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Abstract Two-dimensional (2D) phase unwrapping is a
reconstruction problem of a 2D continuous phase from its
wrapped samples. In our previous work, we presented a
two-step phase unwrapping algorithm which first constructs
a complex function whose real and imaginary parts are
smooth piecewise polynomials having no common zero, then
estimates the unwrapped phase by applying the algebraic
phase unwrapping. In this paper, we propose a preprocessing
of the above algorithm for avoiding the appearance of zeros
of the complex function in the first step. The proposed
preprocessing is implemented by a convex optimization and
resampling, and its effectiveness is shown in a terrain height
estimation by the interferometric synthetic aperture radar.

1 INTRODUCTION

Two-dimensional (2D) phase unwrapping [1], [2] is a
reconstruction problem of an unknown continuous phase
function Θ : Ω → R defined in a simply connected closed
region Ω ⊂ R2, from its finite noisy wrapped samples

ΘW (x, y) := W (Θ(x, y) + ν(x, y)) ∈ (−π, π]

observed at (x, y) ∈ G ⊂ Ω, where ν is additive noise,
G stands for the set of observation points, and W : R →
(−π, π] is the wrapping operator satisfying

∀x ∈ R ∃η ∈ Z x = 2πη +W (x) and W (x) ∈ (−π, π].

The continuous phase Θ is called the unwrapped phase
and its wrapped sample ΘW is called the wrapped phase.
In many signal and image processing, the 2D phase un-
wrapping has been a common key for estimations of some
physical information [1], [2], for example, the terrain height
estimation or the landslide identification by the interferomet-
ric synthetic aperture radar (InSAR) [3], [4], the seafloor
depth estimation by the interferometric synthetic aperture
sonar [5], the accurate 3D shape measurement by the fringe
projection [6] or x-ray [7], and the water/fat separation in
the magnetic resonance imaging [8].

All existing phase unwrapping algorithms assume that
the unwrapped phase difference between two neighboring
samples is within ±π almost everywhere. Hence most
algorithms construct a cost function J about the unwrapped
phase difference as

J(Θ) :=
∑
i

Ji(∆Θi) s.t. Θ := (Θ(x, y))(x,y)∈G , (1)

where Ji : R → R+ is designed to achieve 0 at ∆Θi =
W (∆ΘW

i ), ∆Θi and ∆ΘW
i are respectively the unwrapped

and wrapped phase differences between ith pair of neigh-
boring samples. Such a design of Ji is based on a simple
observation that ∆Θi = W (∆ΘW

i ) holds if |∆Θi| < π and
ν = 0. Then the algorithms use a minimizer Θ∗ of J as an
estimate of the unwrapped phase.

Moreover, the existing algorithms can be divided into two
types. Major algorithms [3], [9], [10] find a minimizer of
(1) under the condition

∀(x, y) ∈ G ∃η ∈ Z Θ(x, y) = ΘW (x, y) + 2πη. (2)

The above optimization problem is combinatorial and in-
tractable due to constraint (2). Therefore the algorithms
in this type, find at first closed loops, having the so-
called residues, where there is at least one ∆Θi differing
from W (∆ΘW

i ). After finding the residues, the algorithms
construct the edge by connecting the residues. Here the
set of indices of the edge is denoted by E. Then, we can
construct Θ satisfying that ∆Θi = W (∆ΘW

i ) if i 6∈ E, and
∆Θi 6= W (∆ΘW

i ) if i ∈ E. As a result, (1) is expressed as∑
i∈E

Ji(∆Θi)+
∑
i 6∈E

Ji(∆Θi) =
∑
i∈E

Ji(∆Θi) =: Ĵ(E), (3)

and hence the algorithms find an optimal edge E∗ min-
imizing (3). In this paper, we call the algorithms in this
type the network-flow methods along [2], [10], because these
algorithms find an optimal edge E∗ by using the idea of the
flow network in the graph theory.

In this approach, if the observed wrapped phase has only
small additive noise and the true unwrapped phase difference
is enough small compared with the sampling interval, we can
obtain an optimal edge E∗ and very good estimate Θ(E∗).
However, otherwise, not only constraint (2) is violated due
to the additive noise, but also we cannot find an optimal
edge E∗ in many cases due to the increase of the number
of the residues and the NP-hardness of the combinatorial
optimization problem [10].

