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Abstract The phase unwrapping problem for com-
plex polynomial, i.e., the problem of computing the con-
tinuous phase function of a given complex polynomial
was solved rigorously with the algebraic phase unwrap-
ping. However, with increasing degree of polynomial,
we sometimes fail in exact phase unwrapping mainly
because the algorithm encounters certain numerical in-
stabilities due to the coefficient growth and the trunca-
tion error. In this paper, with use of the subresultant, we
present an effective way to stabilize the algebraic phase
unwrapping along the real axis.

1 Introduction

The phase unwrapping problem for a univariate com-
plex polynomial is formulated as follows.

Problem 1 (Phase unwrapping for a univariate com-
plex polynomial along the real axis)For a given univari-
ate complex polynomial A(t) ∈C[t] such that A(t), 0 for
all t ∈ [0,1]⊂R, compute

θA(t∗) := θA(0)+
∫ t∗

0

(

arctan

{

ℑ{A(t)}
ℜ{A(t)}

})′

dt, (1)

which is called the unwrapped phase of A(t) at
t∗ ∈ (0,1], where θA(0) ∈ (−π, π] satisfies A(0) =
|A(0)|ejθA(0).

A rigorous symbolic algebraic solution to Problem 1
was established [1] (See Proposition 1 in Sec.2.2). This
method does not require any numerical root finding or
numerical integration technique.

However, in a direct computer implementation of the
algebraic phase unwrapping algorithm (SGA-RA) (See
Algorithm 1 in Sec. 2.2), for polynomials of large de-
gree, we encounter certain numerical instabilities due to
the unavoidable gap between numerical value computed
by digital computer and theoretical value.1 Therefore,

1Recently, we presented in [2] an idea based on a combination of
the algebraic phase unwrapping and the spline smoothing of small
order. This phase unwrapping technique is numerically robust and
expected to be applicable to many signal and image processing prob-
lems, for example, estimations of surface topography in synthetic
aperture radar (SAR) interferometry [3] and the degree of magnetic
field inhomogeneity in the water/fat separation problem of magnetic
resonance imaging (MRI) [4].

thoughtless direct computation of SGA-RA for polyno-
mials of large degree, sometimes results in the failure of
a key property of the desiredgeneral Sturm sequence,
which is generated by applying SGA-RA, leading thus
the failure of the exact phase unwrapping in the end.

In this paper, based on the similarity between SGA-
RA and Euclidean algorithm for finding thegreatest
common divisor (GCD)of a pair of real polynomials,
we propose a replacement of a certain inductive step in
SGA-RA by the subresultant [5], [6]. By this replace-
ment, numerical values of the idealgeneral Sturm se-
quencecan be computed without suffering propagation
of errors in the process of SGA-RA, and then the al-
gebraic phase unwrapping is stabilized greatly even for
polynomials of relatively large degree. This result is
useful for wider application of the algebraic phase un-
wrapping, e.g., in a combination with the spline smooth-
ing [2], to practical signal and image processing prob-
lems.

2 Preliminaries

2.1 Notation

Let N∗, R andC denote respectively the set of all pos-
itive integers, real numbers and complex numbers. We
use j ∈C to denote the imaginary unit satisfyingj2=−1.
For anyc∈C,ℜ(c) andℑ(c) stand respectively for the
real and imaginary parts ofc. For anyC(t)=

∑m
k=0 cktk∈

C[t] (s.t. cm , 0 andm ≥ 0), we define deg(C) := m,
lc(C) := cm and mmc(C) := max{|c0|, |c1|, . . . , |cm|}.

For anyC(t) =
∑m

k=0 cktk ∈ C[t] (t ∈ [0,1] ⊂ R),
we haveC(t) = C(0)(t) + jC(1)(t), where C(0)(t) :=
∑m

k=0ℜ{ck}tk,C(1)(t) :=
∑m

k=0ℑ{ck}tk ∈ R[t] and

ℜ{C(t)} = ℜ{C(0)(t)+ jC(1)(t)} = C(0)(t)
ℑ{C(t)} = ℑ{C(0)(t)+ jC(1)(t)} = C(1)(t)

}

. (2)

2.2 Algebraic phase unwrapping

The next proposition is a solution to Problem 1. This
proposition is a relaxation of Theorem 1 in [1]. Indeed,
the conditionℜ{A(0)} = A(0)(0) , 0 assumed in [1] is
removed, and the definition ofΨk(t) ∈ R[t] is modified
in Proposition 1.



