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Abstract Phase unwrapping is an estimation problem o® by 6;, whereds is the unwrapped phase of a twice differen-
the continuous phase function from its wrapped samples. Bfable complex functiorf := fo) + jf(1). Then the estimation
pecially the two-dimensional phase unwrapping has beenpaoblem of® is replaced with that of. The proposed ap-
common key for estimating many crucial physical informaproach is designed based on Theorem 1 in Sect. 3.2 which
tion, e.g., the surface topography measured by interferomevas established recently in [8] to guarantee the unique exis
ric synthetic aperture radar/sonar. However almost all 2Bence ofg; € C?(Q) as a scalar potential having, as its gra-
phase unwrapping algorithms are suffering from the path deient flow, the partial derivatives of the wrapped phase func
pendence of the estimated result mainly because they tackien. In the spirit of functional data analysissmoothness
a certain NP-hard problem. In this paper, to guarantee thod estimate should be measured for functions which possibly
path independence, we present a novel algebraic approachdanerate the datal9], we use best smoothing functio
combining the ideas in the algebraic phase unwrapping wiﬁmdf(*l) among all possible candidates, in a suitable functional
techniques for a piecewise polynomial interpolation of twospace, which are consistent with given wrapped phase infor-
dimensional finite data sequence. mation. As a result, we obtain a best scalar potefifias an
estimate of the unwrapped phase surface.
The proposed algorithm is realized by combining the ideas
Two-dimensional (2D) phase unwrapping [1] is an estimain the algebraic phase unwrapping [8], [10]-[12] with tech-
tion problem of the unknown unwrapped ph#x, y) € R nigues for a piecewise polynomial interpolation [13]-[ 8]
defined in a simply connected regiéh c R?, from its fi- two-dimensional finite data sequence, as a best solution of a
nite wrapped sample®[x, y)lmod 2 € (—7, 7] observed at variational problem. Remarkably, unlike almost all exigti
(x,y) € G(c Q), whereG stands for the set of finite grid algorithms, the proposed algorithm guarantees the pa# ind
points. The 2D phase unwrapping has been a common key fagndence of the estimated unwrapped phase under reasonable
estimating many crucial physical information such as the suassumption.
face topography measured by interferometric synthetic-ape A numerical experiment, based on the INSAR simulation,
ture radar (INSAR) [2]-[4] or interferometric syntheticemp demonstrates the effectiveness of the proposed 2D phase un-
ture sonar (INSAS) [5], the degree of magnetic field in howrapping.
mogeneity in the water/fat separation problem in magnetif Preliminaries
resonance imaging (MRI) [6], and the accurate profile of me-
chanical parts by X-ray [7] 2.1 Notation and the multivariate Spline space
Almost all existing 2D phase unwrapping algorithms [1] LetZ, R, andC denote respectively the set of all integers,
estimate the unwrapped phasedd(s, y) := [O(X, y)lmod 2 +  real numbers, and complex numbers. We pseC to denote
27n(x,y) with  © G — Z, by trying to find* which mini-  the imaginary unit satisfying? = —1. For anyc € C, J(c)
mizes the cardinality of stands for the imaginary part of
_ _ Let A be a collection of triangles in whose union forms
{(xy) 1[0 y) - O, y)| > 7. a simply connected regioft c R2. For any two triangles
where ', ) is a neighboring grid point ofq y)}, T, €A, if T nT" is either empty or a common edge”f
and7”’ or a common vertex of and7’, A is called aregular
Unfortunately, this combinatorial problem is intractabige triangulation
to its NP-Hardness [4]. As a result, such algorithms are suf- Given two integersl > 0 and 0< p < d, define
fering from the so-calleghath dependencef the estimated o
unwrapped phase, i.e., the estimated result differs depgnd Sa(8)={f e (@) [forall T € A, f = fr € Pqover7)
on the execution procedure of the algorithm. This situatiogs the multivariate spline space of degiemd smoothness

implies that any technically reliable solution has not ye¢iv \wherePy denotes the space of all polynomials whose degree
established even though the failure of 2D phase unwrappifgd at most.

makes a substantial impact on the accuracy of the estimated ) ) .
physical information. 2.2 TheB-form representation of spline functions

In this paper, we propose a completely different algebraic Let 7 = (v1,v2,v3) be a triangle, i.eys, v, andvz are not
approach to the 2D phase unwrapping problem. We estimateranged linearly, im\ with vy = (X, yk) (kK = 1,2,3). Itis
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well-known that every pointy, y) can be expressed uniquely U1
in the form C1 1= C4,0,0