The algorithms in other type [11], [12] find a minimizer
of (1) without constraint (2). In this approach, if the cost
function is convex, we can find a minimizer Θ∗, and the
computation time does not depend on the number of the
residues but the size of vector Θ. Therefore in case that the
observed wrapped phase has large additive noise and many
residues, the algorithms in this type are effective. However
there is no guarantee about the error between W (Θ∗(x, y))
and ΘW (x, y) at each (x, y) ∈ G, which ordinary destroys
the sharp edges of the true unwrapped phase.

In [13], we proposed a completely different phase un-
wrapping algorithm which is composed of two steps. First,
the proposed algorithm constructs a twice differentiable
complex function f :=f(0)+ıf(1) = |f |eıθf , where f 6=0 over
Ω, and f(0) and f(1) are twice continuously differentiable
spline functions respectively approximating cos(Θ) and
sin(Θ). Second a continuous phase function θf ∈ C2(Ω) of
f is exactly computed by the algebraic phase unwrapping
[16]–[18], and θf is used as an estimate. However in case



of the wrapped phase has many residues, f obtained in the
first step often has many zeros in Ω, which results in the
failure of the construction of θf in the second step.

Therefore, in this paper, we propose a preprocessing
of the phase unwrapping [13] to avoid the generation of
zeros of f . The first step of this preprocessing is given
in Sect. 3.1 where we find a minimizer Θ∗ of a newly
defined convex cost function without constraint (2). If the
unwrapped and wrapped phase differences are respectively
denoted by ∆Θi,j and ∆ΘW

i,j , the cost function is defined to
encourage ∆Θ∗i,j ≈W (∆ΘW

i,j) if |W (∆ΘW
i,j)| is small, and

to promote the smoothness of (Θ∗i,j) otherwise. The second
step of the preprocessing is given in Sect. 3.2 where we
produce a virtual wrapped phase Θ̂W , over finer grid than
G, based on Θ∗ and ΘW . Finally, we construct θf from
this virtual wrapped phase by using the phase unwrapping
algorithm [13]. In Sect. 4, a numerical simulation of a
terrain height estimation by InSAR is given, which shows
the effectiveness of the proposed preprocessing and phase
unwrapping algorithm.
Notation Let Z, Z+, R, R+, R++ and C denote respec-
tively the set of all integers, non-negative integers, real
numbers, non-negative real numbers, positive real numbers,
and complex numbers. We use ı ∈ C to denote the imaginary
unit satisfying ı2 = −1, and i ∈ Z+ and j ∈ Z+ are
used as the indices. For ρ ∈ Z+, Cρ(Ω) stands for the
set of all ρ-times continuously differentiable functions over
the interior of a simply connected closed region Ω ⊂ R2.
A boldface letter denotes a vector or a matrix depending
on the situation. For any vector x ∈ Rn and diagonal
matrix X ∈ Rn×n, [x]i and [X]i respectively denote the ith
component of x and (i, i)-th entry of X . For any x ∈ Rn,
w ∈ Rn++ and p ≥ 1, weighted `p-norm is defined as
‖x‖p,w := p

√∑n
i=1[w]i · |[x]i|p.

2 EXISTING 2D PHASE UNWRAPPING ALGORITHMS

In what follows, for simplicity, assume that the wrapped
samples are observed at regular rectangular grid points
G := {(xi, yj) | i = 0, 1, . . . , n and j = 0, 1, . . . ,m} on a
simply connected closed region Ω := [x0, xn] × [y0, ym]
s.t. x0 < x1 < · · · < xn, y0 < y1 < · · · < ym,
xi+1 − xi = hx (i = 0, 1, . . . , n − 1) and yj+1 − yj = hy
(j = 0, 1, . . . ,m − 1). Moreover define Θi,j := Θ(xi, yj),
ΘW
i,j := ΘW (xi, yj) and Θ := vec(Θi,j) ∈ R(n+1)(m+1). In

