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Abstract The phase unwrapping is a problem to find, at any specified,gb#value of the continuous phase function which
contains valuable information in many applications. If eegi data sequence 24D real vectors is modeled as samples of a
complex polynomial, the exact unwrapped phase can be ceplutough algorithms named the algebraic phase unwrapping
In this paper, to promote the understanding and extend thetipability of the algebraic phase unwrapping, we propse
widely applicable phase unwrapping technique, by combitiire spline smoothing and the algebraic phase unwrappng, f
a given data sequence ?fD noisy vectors. The spline smoothing works as an optimappocessing in the sense that it is
the unique solution to a variational problem for minimizithg sum of “fidelity” to the data and “roughness” of the curve.
Fortunately, since the standard spline smoothing and itsusgeneralizations produce always low-order pieceveaagpoly-
nomials, we can compute the exact unwrapped phase for thefgaiecewise polynomials without suffering from a certain
numerical instability observed typically in applicatioofthe algebraic phase unwrapping to a complex polynomiddgie
degree.
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as a univariate complex polynomial, i.¢) (x, y) + j f1y (z,y) €
Clz + jy|, together with its path of integratioff (¢) = (¢,0),

For a given pair of continuous functiong;) : R* — R Y(t) = (0,t) or Y(t) = (cost,sint), the algebraic phase un-
(i = 0,1) and a certain continuous function (path of integration)wrapping compute$~(¢*) exactly [13]-[15]. The algorithms do
T : R — R", such that not require any numerical root finding or numerical integration tech-

1. Introduction

nique™ Unfortunately, due to the poor performance of the complex

Fo(t):= fo) (T (1)) #0 0r Fia) (t) = Fu) (T (1)) #0 polynomial as a nonparametric regression of a given data sequenc

forallt € [to, t1] > (@) of 2-D real vectors, the application of the algebraic phase unwrap-
Fio)(to) = fio) (Y (t0)) #0 ping has been limited.
the unwrapped phase 6f (o), (1)) att* € (to, t1] is defined as In this paper, we first present an extension of the algebraic phase
unwrapping to a pair of piecewise real polynomials and then pro-
* /
Or (") = O (to) + /t <arctan { Fy(t) }) i @ pose to apply this extension to the so-called spline smoothing of
Jg Foy(t) a given data sequence 2D real vectors. The spline smoothing

where Op(to) € (—m,n] satisfies F)(to) + jFu)(te) = works as an optimal preprocessing of the extended algebraic phas

|F0) (to) + jF 1) (to)]e?r "),

In many signal and image processing problems, the phase ur§_0Iution to a variational problem for minimizing the sum of “fi-
fOqelity” to the data and “roughness” of the curve (see e.g.[17]-[21]

rT_or such characterization and [22]-[24] for its applications of the

unwrapping because this smoothing is characterized as the uniqu

wrapping has been a key for estimating some physical quantity,

example, surface topography in synthetic aperture radar (SAR) in=" _ _ _
terferometry [1], [2], wavefront distortion in adaptive optics [3],[4 spline smoothlng-] to noise r_emoval -proble-ms). Fortun.ate!y, since
the degree of magnetic field inhomogeneity in the water/fat separé-he standard spline smoothing and its various generalizations pro-

tion problem of magnetic resonance imaging (MRI) [5], [6] and theduce always low-order piecewise real polynomials, we can naturally

relationship between the object phase and the bispectrum phase':'H?ply the extended algebraic phase unwrapping to the pair of suct

piecewise real polynomials.
As a result, the proposed method consists of two steps. First,

astronomical imaging [7], [8].