Proposition 1 (Algebraic phase unwrapping along the
real axis)Let A(t) := A(0)(t) + jA(1)(t) ∈ C[t] satisfy
A(t) , 0 (t ∈ [0,1]), where A(0)(t),A(1)(t) ∈ R[t]. De-
fine

ZA(0) := {t ∈ (0,1) | A(0)(t) = 0}

=

{

∅ if A(0)(t),0 for all t ∈ (0,1),
{µ1, µ2, . . . , µτ} otherwise,

where0 < µ1 < · · · < µτ < 1, and

X(µi) :=















































+1 if

{

A(0)(t)A(1)(t)>0 for t∈ (µi−ε, µi) and
A(0)(t)A(1)(t)<0 for t∈ (µi , µi+ε),

−1 if

{

A(0)(t)A(1)(t)<0 for t∈ (µi−ε, µi) and
A(0)(t)A(1)(t)>0 for t∈ (µi , µi+ε),

0 otherwise,

for µi (i = 1,2, . . . , τ) and for sufficiently smallε > 0.
Then we have the following relations.

(a)For any t∗ ∈ (0,1],

θA(t∗) = θA(0)− lim
t→0+0

arctan{QA(t)}

+ lim
t→t∗−0

arctan{QA(t)} + Λ(t∗)π,

whereQA(t) := ℑ{A(t)}
ℜ{A(t)} =

A(1)(t)
A(0)(t)

andΛ(t∗) :=
∑

µi∈(0,t∗)

X(µi).

(b) Let {Ψk(t)}
q
k=0 be a sequence of real polynomials ob-

tained by applying Algorithm 1 (SGA-RA) to A(0)(t) and
A(1)(t). Define for each t∈ [0,1] the number of varia-
tions in the sign of{Ψk(t)}

q
k=0 by

V{Ψ(t)} :=V{Ψ0(t),Ψ1(t), . . . ,Ψq(t)}

:=
∣

∣

∣{i | 0≤ i<q andΨi(t)Ψi+̺(i)(t)<0}
∣

∣

∣ ,

where̺(i) := min{k ∈ N
∗ | Ψi+k(t) , 0}. Then, for every

t∗ ∈ (0,1], we have

θA(t∗)= θA(0)−















arctan{QA(0)} if A(0)(0),0,

sgn(Ψ0(0)Ψ1(0))π/2 if A(0)(0)=0,















+















arctan{QA(t∗)}+[V{Ψ(t∗)}−V{Ψ(0)}]π if A(0)(t∗),0,

π/2+ [V{Ψ(t∗)}−V{Ψ(0)}]π if A(0)(t∗)=0,
(3)

where

sgn(t) :=

{

+1 if t ≥ 0,
−1 if t < 0.

(4)

In this paper, we call the sequence of real polynomi-
als {Ψk(t)}

q
k=0 general Sturm sequence. For the relation

between Algorithm 1 and the Euclidean algorithm for
GCD(Ψ0,Ψ1), see Sec. 3.1.

Example 1 (Algebraic phase unwrapping and coeffi-
cient growth)Let us construct the unwrapped phase of
the univariate complex polynomial

A(t) := t (t − 0.1)(t − 0.5)(t − 0.51)

+ j (t − 0.49)(t − 0.515)(t − 0.52)(t − 1).

Algorithm 1 Sturm generating algorithm (SGA-RA)
Input: A(0)(t),A(1)(t)

Ψ0(t)←
A(0)(t)

te0
, Ψ1(t)←

A(1)(t)

te1

(whereek denotes the order oft = 0 as a zero of
polynomialA(k)(t))
k← 1
while deg(Ψk) , 0 do
Ψk+1(t)← −Ψk−1(t) + Hk(t)Ψk(t)
(whereHk(t) ∈ R[t] and deg(Ψk+1) < deg(Ψk))
k← k+ 1

end while

q←

{

k if Ψk(t) . 0
k− 1 if Ψk(t) ≡ 0

Output:{Ψk(t)}
q
k=0

A(0)(t) and A(1)(t) are given respectively as

A(0)(t) = t4 − 1.11t3 + 0.356t2 − 0.0255t,
A(1)(t) = t4 − 2.525t3 + 2.29995t2 − 0.906172t + 0.131222.