this case, J : R(n+1)(m+1) → R+ in (1) is expressed as
n−1∑
i=0

m∑
j=0

Jxi,j(Θi+1,j −Θi,j) +

n∑
i=0

m−1∑
j=0

Jyi,j(Θi,j+1 −Θi,j),

(4)

where Jxi,j : R → R+ and Jyi,j : R → R+ generally reach
a minimum 0 at Θi+1,j − Θi,j = W (ΘW

i+1,j − ΘW
i,j) and

Θi,j+1 −Θi,j = W (ΘW
i,j+1 −ΘW

i,j) respectively.
The network-flow methods [3], [9], [10] find a minimizer

of (4) under the constraint

∀i, j ∃ηi,j ∈ Z Θi,j = ΘW
i,j + 2πηi,j . (5)

For solving this combinatorial problem, the network-flow
methods, at first, identify rectangles [xi, xi+1] × [yj , yj+1]

satisfying

W
(
ΘW
i,j+1 −ΘW

i,j

)
+W

(
ΘW
i+1,j+1 −ΘW

i,j+1

)
6= W

(
ΘW
i+1,j −ΘW

i,j

)
+W

(
ΘW
i+1,j+1 −ΘW

i+1,j

)
.

These rectangles are called the residues, and by computing

ri,j :=
1

2π

{
W
(
ΘW
i,j+1 −ΘW

i,j

)
+W

(
ΘW
i+1,j+1 −ΘW

i,j+1

)
−W

(
ΘW
i+1,j+1 −ΘW

i+1,j

)
−W

(
ΘW
i+1,j −ΘW

i,j

)}
=


0 (not residue),
+1 (positive residue),
−1 (negative residue),

we find out whether each rectangle is a positive/negative
residue or not (see Fig. 1(a)). After identifying the residues,
the network-flow methods create the set E of edges connect-
ing the positive and negative residues with correspondence
of the numbers of positive and negative residues, and then
we can construct Θ(E) whose differences between two
neighboring points exceed ±π in only the area striding over
the edge (see Fig. 1(b)). We express E as E := (Ex, Ey),
where Ex and Ey are the sets of indices satisfying

(i, j)∈Ex⇔(Θi+1,j(E)−Θi,j(E)) 6=W
(
ΘW
i+1,j−ΘW

i,j

)
(i, j)∈Ey⇔(Θi,j+1(E)−Θi,j(E)) 6=W

(
ΘW
i,j+1−ΘW

i,j

)} .
As a result, if

Jxi,j
(
W
(
ΘW
i+1,j −ΘW

i,j

))
= Jyi,j

(
W
(
ΘW
i,j+1 −ΘW

i,j

))
= 0

for all i and j, then the cost in (4) is expressed as

J(Θ(E)) =
∑

(i,j)∈Ex

Jxi,j(Θi+1,j(E)−Θi,j(E))

+
∑

(i,j)∈Ey

Jyi,j(Θi,j+1(E)−Θi,j(E)) = Ĵ(E).

Therefore the network-flow methods find an optimal edge
E∗ = (E∗x, E

∗
y) minimizing (6) and then construct Θ∗ as

the estimate of the unwrapped phase.
The other algorithms [11], [12] directly find minimizer

Θ(E∗) of (4) without the constraint in (5). In this section,
we explain three major algorithms, the branch cut, the
minimum cost flow, which are in the class of the network-
flow methods, and the minimum `p-norm, which is not.

2.1 Branch Cut
The branch cut (BC) algorithm was established by Gold-

stein et al. [3] and minimizes `0-norm under constraint (5).
As a result, the BC finds E∗ = (E∗x, E

∗
y) minimizing

|Ex|+ |Ey|.

Since this problem is NP-hard [10], there are no methods
which can solve this problem in polynomial time. The BC
constructs E by connecting repeatedly the nearest residues
without checking whether the residues have already been
connected with other residues. Therefore the same residues
are connected many times. As a result, in areas of dense
residues, the BC makes many extra edges and results in
awful deterioration of the estimate accuracy [10].



(a) ΘW
i,j [rad/π] and residues ri,j (b) Θi,j(E) [rad/π] and edges

Figure 1: An example of the unwrapped phase estimated from the wrapped phase by the network-flow method. The edges
Ex := {(0, 1), (3, 1), (5, 2)} and Ey := {(1, 1), (2, 1), (3, 1), (3, 4), (4, 4)} are obtained by connecting the residues.