Despite the tremendous effort made so far, most phase un-

wrapping algorithms, e.g., path-following methods [9], [10] or we compute a pair of spline functions which is expected to play

minimum-norm methods[11],[12], are not necessarily designed ] — ] — B
(1): Moreover, recent studies [16] reduce significantly a certain numerical instabilit

based on sound mathematical analy3|s. of the algebraic phase unwrapping, observed in its application to complaxgpoials

On the other hand, if the functiofig) + j f(1) : R* — Cis given  of large degree.



as a reliable nonparametric regression for a given data sequence of begin
2-D real vectors. Second, we apply the extended algebraic phase L&t Wo(t) := A()(t) and W1 (t) := A1) (?),

unwrapping to the pair of spline functions for computing the un-

wrapped phase.

Numerical examples demonstrate the practical applicability of the

proposed technique even for noisy data samples.
2. Preliminaries

2.1 Algebraic phase unwrapping

Let N*, R andC denote respectively the set of all positive inte-

gers, real numbers and complex numbers. Wejus€ to denote
the imaginary unit satisfying? = —1.

The next proposition presents the exact solution of the phase un-

wrapping problem for complex polynomials along the real axis.
[Proposition 1]
[15]) Let A(t) := A)(t) + jA@)(t) € C[t] satisfy A(t) # 0
(t € [ta,tp)) and Aoy (ta), Aoy (ts) # 0 for somet, > t., where
A(O) (t),A(1>(t) € R[ﬂ Define

ZL(O)::{t € [ta,ts] | A(O) (t) =0}

_ )0
{I/;[,VQ7 ..

wherevy (=)t < v1 < --- < vy <1, and

if Ao, (t)#0forall t€[ta, ],
., v-} otherwise

+1if Ay (t) Ay (t) >0 forte (vi—e,v;)and
Ay (t)Aq)(t) <0 forte (vi,vite),
X(Vi):: Lif A(o)(t)A(l)(t)<0 forte(yi_a Vi)and
Ay () Ay () >0 for te (vi,vi+e),
0 otherwise
forv; (i = 1,2,...,7) and for sufficiently smakt > 0. Then we

have the following relations.

(@) For anyt* € (ta, ts],

. +* A(l)(t) }) ’
04(t") = Oa(ta) + t dt 3
A( ) A( ) /ta (arc an{A(o)(t) ( )
= 0a(ta) —arctan{Qa(ta)}
+, liglio arctan{Qa ()} + A(t")m,
whereQ(t) := 22;;8 andA(t*) := Z X (V).

v €(tg,t*)

algorithm (SGA) in Fig. 1 tod o) (t) and A1) (t) with

Ty (t)

VU(t) i= ———
k( ) (t _ ta)ek ’

whereey, denotes the order af= ¢, as a zero of polynomiafk(t).

Define for eacht € [t,, t,] the number of variations in the sign of

{We(t)}izo bY
VW)=V {Wo(t), Ui (t),..., Ue(t)}

= |{i | 0<i<qandW;(t)¥, o) () <O}

)

(Algebraic phase unwrapping along the real axis

where Ag)(t) and A)(t) satisfy conditions.
if deg(¥1) =0,
thenp:=1
else
begin
k:=1;
RAepeat
Whp1(t) = —We—1(t) + He(t) Vi ()
(whereH,(t) € R[t] anddeg (1) < deg(¥y))
k=k+1
Until deg(¥x) =0 (k > 2)
p:=k
end

g=4 "
: .

end

if U,(t) #£0
if W,(t) =0

Fig. 1 Sturm generating algorithm (SGA)
wherep(i) := min{k € N* | ¥, ,(r) # 0}. Then, for every
t* € (ta, ts], we have
0a(t")=04(ta) — arctan{Qa(t.)}
arctan{Qa(t")} + [V{V (")} = V{T¥(ta) }7
if Ay (t™) #0,

/2 + [V{W(t")} = V{¥(ta)}]m
if A(O) (t*) =0.