X, y) = rvy + Svo + tvs str+s+t=1, . .
(x5) Cy = C31,0 ¢€3,0,1=:C3

where ¢, s,t) are called thebarycentric coordinate®f the

point (x, y) with respect to the triangle. C4i=0C220 €211 €202 =:Cg
For integerd > 0, m> 0 andn > 0, theBernstein-Bzier I
polynomialsare defined as Cs
C7:=C30 €121 C1,1,2 €103 =:C10
. a o
Bimn(rst) = imint” S t stl+m+n=d . cs Co .
C11 = €p,4,0=C0,3,1=—C0,2,2=—C0,1,3—C0,0,4 =: C15
. rpd : I I I
The set of Bernstein-&ier polynomlrcllsBLmm is a basis of Vo Clo e1s L4 V3

the spacdPy. As a result, any spline functioh e Sg(A)
restricted to each triangl€ € A can be written uniquely as Figure 1: A typical trianglel™ =

(st = > Bl s,

l+m+n=d

(v1,v2,v3) With associated
coefficients for degree 4

wherec]’,'m’n € R. Such a representation is called Bdorm
representatiorof the spline functionf. We denote the B-

coefficient vector off by ¢ := {c,"fmn [l+m+n=d, 7 € A}

Example 1l Let us consider a simple example, where the tri-
angulationA has only one triangl§™ = (v1,v0,v3) = Q, i.€e.,

A := {7}. Suppose that the degree of the spline spaek is
and the B-coefficient vectar:= (C,Cp, ..., C15)" is defined
as Fig. 1. Then spline function=# f is expressed, by use of
the barycentric coordinate§, s, t) with respect to the trian-
gleT, as Eq. (1).

X
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3 2D Phase Unwrapping as a Scalar Potential

3.1 Setting of the set G and thetriangulation A

In what follows, assume that the set of finite samplingFigure 2: Crisscross partitioh; for the rectangular are@
points is a regular rectangular grid on the afea= [a, b] x
[c.d], i.e., G = {(X: Uk) Ik ko tO DE giVEn bya =: Xo < X1 < Theorem 1 (Two-dimensional phase unwrapping as a scalar
. < Xp:i=bandc = yo < y1 < ... <yq:=dsatisfying potential function [8])Suppose thatif : R? —» R (i =
X1~ X = Yigrl — Yk, = 1 (ke = 0,1,...,p—1andk; = 0,1) are C*(Q) functions satisfying (& y) = fo)(X y) +
0,1,....q - 1). Moreover, we construct a triangulatidn  jf,y(x,y) # O for all (x,y) € Q. Then for an arbitrarily
by dividing every regular rectangulax, yk,] X [Xq+1. Yk+1]  fixed (X0, o) € Q and 6y € (-, 7] satisfying {Xo,y0) =
into four triangles as Fig. 2. This triangulation is callé@ t |f(x,, yo)el®, the following hold.
crisscross partition
According to [15], the minimal degree of the spline spac
Sg(AT) isd = 4 for twice differentiability and interpolating

0O: sampling point e: B-coefficient

éa) There exists a uniqués € C3(Q) satisfyingds (xo, yo) =
6o and for all (x, y) € Q

a given data oig. ForSﬁ(A.,.), in every regular regulgr .rect- 96, %(x, y) + j%(x, y)
angular K, yk,] X [X.+1, Yk.+1], there are 25 B-coefficients W(X’ y=3 fo %0 1fm(%1)
within the rectangular, 4 B-coefficients at sampling paints i Y o Y

and the other 6 B-coefficients on sides of rectangular as 36+ (%) + (5 (% y)
shown in Fig. 2. Hence the number of B-coefficients is a_y(x’ y=3 foy (%) + jfy(% y)

nc = 25pg+ (p+1)@+1)+3p(q+1)+3(p+ 1) In other wordsg; is a scalar potential of

= 32pg+4p+49+1, . ) . oty
%o (x, y) + 29 (x, p) 3 %”(X,y)+ J%)(X,y)
foxy) + ifoyxy) || fo(y) + ifo(xy)

i.e.,ce R,

3.2 Strategy of the proposed method

5 , . I
The next theorem, derived by using Poirgatemma [17], (b) 65 € CH(Q), defined in(a), is given by
motivated us to formulate of 2D phase unwrapping as Prob- (fo(r®)) +i (foy(y ()’