2.2 Minimum Cost Flow
The minimum cost flow (MCF) algorithm was established

by Costantini [9] and minimizes weighted `1-norm under
constraint (5). As a result, the MCF finds E∗ = (E∗x, E

∗
y)

minimizing∑
(i,j)∈Ex

wxi,j
∣∣Θi+1,j(E)−Θi,j(E)−W

(
ΘW
i+1,j −ΘW

i,j

)∣∣
+
∑

(i,j)∈Ey

wyi,j
∣∣Θi,j+1(E)−Θi,j(E)−W

(
ΘW
i,j+1 −ΘW

i,j

)∣∣ ,
where wxi,j > 0 and wyi,j > 0 are weights. Then by
considering a positive residue as a supply, a negative residue
as a demand, and the weight as the cost that must be paid per
flow, the above optimization problem is found to be same
as a minimum cost integer-flow problem, i.e., an optimal
integer-flow is correspond to an optimal edge E∗. As a
result, Θ(E∗) is computed by solving this minimum cost
integer-flow problem by the algorithms in the graph theory.

2.3 Minimum `p-Norm
Differently from the previous network-flow methods, the

minimum `p-norm (MLN) algorithm was established by
Ghiglia and Romero [12] as the generalized version of the
minimum `2-norm algorithm (so-called the least squares
method) [11]. The MLN finds Θ∗ minimizing
n−1∑
i=0

m∑
j=0

wxi,j
∣∣Θi+1,j −Θi,j −W

(
ΘW
i+1,j −ΘW

i,j

)∣∣p
+

n∑
i=0

m−1∑
j=0

wyi,j
∣∣Θi,j+1 −Θi,j −W

(
ΘW
i,j+1 −ΘW

i,j

)∣∣p
without the constraint in (5), where wxi,j , w

y
i,j > 0 and p > 0.

If p ≥ 1, the cost function is convex, and hence we can
obtain a minimizer Θ∗. In particular, for p = 2 and wxi,j =
wyi,j = 1, i.e., the non-weighted least squares case, Θ∗ is
computed very efficiently by using FFT [11]. However since
there is no guarantee on the possible gap between W (Θ∗i,j)

and ΘW
i,j , the estimate by the MLN is generally too smooth,

i.e., ∆Θ∗i,j tends to be small over the whole area of Ω.

3 ALGEBRAIC RECOVERY OF 2D UNWRAPPED PHASE

In our previous work [13], we proposed a completely
different algebraic approach to the 2D phase unwrapping
problem. We estimate Θ by a phase function θf of a twice
differentiable complex function f := f(0) + ıf(1) = |f |eıθf ,
where f(0) ∈ C2(Ω) and f(1) ∈ C2(Ω) respectively approx-
imate cos(Θ) and sin(Θ). In the spirit of functional data
analysis [14], [15], we use the smoothest spline function,
which is consistent with given wrapped phase information,
as f in order to obtain the smooth phase function θf . The
proposed approach is composed of the following two steps.
Step 1: Find f∗(k) ∈ S

2
4 (∆) ⊂ C2(Ω) (k = 0, 1) minimizing∫∫

Ω

[∣∣∣∣∂2f(k)

∂x2

∣∣∣∣2 + 2

∣∣∣∣∂2f(k)

∂x∂y

∣∣∣∣2 +

∣∣∣∣∂2f(k)

∂y2

∣∣∣∣2
]
dxdy

subject to

−ε(0)
i,j ≤ f(0)(xi, yj)− cos([ΘW

i,j ]) ≤ ε
(0)
i,j

−ε(1)
i,j ≤ f(1)(xi, yj)− sin([ΘW

i,j ]) ≤ ε
(1)
i,j

}
for each (xi, yj) ∈ G, where S2

4 (∆) denotes the
set of all bivariate spline functions of degree 4 and
smoothness 2, and ε

