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Abstract The phase unwrapping problem for comthoughtless direct computation of SGA-RA for polyno-
plex polynomial, i.e., the problem of computing the conmials of large degree, sometimes results in the failure of
tinuous phase function of a given complex polynomiah key property of the desiregkeneral Sturm sequence
was solved rigorously with the algebraic phase unwrapvhich is generated by applying SGA-RA, leading thus
ping. However, with increasing degree of polynomialthe failure of the exact phase unwrapping in the end.
we sometimes fail in exact phase unwrapping mainly In this paper, based on the similarity between SGA-
because the algorithm encounters certain numerical iRA and Euclidean algorithm for finding thgreatest
stabilities due to the cdicient growth and the trunca- common divisor (GCDpf a pair of real polynomials,
tion error. In this paper, with use of the subresultant, wa&e propose a replacement of a certain inductive step in
present anffective way to stabilize the algebraic phas&SGA-RA by the subresultant [5],[6]. By this replace-
unwrapping along the real axis. ment, numerical values of the idegéneral Sturm se-
guencecan be computed without faring propagation
of errors in the process of SGA-RA, and then the al-
The phase unwrapping problem for a univariate comyebraic phase unwrapping is stabilized greatly even for
plex polynomial is formulated as follows. polynomials of relatively large degree. This result is
Problem 1 (Phase unwrapping for a univariate Com_useful'for Wider. applicatipn qf the_ algebraic_: phase un-
plex polynomial along the real axipr a given univari- WraPping, €.g., ina combination with the spline smooth-
ate complex polynomial(§ € C[t] such that A&t) # Ofor "9 [2], to practical signal and image processing prob-

1 Introduction

allt €[0,1] c R, compute lems.
t FAGO Y 2 Preliminaries
Oa(t) := 0a(0) + arcta , 1
Al) 1= 0a(0) j(; ( ‘R{A(t)}}) ) 2.1 Notation
which is called the unwrapped phase of(t)Aat LetN*, R andC denote respectively the set of all pos-
t* € (0,1], whereda(0) € (-m, n] satisfies £0) = itive integers, real numbers and complex numbers. We
|A(0)|ei?2O), usej e C to denote the imaginary unit satisfyifjg=—1.

A rigorous symbolic algebraic solution to Problem 1For|anyéc_e C, ?R(C) andf}(‘g ls:tand respeftivn?ly fOLthe
was established [1] (See Proposition 1 in Sec. 2.2). THiE2! and imaginary parts or anyC(t) = o &t €

method does not require any numerical root finding oi?[g (.S_'t' Cm ido andm z 0), we define deg) := m,
numerical integration technigue. ¢(C)=cman mmcn(]:) " kmax{lcol, [Cal - » [Cml}-
However, in a direct computer implementation of the For anyC(t) = X oad™ € CIt (t € [0,1] € R),

algebraic phase unwrapping algorithm (SGA-RA) (Se¥® haveC(IE) = Cot) + jc(l)(t?(' where Cio)(t) =
at’, Cy(t) =2t IHat* € R[t] and

Algorithm 1 in Sec. 2.2), for polynomials of large de-ZELO R
gree, we encounter certain numerical instabilities due to _
the unavoidable gap between numerical value computed RCO} = R{CoO+Cau®)} = C(O)(t)}, )
by digital computer and theoretical valtieTherefore, JCW = IHCoM+ICw®} = Cay®)

1Recently, we presented in [2] an idea based on a combination ofy Algebraic phase unwrapping
the algebraic phase unwrapping and the spline smoothing of small

order. This phase unwrapping technique is numerically robust and The next proposition is a solution to Problem 1. This
expected to be applicable to many signal and image processing prfrpposition is a relaxation of Theorem 1 in [1]. Indeed,

lems, for example, estimations of surface topography in synthe ., _ . .
aperture radar (SAR) interferometry [3] and the degree of magneitliée conditionR{A(0)} = A(O)(O) # 0 assumed in [1] is

field inhomogeneity in the watéat separation problem of magnetic femoved, and the definition df(t) € R[t] is modified
resonance imaging (MRI) [4]. in Proposition 1.