Applying Algorithm 1 to A(0)(t) and A(1)(t), we obtain
general Sturm sequence{Ψk(t)}5k=0 as

Ψ0(t) = t3 −
111
100

t2 +
89
250

t −
51

2000
,

Ψ1(t) = t4 −
101
40

t3 +
45999
20000

t2 −
226543
250000

t +
65611
500000

,

Ψ2(t) = −t3 +
111
100

t2 −
89
250

t +
51

2000
,

Ψ3(t) = −
3733
10000

t2 +
94233
250000

t −
190279
2000000

,

Ψ4(t) = −
27788829033

260102169185000
t +

15335859
278705780000

,

Ψ5(t) =
3391452647840106395584666460779211811

119967177270575015975354069525774695200000
.

From A(0)(0)=0 and A(1)(0)= 65611
500000, θA(0)=π/2. More-

over fromsgn(Ψ0(0)Ψ1(0))=sgn
(

− 3346161
1000000000

)

=−1 and

V{Ψ(0)} = V
{

− 51
2000,

65611
500000,

51
2000,−

190279
2000000,

15335859
278705780000,

3391452647840106395584666460779211811
119967177270575015975354069525774695200000

}

= 3, the un-

wrapped phaseθA(t) in (3) is expressed as

θA(t) = π +















arctan{QA(t)}+[V{Ψ(t)}−3]π if A(0)(t),0,

π/2+ [V{Ψ(t)}− 3]π if A(0)(t)=0,

which is depicted in Fig. 1.

2.3 Numerical instabilities of SGA-RA

To implement Algorithm 1 (SGA-RA) precisely, we
need large number of digits to express the rational co-
efficients of the polynomialsΨk(t) (e.g., See Example
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Figure 1: Exact unwrapped phase by Proposition 1

1). We call this phenomenon thecoefficient growthin
analogy with the typical cases in the computation of the
polynomial reminder sequencethrough the Euclidian al-
gorithm [6]. In computer implementation ofθA(t) in
(3) through SGA-RA, the coefficient growth causes the
truncation error in the floating-point expression of the
rational coefficients (or memory shortages by increasing
number of digits for exact expression of the rational co-
efficients). In particular, once a seriousinformation loss
(by the addition or subtraction for a pair of numbers of
ill-balanced absolute values) orcatastrophic cancella-
tion (by the subtraction for a pair of very close numbers)
occurs, the gap between numerical value of{Ψk(t)}

q
k=0

by digital computer and theoretical value becomes un-
acceptably large (See Example 2).

Example 2 (Catastrophic cancellation)The general
Sturm sequence{Ψk(t)}5k=0 obtained in Example 1 is ex-
pressed in decimal number expression as

Ψ0(t) = t3 − 1.11t2 + 0.356t − 0.0255,

Ψ1(t) = t4 − 2.525t3 + 2.29995t2 − 0.906172t + 0.131222,

Ψ2(t) = −t3 + 1.11t2 − 0.356t + 0.0255,

Ψ3(t) = −0.3733t2 + 0.376932t − 0.0951395,

Ψ4(t) = −1.0683812872× 10−4t + 5.5025263559× 10−5,

Ψ5(t) = 2.8269837842× 10−5.

From the above values, we verify that the absolute value
of coefficients ofΨk(t) decreases drastically from k= 3
to k= 4. This phenomenon has been studied in terms of
approximate GCD of degree3 [7], [8] (See Appendix).

In SGA-RA with 64-bit floating point expression, the
absolute value of the leading coefficient ofΨ4(t), i.e.,

|lc(Ψ4)| =
27788829033

260102169185000
, is derived and truncated

as

−
89
250
−

(−1)× (− 190279
2000000)

− 3733
10000

−

(

111
100−

(−1)× 94233
250000

− 3733
10000

)

× 94233
250000

3733
10000

≈ 1.068381287250980× 10−4.

However, direct computation of
27788829033

260102169185000
with

64-bit floating point expression is

1.068381287248510× 10−4,

which is more precise. From this fact, we verify that the
significant figures of coefficients ofΨk(t) are lost dras-
tically from k = 3 to k = 4. This phenomenon is so-
colled the catastrophic cancellation in the floating-point
expression.