(0)
i,j ≥ 0 and ε

(1)
i,j ≥ 0 are ac-

ceptable errors for the wrapped phase information.
Step 2: Compute a phase function of f∗ := f∗(0) + ıf∗(1) =

|f∗|eıθf∗ for any point of interest (x, y) ∈ Ω.
Step 1 is implemented by solving a convex optimization

problem about the coefficients of the spline function [13].
Then if f∗ does not have zeros over Ω, a twice continuously
differentiable function θf∗ ∈ C2(Ω) is defined as

θf∗(x, y) := θf∗(x0, y0)

+

∫ b

a

=

[(
f∗(0)(Υ(t))

)′
+ ı
(
f∗(1)(Υ(t))

)′
f∗(0)(Υ(t)) + ıf∗(1)(Υ(t))

]
dt,



where Υ : [a, b] → Ω is any piecewise C1 path satisfying
Υ(a) = (x0, y0) and Υ(b) = (x, y), and =(·) denotes the
imaginary part of the argument. In Step 2, this integral is
computed by the algebraic phase unwrapping [16]–[18].

However in case where the observed wrapped phase has
many residues, f∗ obtained in Step 1 of the algorithm [13].
also tends to have many zeros over Ω, which results in the
path dependence of the obtained unwrapped phase in Step 2.
Therefore we need resampling to avoid the generation of
zeros of f∗. By observing the fact seen, e.g., in the MLP
in Sect. 2.3, that we can obtain an over-smooth estimate
by minimizing of a convex cost function without (5), we
propose the following two-step resampling method.
Step A: Reconstruct the rough geometry of a unknown

continuous function Θ by finding a minimizer Θ∗

of a cost function without the constraint in (5).
Step B: Produce the virtual wrapped phase Θ̂W (x′i, y

′
j),

based on Θ∗ and ΘW , at (x′i, y
′
j) ∈ G′, where

G′ ⊃ G is the set of regular rectangular grid points
whose grid interval is finer than G.

3.1 Convex Optimization Problem in Step A
Assume that the unwrapped phase differences between

almost all pairs of neighboring samples are within ±π, and
the observed wrapped phase has small additive noise almost
everywhere. Then, at many points on Ω, we can expect
∆Θi,j ≈ W (∆ΘW

i,j). However, in the following situations,
there is a possibility that we encounter ∆Θi,j 6≈W (∆ΘW

i,j).
• When |∆Θi,j | is close to π, W (∆ΘW

i,j) can easily
different from ∆Θi,j even by small additive noise,
e.g., if ∆Θi,j = 0.95π and ∆νi,j = 0.1π, then
W (∆ΘW

i,j) = W (∆Θi,j + ∆νi,j) = W (1.05π) =
−0.95π 6≈ ∆Θi,j .

• In the neighborhood of the residues, there is at least
one ∆Θi,j 6≈W (∆ΘW

i,j) like Fig. 1(b).
In the above areas, we try to construct smooth Θ in disregard
of W (∆ΘW

i,j). Here the word “smooth” means that the
absolute value of the second order discrete gradient is small.

As a result, we solve the following convex optimization
problem in Step A: Find Θ∗ ∈ R(n+1)(m+1) minimizing
n−1∑
i=0

m∑
j=0

wxi,j
∣∣Θi+1,j −Θi,j −W

(
ΘW
i+1,j −ΘW

i,j

)∣∣
+

n∑
i=0

m−1∑
j=0

wyi,j
∣∣Θi,j+1 −Θi,j −W

(
ΘW
i,j+1 −ΘW

i,j

)∣∣
+

n−2∑
i=0

m∑
j=0

wxxi,j |Θi+2,j − 2Θi+1,j + Θi,j |2

+

n−1∑
i=0

m−1∑
j=0

wxyi,j |Θi+1,j+1 −Θi+1,j −Θi,j+1 + Θi,j |2

+

n∑
i=0

m−2∑
j=0

wyyi,j |Θi,j+2 − 2Θi,j+1 + Θi,j |2

= ‖DxΘ− δx‖1,wx + ‖DyΘ− δy‖1,wy
+ ‖DxxΘ‖22,wxx + ‖DxyΘ‖22,wxy + ‖DyyΘ‖22,wyy

where two weights wxi,j and wyi,j decrease with the increas-
ing |W (∆ΘW

i,j)| and are vectorized as wx := vec(wxi,j) and

wy := vec(wyi,j), the other weights wxxi,j , wxyi,j , and wyyi,j
increase with the increasing the number of the residues in
the neighborhood of a rectangle [xi, xi+1] × [yj , yj+1] and
are vectorized as wxx := vec(wxxi,j ), wxy := vec(wxyi,j) and
wyy := vec(wyyi,j), five matrices Dx, Dy , Dxx, Dxy , and
Dyy are the difference operators respectively satisfying