1
lem 1 below. i) =1000.00)+ [ S[ B S st ]dt,(2>




f7(r, s 1) = i1 + 4cor3s+ 4car3t + 604r2s? + 120512 st+ 601 2t2 + 4c7rsS + 120grs2t + 12cor st2 + 4cyort3 + €11 8% + 40125t + 6C135°2 + 448t + 15t (1)

wherey : [0,1] — Q is any piecewise Epath satisfying Step 1 Find Ci) € R" (i = 0, 1) which minimizes
¥(0) = (X0, yo) andy(1) = (X, ). ;
) ) C(i)QC(i) S.t. 7’{C(i) =0 and Ichp= d(i).
From Theorem 1, we can reduce the estimation problem
of © to that of fj € C*(Q) (i = 0.1) satisfyingf(x y) = To solve the above problem, we use the following iteration
fo(xy) + ifoy(xy) # 0 for all (x,y) € Q. Hence we method introduced in [19]
can desigros, as an ideal estimate @ in the sense of the

functional data analysis'smoothness of estimate should be
measured for functions which possibly generate the data”
[9], by smoothingfe) : (x.y) — a(xy)cosps(x y)) and

fay @ (%) + axy)sin@(xy)) in S(A;), subject to ol
a(x,y) >0 (Y(x,y) € Q) and

y 1. 1, !
oy = Z(Q+ Z(HTWH”TI)) 7"dg

-1
(Q + % (HTH + ITI)) (ch) + %IT d(i))

fork > 1 ande > 0.

3.4 Solution of Step 2in Problem 1

As a result, we consider 2D phase unwrapping as the fol- By the path independence guaranteed by Theorem 1 and

lowing problem which consists of two steps. t. € ghoice of bivariate splines of deg_ree 4 f.%)( f(*1))' the.
line integral (2), can be decomposed into a finite sum of inte-

f0)(X y) = cOS(B(X, 4)Imod )
fwy(% ) = siN([O(X, y)lmod 2:) } forall(x.y) € G.

Problem 1 grals of the following type:
Step 1Find f;, € S5(A+) (i = 0,1) which minimizes ft* [AEO)(t) + jAEl)(t)}
pam 2 g2 o 2 52 o 2 a  Ao®+iAn® |
. i i i
I(fey) —ffg ” e | T2 axay. 5y }dde ®3) whereA) andA;) are univariate real polynomials satisfying

_ Ap)(t) + jA@)(t) # 0 (Vt € [a t*]). Fortunately, a closed form
subject to expression of the integral, for nontrivial caségg # 0 and
Ag) # 0, is given by the next theorem.

Theorem 2 (Algebraic phase unwrapping [8], [10]-[12])
A1) + JAL ()
Ao)(t) + A (D)

Remark 1 Problem 1 is a convex relaxation of an ideal op- _ arctan{ﬁ(#gi;} + [VI¥(t)) - ViY@l 7 if Ag(t) #0
timization problem which includes an additional consttain n/2 + [V{¥(t")} - V{¥(@))] 7 if Ag)(t") =0
fo) + jf) # 0 overQ. Fortunately, if sufficiently many grid Aw(@) .
points are employed fo®, the solution (f, f,)) of this re- B arctar{m} if Ap)(@) #0
laxed problem tends to satisfy automanc_al{% +ifo) # O sgno(a)P1(a) /2 if Ag@) =0/’
over Q because the sum of squares achieled every grid

wheresgnt) = t/|t| fort # 0, sgnf) = O fort = O,

points and the rapid local change(f}) (i = 0,1) are sup- ) i \ .
pressed globally. and V{¥(t)} is the number of sign changes in polynomials
{Po(t), Pa(1), . .., P4(t)} generated by Algorithm 1 below.

foy(%. ) = coS(O(X #)lmod 2)
fy(X, y) = sin([O(X, )] mod 2r) } forall (x,y) € G.

Step 2 For any point of interesfx, y) € Q, computed;-(X, y) ft*
defined by (2) along a suitable piecewisegthy. a

3.3 Solution of Step 1in Problem 1

As shown in [18], the energy expression (3) can be Writaigorithm 1 Sturm generating algorithm along the real axis (St&m-
ten as quadratic fornd(f;) = J(cg) = C-E)QC(i), where  Jnput: A@)(t), Awy(t) € R[t] anda € R under the assumption in Sect. 3.4
Q € R"™ js a symmetric positive semi-definite matrix. Wo(t) Ap(®) W) Aw(®)

Moreover, the conditionfyy € S3(A+) and the interpolat- 1 "7 (=3%" A nomigh(d (i - 0.1
ing condition can be respectively written &éc; = 0 and (6 ¢ the order ot = aas a zero of polynomizag)(9) (1 = 0. 1)

; . 2 ke1
I ¢y = dj), whereH andZ are certain sparse matrices [14]— 3. \hile deg@y) # 0 do
[16], anddg € RPDED (j = 0, 1) is given by 4 Proa(t) — —Wi1(t) — Hi(O)Wi()
’ (whereH(t) € R[t] and deg¥y;1) < degWx)
_ 5: kek+1
o) = {cosO0k. ye)lmos )} o ke
= lgi ) k if Wi(t) 20
d(l) - {Sln([(a(xkl’ ykz)] mod ZT)}kl, , 7 q < { k-1 if ‘Pk(t) =0

. . . . Output: k()]
Therefore, Step 1 in Problem 1 is replaced with the following HtPut: Do

convex optimization problem.
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