Once theinformation lossor the catastrophic can-
cellation occurs, this influences inductively in the pro-
cess of SGA-RA, which results in the failure ofgeneral
Sturm sequence’skey property:

Ψk(t)=0 att∈ [0,1]⇒Ψk−1(t)Ψk+1(t)<0
for k = 1,2, . . . ,q− 1,

(5)

leading thus the failure of (3). This situation restricts
the practical applicability of Proposition 1 especially for
polynomialsA(t) ∈ C[t] of large degree.

3 Stabilization of algebraic phase unwrapping

3.1 Relationship between Algorithm 1 and
Euclidean algorithm

The Euclidian algorithm for computing GCD(Ψ0,Ψ1)
generates thepolynomial remainder sequence{Pk(t)}

q
k=0,

whereP0(t) :=Ψ0(t) :=
A(0)(t)

te0
, P1(t) :=Ψ1(t) :=

A(1)(t)

te1

and

Pk+1(t) := Pk−1(t) + Qk(t)Pk(t) (k=1,2, . . . ,q−1)
(s.t. Qk(t) ∈ R[t] and deg(Pk+1) < deg(Pk)).

On the other hand, in SGA-RA{Ψk(t)}
q
k=0 is defined as

Ψk+1(t) :=−Ψk−1(t) + Hk(t)Ψk(t) (k=1,2, . . . ,q−1)

(s.t. Hk(t) ∈ R[t] and deg(Ψk+1) < deg(Ψk)).

As a result, we have

Ψk(t) = (−1)
(k−1)k

2 Pk(t) (k = 0,1, . . . ,q). (6)



3.2 Subresultant

In what follows, we assume

deg(Pk−1)≥deg(Pk)
⇒ deg(Pk+1)=deg(Pk)−1 (k=1,2, . . . ,q−1).

(7)

For the polynomialsP0(t) and P1(t) which cause the
coefficient growth, the assumption (7) holds almost al-
ways.

For a pair of real polynomials

P0(t) := amtm+ am−1tm−1 + · · · + a1t + a0,

P1(t) := bntn + bn−1tn−1 + · · · + b1t + b0,

s.t. am , 0 and bn , 0, we defineRi(P0,P1, t) ∈
R[t](m+n−2i)×(m+n+2i) (i = 0,1, . . . ,min{m− 1,n− 1}) by

Ri(P0,P1, t) :=




























































































































































am am−1 · · · ai ai−1 · · · a0 P0(t)tn−i−1

am am−1 · · · ai ai−1 · · · a0 P0(t)tn−i−2

. . .
. . .

. . .
. . .

. . .
...

am am−1 · · · ai ai−1 · · · P0(t)t i

. . .
. . .

. . .
. . .

...

am am−1 · · · ai P0(t)t
am · · · ai+1 P0(t)

bn bn−1 · · · bi bi−1 · · · b0 P1(t)tm−i−1

bn bn−1 · · · bi bi−1 · · · b0 P1(t)tm−i−2

. . .
. . .

. . .
. . .

. . .
...

bn bn−1 · · · bi bi−1 · · · P1(t)t i

. . .
. . .

. . .
. . .

...

bn bn−1 · · · bi P1(t)t
bn · · · bi+1 P1(t)





























































































































































. (8)

Then thei-th subresultantof P0 andP1 is defined as

Sresi(P0,P1, t) := det(Ri(P0,P1, t)). (9)

Under the assumption (7), it is well-known that for
deg(P0) = m ≥ n = deg(P1) the subresultsnt sequence
{Sresi(P0,P1, t)} satisfies

Sresn−k+1(P0,P1, t) = λkPk(t) (k=2,3, . . . ,n+1), (10)

whereλk :=
(

(−1)k−1 lc(P1)
)m−n+1∏k−1

i=2 ( lc(Pi))2, and for
deg(P0) = m< n = deg(P1) (i.e.,P2(t) = P0(t))

Sresm−k+2(P1,P0, t)=λ
′
kPk(t) (k=3,4, . . . ,m+2), (11)

whereλ′k :=
(

(−1)k−2 lc(P0)
)n−m+1∏k−1

i=3 ( lc(Pi))2 [5], [6].
For deg(P0) ≥ deg(P1) from (6) and (10), we can

express

sgn(Ψk(t
∗)) = (−1)(k−1)(m−n+1+ k

2) (sgn(lc(Ψ1))
)m−n+1

× sgn(Sresn−k+1(Ψ0,Ψ1, t
∗)) (k=2,3, . . . ,n+1).