4)

2.2 Spline smoothing

Suppose that
(&, (o) (&r), w1 (€R)))

= (&, (Flo) (&) + £(0) (€r), Fay (€x) + €1y (€r))) € R x R?
(k=1,2,...,n)are given as a sequence®D noisy real vectors,
whereF; : [to,t1] — R (¢ = 0,1) are unknown twice continu-
ously differentiable functions andl;) : [to, 1] — R (i = 0, 1) are
additive noise afto =)&1 < & < -+ < &u(= t1). If we hope
to estimated(t*) in (2), it is natural to estimatéFo), F(1)) first
by twice continuously differentiable functions;, € C?[to, t1]
(¢ = 0, 1) which are respectively the unique optimal solutions of

Minimize Z {f(i>(£k) - y(i)(é-k)}2+)\/ ! {ﬁ(’{)(t)}th
k=1 to

s.t. ﬁ(i) € C? [t()vtl]? ®)

where) > 0 is called a smoothing parameter controlling the trade-

a . . .
(b) Let{ Wy}, be asequence of functions obtained by applying theoff between the fidelity to the data and the roughness of the solution.

It can be shown [18], [21] that the optimal solutiéi, has the fol-
lowing properties:

0] F(*Z.) is a cubic polynomial, i.e., polynomial of degraer less,
in each intervalék, {k+1) (k=1,2...,n — 1).

(i) at the design poingy (k = 1,2,...,n), F(; and its first two

derivatives are continuous, but there may be discontinuity in the

third derivative.
(iii) in the range o0, £1) U (&5, o0) the second derivative is zero,
so thatl";, is linear outside the range of the data.



Any function which satisfies (i) and (ii) is calledcaibic splinewith where ur = hkhklillhk Ak = hkf”li’;hk and d, :=

knots¢y (k = 1,2,...,n). Any cubic spline function which sat- ¢ {Wrt1-yr)/he} =A@ —yp—1)/Pr-1}
hi—1+hg

isfies (iii) is called anatural cubic spline These properties are not
imposed on the estimate, but arise automatically from the choice of /N the nextsection, we present an extension of the algebraic phast
the roughness penaltf/tl{F(l) t)}2dt. The optimal solution;, unwrapping and propose to use spline smoothing as its preprocess
is called asmoothing spline In particular, as\ — 0 (no smooth-  INg.
ing), the smoothing spline converges to the so-called interpolating 3. Algebraic phase unwrapping for a pair of
spline. Moreover, a3 — oo (infinite smoothing), the smoothing
spline converges to a linear least squares estimate.

If a finite smoothing parameter> 0 is given, we can obtainthe 3.1 Extension of the algebraic phase unwrapping to a pair

smoothing splines

coefficients of smoothing splingy;, by solving a band-limited lin- of piecewise polynomials
ear system of sizex—2)[18]. A stable and fast numerical algorithm ~ Suppose thatS(o), S(1)) is a pair of piecewise real polynomi-
for solving this system is available [25]. als with knotsgx (k = 1,2,...,n) s.t. S (t) = AL (t) € R[t]

Furthermore, for robustness against impulsive noise, we can exé = 0,1) in each interval¢;, &41] (I = 1,2,...,n — 1). Define
tend (4) to {11 be a sequence of functions obtained by applying the al-

2 e o 2 gorithm (SGA) in Fig. 1 taA ") () and A{!) () with
Minimize Zp (F<i)(§k) - y(i)(§k))+)\/ {F{b(t)} dt (0) 50 ; )
k=1 to \Il](;)(t) = (t 2 RO
T 2 —& ,