DxΘ = vec(Θi+1,j −Θi,j)

DyΘ = vec(Θi,j+1 −Θi,j)

DxxΘ = vec(Θi+2,j − 2Θi+1,j + Θi,j)

DxyΘ = vec(Θi+1,j+1 −Θi+1,j −Θi,j+1 + Θi,j)

DyyΘ = vec(Θi,j+2 − 2Θi,j+1 + Θi,j)


,

and δx :=vec(W (ΘW
i+1,j−ΘW

i,j)) and δy :=vec(W (ΘW
i,j+1−

ΘW
i,j)) are the vectors of the unwrapped phase difference

estimated from (ΘW
i,j). We obtain Θ∗ by the alternating

direction method of multipliers (ADMM) [19] through the
following ADMM-formulation:

Θ∗ ∈ argmin
Θ

‖D1Θ− δ‖1,w1
+ ‖D2Θ‖22,w2

+ ε ‖Θ‖22,

where w1 := (wT
x ,w

T
y )T , w2 := (wT

xx,w
T
xy,w

T
yy)T ,

D1 := (DT
x ,D

T
y )T , D2 := (DT

xx,D
T
xy,D

T
yy)T , δ :=

(δTx , δ
T
y )T , and ε ‖Θ‖22 (0 < ε� 1) is added for regulariza-

tion. The ADMM computes Θ∗ by the following iteration:
Θk+1 =

1

γ
K−1DT

1 (νk − ξk)

νk+1 = proxγ‖ ·−δ‖1,w1
(D1Θk+1 + ξk)

ξk+1 = ξk +D1Θk+1 − νk+1

with γ > 0 and any initialization Θ0 ∈ R(n+1)(m+1), ν0 ∈
Rn(m+1)+(n+1)m and ξ0 ∈ Rn(m+1)+(n+1)m, where

K :=
1

γ
DT

1D1 + 2
(
DT

2W 2D2 + εI
)
,

I denotes the identity matrix, W 2 is a diagonal ma-
trix satisfying [W 2]i = [w2]i, and proxγ‖ ·−δ‖1,w1

:

Rn(m+1)+(n+1)m → Rn(m+1)+(n+1)m is the proximity
operator of γ ‖ · − δ‖1,w1

defined as

[proxγ‖ ·−δ‖1,w1
(ν)]i

:=


[ν]i − γ[w1]i if [ν]i ≥ [δ]i + γ[w1]i,
[ν]i + γ[w1]i if [ν]i ≤ [δ]i − γ[w1]i,
[δ]i otherwise.

3.2 Virtual Samples Generated in Step B
The minimizer Θ∗ obtained by the ADMM in Step A does

not guarantee W (Θ∗i,j) = ΘW
i,j , and hence ∆Θi,j tends to be

smaller than the true unwrapped phase difference. Therefore
we need to adjust Θ∗i,j based on ΘW

i,j . The simplest adjust-
ment is defining new unwrapped phase Θ̂i,j := Θ̂(xi, yj) as
Θ̂i,j := Θ∗i,j +W (ΘW

i,j −Θ∗i,j), which satisfies

Θ̂i,j = argmin
W (Θi,j) = ΘWi,j

|Θ∗i,j −Θi,j |.

However this method often destroys the smoothness of Θ∗,
e.g., if W (ΘW

i,j−Θ∗i,j) ≈ π and W (ΘW
i+1,j−Θ∗i+1,j) ≈ −π,

then Θ̂i+1,j − Θ̂i,j ≈ Θ∗i+1,j −Θ∗i,j − 2π 6≈ Θ∗i+1,j −Θ∗i,j .