(12)

Similarly for deg(P0) < deg(P1) from (6) and (11), we
can express sgn(Ψ2(t∗)) = −sgn(Ψ0(t∗)) and

sgn(Ψk(t
∗)) = (−1)(k−2)(n−m+1)+ (k−1)k

2
(

sgn(lc(Ψ0))
)n−m+1

× sgn(Sresm−k+2(Ψ1,Ψ0, t
∗)) (k=3,4, . . . ,m+1).

(13)

The relations (12) and (13) imply that we can com-
pute eachΨk(t∗) by {Sresi(P0,P1, t∗)} without passing
through the inductive process in Algorithm 1.

The following algorithm uses (12) or (13) in place of
the inductive step in Algorithm 1. Note that real polyno-
mialsΨk(t) ∈ R[t] (k = 2,3, . . . ,q) are not necessary for
evaluating the values of{Ψk(t∗)}

q
k=0. The computational

complexity for each determinant Sresi−1(P0,P1, t∗) is at
mostO(nlog 7) ≈ O(n2.81) [9].

Algorithm 2 Proposed algorithm for computing (3)
Input: A(0)(t),A(1)(t), t∗

Ψ0(t)←
A(0)(t)

te0
, Ψ1(t)←

A(1)(t)

te1

(whereek denotes the order oft = 0 as a zero of
polynomialA(k)(t))
Ψ0(t)← |Const. 1|Ψ0(t),Ψ1(t)← |Const. 2|Ψ1(t)

m← deg(Ψ0), n← deg(Ψ1)

a← lc(Ψ0), b← lc(Ψ1)

if m≥ n then
for k = 2 to (n+ 1) do
Ψk(t∗) ← (−1)(k−1)(m−n+1+ k

2)(sgn(b))m−n+1

× Sresn−k+1(Ψ0,Ψ1, t∗)
end for

else
Ψ2(t∗)← −Ψ0(t∗)
for k = 3 to (m+ 1) do

Ψk(t∗)←(−1)(k−2)(n−m+1)+ (k−1)k
2 (sgn(a))n−m+1

× Sresm−k+2(Ψ1,Ψ0, t∗)
end for

end if

Output:{Ψk(t∗)}
min{m+2,n+1}
k=0

Remark: e.g., Const. 1= 1
mmc(Ψ0) , Const. 2= 1

mmc(Ψ1)

4 Numerical example

In this section, we examine the numerical perfor-
mance of Algorithm 2 in the algebraic phase unwrap-
ping of some univariate complex polynomials.

Define two real polynomialsA(0)(t) andA(1)(t) by

A(0)(t) := (t−0.205)(t−0.5)(t−0.75)(t−0.805)(t−1.2)A(0)(t),

A(1)(t) := (t−0.2)(t−0.34)(t−0.35)(t−0.81)(t−1.21)A(1)(t),

where A(0)(t) is a polynomial of degree 44 whose all



coefficients are generated by the uniform distribution
over [−0.5,0.5] and A(1)(t) is a polynomial of degree
24 whose all coefficients are generated by the uniform
distribution over [−0.5,0.5]. Fig. 2 depicts one exam-
ple of the estimations of the unwrapped phaseθA(t) for
A(t) := A(0)(t)+ jA(1)(t) with Algorithm 1 and Algorithm
2. From Fig. 2, Algorithm 1 fails in phase unwrapping
at t = 0.2 andt = 0.81. On the other hand, Algorithm 2
succeeds in phase unwrapping at allt ∈ [0,1]. Table 1
summarizes the result for 300 polynomials generated as
above, where we can see (i) the total number of polyno-
mials in failure by Algorithm 1 is reduced to less than
1/6 by Algorithm 2, and (ii) the total number of posi-
tions in failure by Algorithm 1 is reduced to less than
1/14 by Algorithm 2.