Proposition 1 (Algebraic phase unwrapping along the Algorithm 1 Sturm generating algorithm (SGA-RA)

real axis)Let At) := Ag)(t) + jAw(t) € C[t] satisfy
A(t) # 0 (t € [0, 1]), where Ag)(t), A)(t) € R[t]. De-

Input: Ag)(t), Aw(t)

fine o(t) — A(O)( L wyt) A(”(t)
Zag ={t€(0,1)[ Ag(t) = 0} (whereey denotes the order of= 0 as a zero of
_ { @ if Aq)(t)#0 for all te(0, 1), polynomial A (t))
{u1, 1o, ...y e} otherwise K1
whereQ < y; < --- < u; < 1,and while deg(¥x) # 0do
Wiea(t) « —Pr-1(t) + Hi(t)Pi(t)

Ay (t)Ay(t) >0 forte (ui—e, i) and
Ao Aw) () <0 for te (ui, ui+é),

+1 if{

(whereH(t) € R[t] and deg®k.1) < deg(¥x))
ke—k+1

X(w) = 1 Ay (t)Axy(t) <0 for te(ui—e, i) and )
Ao)(H)Aw(t)>0 for te (ui. i +é), end while
0 otherwise qe { k if P(t) 20
k—1 if®(® =0

forui (i = 1,2,...,7) and for syficiently smalle > 0.
Then we have the following relations.

(@)Forany t € (0,1],
OA(t") = 6(0) — lim arctanQa(t))

Output: {¥k(t)}_,

A)(t) and Aq)(t) are given respectively as

+ ||m OarCtanQA(t)} + A(t )71', A(o)(t) =t4 - 1.11t3 + 0.356t2 — 0.025%,
t o . An(t) = t4 — 25253 + 2.299952 - 0.906172 + 0.131222
whereQa(t):= giadk = 320 andA(t") == " X(u).

Li€(0,t%)
(b) Let {¥(t)}_,

Applying Algorithm 1 to fy)(t) and Aq)(t), we obtain

5
be a sequence of real polynomials ob9eneral Sturm sequené®i(t);_ as

tained by applying Algorithm 1 (SGA-RA) teft) and , 111, 89 51
: . o) =t° = %+ —t— ——
Aq(t). Define for each € [0, 1] the number of varia- 182 igggg 2002026543 ss611
. . . q _ 4101 3 2
tions in the sign ofi(t)lco bY Fil =t~ 25+ 20000" ~ 250000 ' 500000
VIP(t)} = VI%o(t), Wi (t), . .., Po(t)} Wy - s Mo 89, 51
=|{i | 0<i<q and¥;(t)¥i.o()(t) <O}, 100 250 2000
L . oy = 37332, 94233 190279
whereo(i) := min{k € N* | ¥j,«(t) # 0}. Then, for every ™2 10000 ~ 250000 ~ 2000000
t € (0,1], we have oy 21768829083 15335859
arctani@a(0)) 1) = ~260102169185000" 278705780000

onlt) = 9A<0>—{ ' A“”(O#O’}

sgn(¥o(0)¥1(0))7/2 if A)(0)=0,

3391452647840106395584666460779211811
119967177270575015975354069525774695200000

Ps(t) =

. {arctarfaAa*)H[vwa*)}—vmomn A0()70. o From Ap(0)=0and Auy(0)= S84 6A(0)=r/2. More-
/2 + [V{P(t")}-V{P(0))]] if A (t*)=0,
) [2+ VIOV olt) over fromsgn(¥o(0)¥1(0)) =Sgn(— raeeasas = —1 and
where
_ 51 65611 51 _ 190279 _ 15335859
+1 ift>0, V{¥(0)) = V{‘m’ 500000 2000 ~ 2000000 278705780000
sgnf) ;={ 1 ift<0 (4) 339145264784010639558466646077921181L _ 3 tha -
- <0 T199671772705750159753540695257 74695200000