In case of W (ΘW
0,0 − Θ∗0,0) ≥ 0, in the ideal situation

for preserving the geometry of Θ∗, the following properties
hold for all i and j.
• W (ΘW

i,j −Θ∗i,j) ≥ 0.
• W (ΘW

i+1,j −Θ∗i+1,j) ≈W (ΘW
i,j −Θ∗i,j).

• W (ΘW
i,j+1 −Θ∗i+1,j+1) ≈W (ΘW

i,j −Θ∗i,j).
Therefore if there exists (i, j) overly departs from the above
situation, we decide that the wrapped sample ΘW

i,j has large
additive noise and define a new unwrapped phase sample
Θ̂i,j := Θ∗i,j + W (ΘW

i,j − Θ∗i,j) + κ, where κ ∈ (0, 2π].
To wrap up, the new unwrapped phase samples (Θ̂i,j) is
obtained by the following algorithm.

Algorithm 1: Adjustment of Θ∗
i,j based on ΘW

i,j

Input: (Θ∗
i,j), (ΘW

i,j), κ ∈ (0, 2π], and µ ∈ [0, 1]

Output: (Θ̂i,j)
1: αi,j ←W (ΘW

i,j −Θ∗
i,j) for all i and j.

2: βi,j ←W (ΘW
i,j −Θ∗

i,j) for all i and j.
3: for i = 1 to n do
4: if αi,0 < 0 and |αi,0 + κ− αi−1,0| < |αi,0 − αi−1,0| then
5: αi,0 ← αi,0 + κ.
6: end if
7: end for
8: for j = 1 to m do
9: if β0,j < 0 and |β0,j + κ− β0,j−1| < |β0,j − β0,j−1| then

10: β0,j ← β0,j + κ.
11: end if
12: end for
13: α0,j ← β0,j for j = 1, . . . ,m.
14: βi,0 ← αi,0 for i = 1, . . . , n.
15: for i = 1 to n
16: for j = 1 to m
17: if αi,j < 0 and |αi,j + κ− αi,j−1| < |αi,j − αi,j−1| then
18: αi,j ← αi,j + κ.
19: end if
20: if βi,j < 0 and |βi,j + κ− βi−1,j | < |βi,j − βi−1,j | then
21: βi,j ← βi,j + κ.
22: end if
23: end for
24: end for
25: Θ̂i,j ← Θ∗

i,j + µαi,j + (1− µ)βi,j for all i and j.

In case of W (ΘW
0,0 − Θ0,0) < 0, Θ̂ is obtained in the

same manner as Algorithm 1. Finally, we produce the virtual
wrapped phase Θ̂W

i,j := Θ̂W (x′i, y
′
j) at new regular rectangle

grid points G′ := {(x′i, y′j) | i = 0, 1, . . . , ln and j =
0, 1, . . . , lm} s.t. l ∈ Z+, l ≥ 2, x′0 = x0, x′ln = xn,
x′i+1 − x′i = hx/l for all i, y′0 = y0, y′ln = yn, and
y′j+1 − y′j = hy/l for all j, defined as

Θ̂W
il+s,jl+t := W

(
Θ̂i,j + s

Θ̂i+1,j − Θ̂i,j

l

+ t
Θ̂i,j+1 + s

Θ̂i+1,j+1−Θ̂i,j+1

l −
(
Θ̂i,j + s

Θ̂i+1,j−Θ̂i,j
l

)
l

)
for i = 0, 1, . . . , n− 1, j = 0, 1, . . . ,m− 1, s = 0, 1, . . . , l,
and t = 0, 1, . . . , l. We apply the proposed phase unwrap-
ping algorithm to (Θ̂W

i,j) and construct θf∗ as an estimate.

4 TERRAIN HEIGHT ESTIMATION BY INSAR SYSTEM

The interferometric synthetic aperture radar (InSAR) [3],
[4] is an imaging technique allowing highly accurate mea-
surements of a surface topography in all weather conditions,
day or night. In the InSAR system, a pair of antennas, say

(a) Outline of InSAR

α π/6 [rad]
λ 23.5 [cm]
B 500 [m]
RE 6371 [km]
HSAR 800 [km]

(b) Parameters of InSAR

(c) Setting of observation points
Figure 2: Outline and setting of the terrain height estimation