5 Conclusion

By replacing the inductive step in SGA-RA by nu-
merical evaluations of a subresultant sequence, we suc-
ceeded in stabilizing the algebraic phase unwrapping
along the real axis. Numerical examples demonstrate
the remarkable improvement achieved by the proposed
technique.
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Figure 2: Estimations of the unwrapped phase

Table1: Performance comparison for random polynomials

Algorithm
Total number of

polynomials in failure
Total number of

positions in failure

Algorithm 1 37 (among 300) 88
Algorithm 2 6 (among 300) 6

Appendix: Catastrophic cancellation in SGA-RA

Suppose that we have two real polynomialsP0(t) and
P1(t) which respectively have roots close toαk (k =
1,2, . . . , s), i.e.,P0(t) andP1(t) are expressed as

P0(t)=(t−α1−δ1(0))(t−α2−δ2(0)) · · ·(t−αs−δs(0))P0(t)
P1(t)=(t−α1−δ1(1))(t−α2−δ2(1)) · · ·(t−αs−δs(1))P1(t)

}

,

where|δk(0) |, |δk(1) |≪1 (k=1,2, . . . , s) andP0(t),P1(t) ∈
R[t] do not have roots locating closely.

Defineǫ0(t) andǫ1(t) as the reminders of the divisions
of P0(t) andP1(t) by

D(t) := (t−α1)(t−α2) · · · (t−αs), (14)
i.e.,

ǫ0(t) := P0(t) + Q0(t)D(t)
ǫ1(t) := P1(t) + Q1(t)D(t)

}

,

whereQk(t) ∈R[t] and deg(ǫk) < deg(D) (k= 0,1). Ac-
cording to [7],ǫk(t) satisfies mmc(ǫk)≪mmc(Pk) (k =
0,1) andD(t) is called theapproximate greatest com-
mon divisorwith accuracy max{mmc(ǫ0),mmc(ǫ1)}.

If the polynomial reminder sequence{Pk(t)}
q
k=0 sat-

isfies deg(P0) = m ≥ n = deg(P1) and (7), we have
deg(Pn−s+1) = s and Pn−s+1(t) ≈ λD(t), whereλ ∈ R.
Moreover if the absolute values of the all coefficients of
P0(t) andP1(t) are not much different from 1, the values
of mmc(Pk) (2≤k≤n−s+1) tend to be not much different
from 1 while the values of mmc(Pk) (n−s+2≤k≤n+1)
tend to be very small [8].

Acknowledgement

This work was supported in part by JSPS Grants-in-
Aid (B-21300091).

References
[1] I. Yamada and K. Oguchi, “High-resolution estima-

tion of the directions-of-arrival distribution by algebraic
phase unwrapping algorithms,”Multidimensional Sys-
tems and Signal Processing, vol. 22, pp. 191–211, 2011.

[2] D. Kitahara and I. Yamada, “A robust algebraic phase
unwrapping based on spline approximation,”IEICE
Technical Report, 2012.

[3] R. M. Goldstein, H. A. Zebker, and C. L. Werner,
“Satellite radar interferometry: Two-dimensional phase
unwrapping,”Radio Science, vol. 23, no. 4, pp. 713–
720, 1988.

[4] S. M. Song, S. Napel, N. J. Pelc, and G. H. Glover,
“Phase unwrapping of MR phase images using Poisson
equation,”IEEE Trans. Image Process., vol. 4, no. 5, pp
667–676, 1995.

[5] G. E. Collins, “Subresultants and reduced polynomial
reminder sequences,”J. ACM, vol. 14, pp.128–142,
1967.

[6] W. S. Brown and J. F. Traub, “On Euclid’s algorithm
and the theory of subresultants,”J. ACM, vol. 18, pp.
505–514, 1971.

[7] T. Sasaki and M. Sasaki, “Polynomial remainder se-
quence and approximate GCD,”ACM SIGSAM Bul-
letin, vol.31, pp. 4–10, 1997.

[8] T. Sasaki and M. Sasaki, “Analysis of accuracy decreas-
ing in polynomial remainder sequence with floating-
point number coefficient,” J. Inform. Process., vol. 12,
pp. 394–403, 1989.

[9] A. V. Aho, J. E. Hopcroft, and J. D. Ullman,The De-
sign and Analysis of Computer Algorithms, Addison-
Wesley, 1974.