In this paper, we call the sequence of real polynomwrapped phaséx(t) in (3) is expressed as

aIs{‘Pk(t)}E=0 general Sturm sequenc€or the relation

between Algorithm 1 and the Euclidean algorithm for 6a(t) = 7 +

GCD(¥o, ¥1), see Sec. 3.1.
Example 1l (Algebraic phase unwrapping and ¢ioe

arctafQa(t)} +[V{P(t)} -3]r if Ag)(t)#0,
n/2+ [V{¥(t)}-3]x if Aqy(t)=0,

which is depicted in Fig. 1.

cient growth)Let us construct the unwrapped phase 05 3 Numerical instabilities of SGA-RA

the univariate complex polynomial

To implement Algorithm 1 (SGA-RA) precisely, we
need large number of digits to express the rational co-
efficients of the polynomial®¥(t) (e.g., See Example

A(t) := t(t- 0.1)(t - 0.5)(t — 0.51)
+j(t - 0.49)( - 0.515) ¢ — 0.52) t — 1).



27788829033

: : ‘ ‘ lc(¥,)| = is derived and truncated
oo LS( )l = 350102169185000
0.4r
111 x5\ 94233
02 1 89 (-1)X (-2 B (m— _%000 X 250000
3733 3733
0 ] 250 ~ 10000 10000

~ 1.06838128725098R 1074,

0,(t) [radir]
1

27788829033

06l ] H i ion ¢f ith
06 owever, direct computation 60102169185008’”
-0.8f ] 64-bit floating point expression is
_1 L L L I
0 02 o4 06 08 ! 1.06838128724851R 1074,

Figure 1: Exact unwrapped phase by Proposition 1 which is more precise. From this fact, we verify that the
significant figures of cggcients of¥i(t) are lost dras-

tically from k = 3to k = 4. This phenomenon is so-

colled the catastrophic cancellation in the floating-point
1). We call this phenomenon thlwdgfficient growthin  expression.

analogy with the typical cases in the computation of the

polynomial reminder sequent&rough the Euclidianal-  Once theinformation lossor the catastrophic can-
gorithm [6]. In computer implementation @h(t) in  cellation occurs, this influences inductively in the pro-

(3) through SGA-RA, the cdicient growth causes the cess of SGA-RA, which results in the failuregéneral
truncation error in the floating-point expression of th&turm sequenceleey property:

rational codicients (or memory shortages by increasing

number of digits for exact expression of the rational co- Py(t)=0 atte[0, 1]= Pi_1() Pk 2(t) <O
efficients). In particular, once a seriom$ormation loss fork=1,2,...,9-1,
(by the addition or subtraction for a pair of numbers of

ill-balanced absolute values) catastrophic cancella- leading thus the failure of (3). This situation restricts
tion (by the subtraction for a pair of very close numbersfhe practical applicability of Proposition 1 especially for
occurs, the gap between numerical value'sf(t)};_, PolynomialsA(t) € C[t] of large degree.

by digital computer and theoretical value becomes U gabilizati f algebraic oh .
acceptably large (See Example 2). fizalion o aigevraic phase unwrapping

®)

3.1 Relationship between Algorithm 1 and

) ) Euclidean algorithm
Example 2 (Catastrophic cancellationhe general

Sturm sequence¥(t)}>_, obtained in Example 1 is ex-  The Euclidian algorithm for computing GCBY, 1)

pressed in decimal number expression as generates theolynomial remainder sequen@&(t)l,
0)(t) 1)(t)
Wo(t) = t3 — 1.11t2 + 0.356t — 0.0255 wherePo(t) := Yo(t) := A(tf.)o Py(t) :=¥1(t) := A(tfe)l

¥i(t) = t* — 2.525t% + 2.299932 - 0.906172 + 0.131222 and
Wy(t) = —t3 + 1.11t2 — 0.356t + 0.0255

Wa(t) = —0.37332 + 0.376932 - 0.0951395

W,(t) = —1.068381287X 107t + 5.502526355% 1075,

Ws(t) = 2.826983784% 107°. On the other hand, in SGA—R{Gc[’k(t)}E':0 is defined as

Pii1(t) := Piea(t) + Qu®Pk(t) (k=1,2,...,9-1)
(s.t. Q«(t) € R[t] and degPx.1) < degPx)).