Antennas 1 and 2 (see Fig. 2(a)), on-board an aircraft or a
spacecraft platform transmit coherent broadband microwave
radio signals and receive the reflected signals from the same
scene. Antennas 1 and 2 respectively receive

s1 := |s1|e−ı(
4πR1
λ −φ1+ν1) and s2 := |s2|e−ı(

4πR2
λ −φ2+ν2),

where λ is the wavelength of the trasmitted signal, R1 and
R2 are respectively the distance from Antennas 1 and 2 to
the target, φ1 and φ2 are the backscatter phase delays, ν1

and ν2 are additive phase noise. Since the backscatter phase
delays φ1 and φ2 are determined by the shape of the target,
the geological condition, and the weather condition, if these
conditions are same between two received signals, we have
φ1 = φ2. Therefore we obtain interferometric image as

s̄1s2 = |s1||s2|eı(
4π(R1−R2)

λ +ν),

where s̄1 denotes the complex conjugate of s1 and ν := ν1−
ν2. From Fig. 2(a) and the law of cosines, the interferometric
phase Θint := 4π(R1−R2)

λ is expressed as

Θint =
4π

λ

{
R1 −

√
R2

1 +B2 − 2R1B sin(θo − α)

}
.

Suppose that we know the height at (x0, y0) as H0. Then
we compute the reference phase defined as

Θref :=
4π

λ

{
R1 −

√
R2

1 +B2 − 2R1B sin(θH0
o − α)

}
s.t. θH0

o := arccos(
R2

1+(RE+HSAR)2−(RE+H0)2

2R1(RE+HSAR) ), which is a
virtual interferometric phase assuming that the terrain height
is always H0. Define an unknown 2D unwrapped phase as

Θ := Θint −Θref ≈
4πB cos(θH0

o − α)

λR1 sin θH0
i

(H −H0),

where θH0
i := arcsin(

(RE+HSAR) sin θH0
o

RE+H0
) and we can ob-

serve its noisy wrapped sample as ΘW := W (Θint−Θref +
ν) = W (ΘW

int −Θref) [20], where ΘW
int := W (Θint + ν).

Fig. 3(a) is the true unwrapped phase Θ generated from
a virtual mountain shown in Fig. 4(a). The parameters



(a) Θ (b) ΘW (c) BC (d) MCF (e) MLP (f) Proposed
(MSE = 1.4766) (MSE = 1.3168) (MSE = 50.6141) (MSE = 0.6428)

Figure 3: Estimates Θ̃ of Θ from ΘW and their mean square error MSE := 1
181·181

∑180
i=0

∑180
j=0 |Θ(xi, yj)− Θ̃(xi, yj)|2

(a) Virtual mountain (b) BC (c) MCF (e) MLP (e) Proposed
(MAE = 57.5304) (MAE = 49.0457) (MAE = 256.0205) (MAE = 34.7725)

Figure 4: Estimates H̃ of the height H and their mean absolute error MAE := 1
181·181

∑180
i=0

∑180
j=0 |H(xi, yj)− H̃(xi, yj)|

of InSAR and the setting of G are respectively shown in
Figs. 2(b) and 2(c). Figure 3(b) depicts the observed noisy
wrapped samples, and Figs. 3(c), 3(d), 3(e), and 3(f) depict
the estimates by the BC, the MCF, the MLP (p = 2), and
the propose method (κ = 3π/2, µ = 1/2, l = 3 ,ε(0)

i,j =

1 − | cos(Θ̂W
i,j)| and ε

(1)
i,j = 1 − | sin(Θ̂W

i,j)|) respectively.
Figures 4(b), 4(c), 4(d), and 4(e) show the estimates of the
terrain height based on the estimated unwrapped phases.
From Figs. 3 and 4, we observe that the proposed phase
unwrapping algorithm gives the best performance compared
the other algorithms visually and numerically.

5 CONCLUSION

In this paper, we have proposed a preprocessing of the
algebraic 2D phase unwrapping algorithm which needs
to construct a smooth spline function not having zeros.
The proposed preprocessing was implemented by finding
a minimizer of a convex cost function and producing virtual
wrapped phase based on the minimizer and the observed
wrapped phase. The simulation of the terrain height estima-
tion showed the effectiveness of the proposed method.
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