St Fu) € C7lto, tal, ©) where e, . denotes the order of = ¢ as a zero of polyno-

by introducing a certain convex functign: R — R which is less  mial @,i”(t). Then, if AU (t) := AEJ)( ) + jA(l)( ) satisfies

rapidly increasing that? [26], [27]. It is known that the unique op- AV () # 0 (t € [&,&+1]) and A(O)(gl), <o>(5z+1) #£ 0, by
timal solution of (5) as well satisfies the above properties (i), (ii)replacingt., t, in Proposition 1 with¢;, {41 we have

and (iii) 141 (<11>) (t)
Several methods for choosing the smoothing parametar(4) (arctan { ) }) di
have also been proposed, e.g., cross-validation method [20], [28] & A(O) ®)
If we useX = 0, all cubic splines interpolating, y(;) (¢x)) = arctan{Q}’ (&11)} — arctan{ QY (&)}
(k =1,2,...,n) are the solution of (4) (or (5)) and not determined +V{EO ) =V{EOE)m,  (9)
uniquely. A cubic interpolating spling(¢) is uniquely determined AW 4y
if we impose additionally one of the boundary conditions below. where Q1 (t) := Agf?;(t)' From (8) andhrctan{Q} (6r1)} =
(@) { S'(&1) = F;y(&) Hermite, arctan{QX+1>(§l+1)}, the next proposition is derived.
S'(n) = F{;)(én)

[Proposition 2] (Algebraic phase unwrapping for a pair of piece-
(b) { §7(&) =0 Natural, wise real polynomials) et piecewise polynomial$;, : [¢1, &n] —
§7(6n) =0 R (i = 0,1) satisfyS;;)(t) = A{)(t) € R[] in each interval

© S:::(&—) = S”'(%-i—) Not-a-knot, [€,8641] (1 = 1,2,...,n = 1), Soy(t) + jS)(t) # 0 (t €
S (rfnfl—) =S (§n71+) [51, fn]) andS(o)(fz) #0 (l =1,2,..., n) Sté << - <&y,
/ _ o Foranyt* € (&, &k+1] (k=1,2,...,n — 1) we have
(d) { Z,(&) *2,(/5”) Periodic. - NN

(€1) = 57() 0s(t")=0s(&1) +/ (arctan{s >(t) }) dt (10)
[Example 1] (Interpolating cubic spline under certain boundary & ©®)
conditions [22])A cubic splineS(t), which satisfiesS(¢) = v it Y AL (1) '
(k = 1,2,...,n) and one of the above boundary conditions - )+ P / arctan ﬁ)))( )
(@),(b),(c) and (d), is determined in each intery&i, {x+1] (K = B . NE >(t)
1,2,...,n — 1) as a polynomial +/ arctan Eg dt  (11)

5 §k A(o) (t)
—1 —t
S(t) = My { (£k+61hk ) £k+g hk} =0s(&) — arctan{in}(&)}
k—1
t—&)?  t— —k t—& v{w® —v{w®
o 08 tma, \ gak g o D VY @)} VR @
6hi 6 hi hi =1
(k) (4 *

with by == &1 — & (k= 1,2,...,n—1) and the unique solution arctan{Q}y” (¢*)} + [V{T™ (¢")} — V{‘i; (&) }Hm
(My)r~, of a system of linear equations defined by the boundary+ if A(o)( ") #0, (12)
condition and 7/2+ (VB @)} - V{® )}
M1+ 2Mg + M My41 = di (142:2,37...,’17,—1)7 (8) if AEIS;( ) 0,

—3—



= 0s(&) — arctan{fo)(fk)}
arctan{ QY (t*)} + [V{® ()} V{0 (&)}]r

if Alg) () # 0,
+ (13)
/2 + VTP ()} =V {e® (&)} ]r
if Al () = 0.

3.2 Spline smoothing as preprocessing of algebraic phase

unwrapping
Let Si;) (¢ = 0, 1) be the optimal solutions of problem (4) or (5).

In Fig. 2(a) and Fig. 3(a), the dashed line depidey,(t) =
cos(r(t)) and the solid line depicts the spline functidiy) ().
In Fig. 2(b) and Fig. 3(b), the dashed line depici$,(t) =
sin(fr(t)) and the solid line depicts the spline functidf,)(z).
In Fig. 2(c) and Fig. 3(c), the dashed line depiéts(¢), the short
dashed line depicts the estima@e(t) obtained by the standard
phase unwrappin@l3)and the solid line depicts the estimae(t)
achieved by the proposed phase unwrapping.

