ 1

100 )

0.1607 0.1634 / 0.1415 / 0.1488 / 0.1599 / 0.1696 0.2777 / 0.1849 / 0.1459 / 0.1367 / 0.1400
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[23] V. Pretlovà, “Bicubic spline smoothing of two-dimensional geophys-
ical data,” Studia Geophysica et Geodaetica, vol. 20, no. 2, pp. 168–
177, Jun. 1976.

[24] G. Farin, “Triangular Bernstein-Bèzier patches,” Computer Aided
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