From the above values, we verify that the absolute value , . (t):= —¥,_(t) + H () Px(t) (k=1,2,...,9-1)
of cogjicients of¥i(t) decreases drastically from% 3 (s.t. H(t) € R[t] and degPi.1) < deg(¥y)).
to k= 4. This phenomenon has been studied in terms of
approximate GCD of degre&[7], [8] (See Appendix). As a result, we have
In SGA-RA with 64-bit floating point expression, the (DK
absolute value of the leading gfieient of W(t), i.e., P(t) =(-1) 7 P(t) (k=01,...,9). (6)



3.2 Subresultant Similarly for degfo) < deg,) from (6) and (11), we

In what follows, we assume can express sgix(t")) = —sgn(‘I'O(t*)) and
degPx-1) > degPx) ( sgn(¥i(t)) = (-1 20D (sgn(lo@))" ™
= degPx+1)=degPu)-1 (k=1,2,...,q9-1). x sgn(Sres-i.2(¥1, Yo, t°)  (k=3,4,...,m+1).
For the polynomialsPq(t) and P1(t) which cause the (13)
coeficient growth, the assumption (7) holds almost al- The relations (12) and (13) imply that we can com-
ways. . _ pute each¥y(t*) by {Sres(Pg, P1,t*)} without passing
For a pair of real polynomials through the inductive process in Algorithm 1.
Po() = amt™+ amat™L+--- +agt + ao, hT_hedfollpwing al_gorilthm_ l;]SGS (12) or ﬁl?:) inIpIacI;e of
Pi(t) = bt"+ bygt™t +--- + byt + bo, the inductive step in Algorithm 1. Note that real polyno-

mialsWk(t) € R[t] (k= 2,3,...,0) are not necessary for
am # 0 andb, # 0 we defineRi(Po, P1,t) € evaluating the values c{)ﬁ’k(t*)}gzo. The computational
R[t](m+n 2p(men+20) (j = minim-1n-1}) by complexity for each determinant SregPo, P1, t*) is at
mosto(n'°97) ~ O(n%8Y) [9].

Ri(Po, P1,t) := |
8n @m1 -0 & &1 - @ F’o(t)t::: Algorithm 2 Proposed algorithm for computing (3)
am afrkl E a.i—l ao . Po(t)F Input: Ao)(), Aay(t).
R R - -~ 0)() (1)
8n 8m1 - & a1 - Po®t! WYo(t) « A( ) () < A( )
T : (whereeg denotes the order aof= 0 as a zero of
am @m1 -~ &  Po(t)t polynomial A)(t))
am - &gl Pogtzi_l .(@®) Wo(t) « |Const. 1Wq(t), P1(t) < |Const. 2%4(t)
bn bn—l bi bi—l bO Pl(t)t . m<—de (\P) n<—de (LIJ)
Br by b by o by Pyt)tmi-2 9ttol. gt
o o e a — Ic(Wo), b — Ic(y)
- o ) . if m> nthen
by By -+ by by - Pyt Tm=
) .nl. ' _'1. 1(,) for k=2to(n+1)do
. I : * _1\k-1)(m-n+1+%) m-n+1
by b1 - b Pyt Hlt) < ( 1% Tzé,sg:‘*@)
by --- b1 Pit) X Sresk+1(Wo, V1, t")
end for
Then the-th subresultanbf Py andP; is defined as else
‘I’z(t*) « —Yo(t)
« (k— l)k
Under the assumption (7), it is well-known that for ‘I’k(t ) — (-1 DT (sgng))
degPo) = m > n = degfP,) the subresultsnt sequence X Sresnk+2(¥1, Yo, t*)
{Sres(Py, P1, 1)} satisfies end for