From Fig. 2, we observe that the standard algorithm and the pro-

Although the unwrapped phase is a highly non-linear functional ofposed phase unwrapping technique estimate exakgtfy) at all

(F(oy, F(1)), we propose to usés(t*) as an estimate dfr(t*) in
a way similar to an estimation technique [25] whé}f% is used as

sampling points if sampling interval is small enough.
From Fig. 3, we observe that the proposed phase unwrapping

the estimate of";,. To summarize the proposed phase unwrappingechnique estimates-(¢) exactly at all sampling points even if the

technique, first we compute two natural cubic splisgs andsS;)
as the optimal solutions to the problem (4) or (%) and Sy
approximate respectively,y and F(;y. Second, by applying the

sampling intervah is not small enough for the standard algorithm.

4.2 Phase unwrapping for noisy data
[Example 3] Suppose thal-(t), foy and f(;) are defined as Ex-

extended algebraic phase unwrapping in Proposition 2 to the pair of

smoothing splines, we obtaits (¢*) which would be a good esti-
mate of@r (t*).

4. Numerical Examples

4.1 Phaseunwrapping for noise-free data

ample 2. A data sequence D noisy real vectors are generated
até, = (k—1)h (h=0.5) as

(&k, (W0) (€8), y(1) (€r)))

= (&, (Flo)(&k) + €0y (&), Fuy (&) + £y (€r)))
wheree ;) (i = 0, 1) is gaussian nois@/(0,1/25).

In this section, we examine the performance of the proposed From Fig. 4, we observe that the proposed phase unwrapping
phase unwrapping technique for a pair of two univariate real functechnique estimates(¢) exactly at all sampling points even if the

tions f(0), f(1y and Y(¢t) = t which satisfy the condition (1). In
this case, we havE(o) (t) = f(o)(T(t)) = f(o)(t) andF(l)(t) =

noise is not small enough for the standard algorithm.

5. Conclusion

fay(Y(t)) = fy(t). We compare the proposed technique and a
standard phase unwrapping algorithm [29] which computes an esti- The proposed phase unwrapping technique is designed as a natt

mate of0r (¢x) as

k—1
Or(61) =0 (1) + Y WONV(Or (§41) W (Or (&), (14)
=0
whereW(z) := x + 2wk(x) s.t. k(z) is a integer chosen to sat-
isfy —m < W(z) < 7 (i.e., W(&) satisfiesW (&) € (—n, 7]
and F(o)(&) + jF0) (&) = |Fo)(&) + 3Fa)(&)]e”™ ),
W(0r(&)) is called the wrapped phase @f o), f1)) att = &.

The standard phase unwrapping is designed based on a strong as-

sumption:
— < O0p(&41) —O0r (&) <7 (I

L2,...

,n—1).
[Example 2] Suppose thatr(t), f(o) and f(1 are defined respec-
tively as

— A 1p 1,1 . (E)
Or() =552 T30 ~20' T10' 5 om\3Y)

Foy(t) = foy(t) := cos(0r(t)) and Foy(t) = fy(t) :
sin(0r(t)). A data sequence @D real vectors are generated at

& = (k= Dh as (&, (Flo) (&), Finy (&) (b = 1,2,...,n).
The spline functions$ oy and S(;) are defined as the optimal so-

lutions of problem(4) for A — 0, i.e., S0y and S(,) are inter-
polating natural cubic splines. Fig. 2 and Fig. 3 demonstrate the
performance of the phase unwrapping algorithms where the smal
circles indicate points sampled at intervalsiot= 0.4 in Fig. 2 and

h = 0.55 in Fig. 3.

ral combination of the extended algebraic phase unwrapping and the
spline smoothing for a given sequenceed real vectors. Numer-
ical examples demonstrate the effectiveness of the proposed tech
nigue.
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