end if
Output \Pk(t*)}mm {m+2,n+1}
where/lk:=((—1)k‘1lc(P1)) H >(Ic(P))?, and for  Remark: e.g., Const:lmmqq,), Const. 2_mmqq11)
degPo) = m< n=degP) (i.e., Pz(t) = Po(t))
Sresn k:2(P1, Po, ) =4 Pi(t) (k=3,4,...,m+2), (11) 4 Numerical example
) — In this section, we examine the numerical perfor-
where; :=((-1)<2Ic(Po)) “3(Ic(P))?[6],[6].  mance of Algorithm 2 in the algebraic phase unwrap-
For degPo) > degf,) from (6) and (10), we can ping of some univariate complex polynomials.
express Define two real polynomialsyo)(t) andAx)(t) by
sgN@i(t)) = (-1 D(M-M1+3) (sgn(lc(pq))™ ™ Ag)(t) := (t-0.205)¢-0.5)(t-0.75) - 0.805) t— 1.2) Ay 1),
x sgn(Sregis1(Wo, P1.t%)  (k=2,3,...,n+1). An():=(t-0.2)(t-0.34)(¢-0.35)¢-0.81)-1.21)An)(t),
(12) whereﬂ(o)(t) is a polynomial of degree 44 whose all

Sres_k+1(Po, P1,t) = APk(t) (k=2,3,...,n+1), (10)




codficients are generated by the uniform distributionvhere|sy |, [0k, <1 (k=1,2,...,9) andPy(t), P1(t) €
over [-0.5,0.5] and Ay(t) is a polynomial of degree RR[t] do not have roots locating closely.

24 whose all cofficients are generated by the uniform Defineey(t) andes (t) as the reminders of the divisions
distribution over £0.5,0.5]. Fig. 2 depicts one exam- of Py(t) andP4(t) by

ple of the estimations of the unwrapped phésg) for D(t) := (t—a1)(t—a2) - - - (t—as), (14)
A(t) := Ap)()+jA)(t) with Algorithm 1 and Algorithm e,

2. From Fig. 2, Algorithm 1 fails in phase unwrapping eo(t) := Po(t) + Qo(t)D(t) }

att = 0.2 andt = 0.81. On the other hand, Algorithm 2 el(t) := P1(t) + Qut)D(Y) |~

succeeds in phase unwrapping attad [0, 1]. Table 1 whereQy(t) € R[t] and degé) < degD) (k=0,1). Ac-
summarizes the result for 300 polynomials generated @grding to [7], e(t) satisfies mmef) < mmcPy) (k =
above, where we can see (i) the total number of polyn@; 1) andD(t) is called theapproximate greatest com-
mials in failure by Algorithm 1 is reduced to less thammon divisomwith accuracy magmmci(eo), mmcier)}.

1/6 by Algorithm 2, and (ii) the total number of posi- |f the polynomial reminder Sequen@k(t)}ﬂzo sat-
tions in failure by Algorithm 1 is reduced to less thansfies degPy) = m > n = degf,) and (7), we have
1/14 by Algorithm 2. degPn-s+1) = s and Py_g,1(t) ~ AD(t), whered € R.
Moreover if the absolute values of the all éo&ents of

_ _ _ _ Po(t) andP4(t) are not much dferent from 1, the values
By replacing the inductive step in SGA-RA by NU-of mmc(Py) (2<k<n-s+1) tend to be not much flerent

merical evaluations of a subresultant sequence, we Sygsm 1 while the values of mme}) (n—s+2<k<n+1)
ceeded in stabilizing the algebraic phase unwrappingng to be very small [8].

along the real axis. Numerical examples demonstrate

the remarkable improvement achieved by the proposétfknowledgement

technique. This work was supported in part by JSPS Grants-in-
Aid (B-21300091).
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