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Abstract The algebraic phase unwrapping was established in 1998 as a rigorous symbolic algebraic solution to the phase

unwrapping problem, i.e., the problem of computing the continuous phase function of a given complex polynomial. In this

paper, we propose a simple but a powerful numerical stabilization technique namedthe mixed trigonometric interpolationfor

the algebraic phase unwrapping. This technique is based on replacing a certain set of arithmetic operations in polynomial ring

by an interpolation of a certain mixed trigonometric function. By this technique we can obtain numerical stable approxima-

tion of general Sturm sequencewithout suffering the coefficient growth. Moreover, by combining the mixed trigonometric

interpolationwith FFT, we succeeded in makingthe mixed trigonometric interpolationfaster and more stable. The proposed

techniques allow us to solve phase unwrapping problem alongthe unit circle stably even if the degree of a given polynomial is

very large.

Keywords Algebraic phase unwrapping, Numerical stabilization, Coefficient growth, General Sturm sequence, Mixed
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1. Introduction

For a given complex polynomialA(z) ∈ C[z] such that

A(z) 6= 0 for all |z| = 1

ℜ{A(1)} 6= 0

}
, (1)

the phase unwrapping along the unit circle is a problem to compute

for ω∗ ∈ (0, 2π]

θA(ω∗) = θA(0) +

∫ ω∗

0

ℑ

{
A′(ejω)

A(ejω)

}
dω

= θA(0) +

∫ ω∗

0

(
arctan

{
ℑ{A(ejω)}

ℜ{A(ejω)}

})′

dω, (2)

where−π < θA(0) ≤ π andA(1) = |A(1)|ejθA(0). A rigorous

symbolic algebraic solution to the phase unwrapping problem was

established in 1998 [1] (see Proposition 1 in Sect. 2. 2). This method

does not require any numerical root finding or numerical integration

technique.

Recently, it was shown in [2] that the algebraic phase unwrap-

ping can be applied as a powerful mathematical tool to compute the

Minimum-Maximum distributions of self-reciprocal Laurent poly-

nomial along the unit circle, which implies that the algorithm can

be applied to the estimation ofthe Directions-of-Arrival distribu-

tion (DOA distribution): the number of directions of signals in an

arbitrarily specified range, which is a valuable information in many

array signal processing applications [3] in analogy with the idea of

the MUSIC algorithm [4].

However, in a direct computer implementation of the algebraic

phase unwrapping algorithm (SGA) in Fig. 1 for polynomials of

large degree, we encounter certain serious instabilities due to the

unavoidable gap between numerical value computed by digital com-

puter and theoretical value. Therefore, thoughtless direct computa-

tion of SGA for polynomials of large degree, often results in the

failure of a key property of the desiredgeneral Sturm sequence,

which is generated by applying SGA, leading thus the failure of the

exact phase unwrapping in the end.

In this paper, we propose a simple but a powerful numerical stabi-

lization technique namedthe mixed trigonometric interpolationfor

the algebraic phase unwrapping. The proposed stabilization tech-

nique produces a good approximation of the idealgeneral Sturm

sequenceby reducing the inductive step in SGA to a certain system

of linear equations. Moreover, by combiningthe mixed trigono-

metric interpolationwith FFT, we makethe mixed trigonometric

interpolationfaster and more stable. Thanks to the key property of

the approximation, ofgeneral Sturm sequence, guaranteed by the

proposed stabilization techniques, the algebraic phase unwrapping

is stabilized greatly even for polynomials of large degree, which im-

plies that the algebraic phase unwrapping is applicable to practical

array signal processing problems formulated with polynomials of

large degree.
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2. Preliminaries

2. 1 Notation

Let C denote the set of all complex numbers. We usej ∈ C

to denote the imaginary unit satisfyingj2 = −1. For anyc ∈ C,

ℜ(c), ℑ(c) andc̄ stand respectively for the real part, the imaginary

part, and complex conjugate ofc. For anyC(z) =
∑m

k=l
ckzk ∈

C[z, z−1] (s.t. clcm 6= 0 and l ≤ m), we definedeg(C) := m,

l deg(C) := l, c deg(C) := l+m
2

, C∗(z) :=
∑m

k=l
c̄m−k+lz

k,

CF (ω) := C(ejω), C†(z) := z−c deg(C)C(z) ∈ C[z1/2, z−1/2],

C†
F (ω) := C†(ejω), C(0)(z) := C(z)+C∗(z)

2
and C(1)(z) :=

C(z)−C∗(z)
2j

. The degrees of the constant0 are defined asdeg(0)=

l deg(0) = c deg(0) = 0. In particular,C(z) ∈ C[z, z−1] satisfy-

ing C(z)=C∗(z) is called a self-reciprocal Laurent polynomial. If

C(z) is self-reciprocal,C†(z) andC†
F (ω) are expressed as follows,

C†(z)=





c l+m

2
+

m−l

2∑

k=1

(
c l+m+2k

2
zk+c̄ l+m+2k

2
z−k
)

(
s.t. c l+m

2
∈ R

)
if (l + m) is even,

m−l+1
2∑

k=1

(
c l+m+2k−1

2
z

2k−1
2 +c̄ l+m+2k−1

2
z−

2k−1
2

)

if (l + m) is odd,

(3)

C†
F (ω)=





c l+m

2
+2

m−l

2∑

k=1

{
ℜ
(
c l+m+2k

2

)
coskω

−ℑ
(
c l+m+2k

2

)
sinkω

}
if (l + m) is even,

2

m−l+1
2∑

k=1

{
ℜ
(
c l+m+2k−1

2

)
cos 2k−1

2
ω

−ℑ
(
c l+m+2k−1

2

)
sin 2k−1

2
ω
}

if (l + m) is odd.

(4)

Obviously,C†
F (ω) is a real-valued differentiable function overR.

For anyC(z) ∈ C[z, z−1], we haveC(z) = C(0)(z) + jC(1)(z),

whereC(0)(z) and C(1)(z) are self-reciprocal, andc deg(C) =

c deg(C(0))=c deg(C(1)). Moreover, we have

ℜ{C†
F (ω)}=ℜ{C†

(0)F (ω)+jC†

(1)F (ω)}=C†

(0)F (ω)

ℑ{C†
F (ω)}=ℑ{C†

(0)F (ω)+jC†

(1)F (ω)}=C†

(1)F (ω)

}
. (5)

2. 2 Algebraic phase unwrapping

The next proposition is a slight generalization of the main theo-

rem in [1]. This proposition enables us to solve the phase unwrap-

ping problem in symbolic algebraic ways.

[Proposition 1] (Algebraic phase unwrapping along the unit cir-

cle [2]) Let A(z) := A(0)(z) + jA(1)(z) ∈ C[z], where

A(0)(z), A(1)(z) ∈ C[z] are self-reciprocal polynomials satisfy-

ing c deg(A) = c deg(A(0)) = c deg(A(1)), A(0)(1) 6= 0 and

A(z) 6= 0 for |z| = 1. Define

Z†
A(0)

:={ω ∈ [0, 2π] | A†

(0)F (ω) = 0}

=

{
∅ if A†

(0)F (ω) 6=0 for all ω∈ [0, 2π],

{ν1, ν2, . . . , νr} otherwise,

whereν0(:=)0 < ν1 < · · · < νr < 2π, and

X (νi):=





+1

if

{
A†

(0)F (ω)A†

(1)F (ω)>0 for ω∈(νi−ε, νi) and

A†

(0)F (ω)A†

(1)F (ω)<0 for ω∈(νi, νi+ε),

−1

if

{
A†

(0)F (ω)A†

(1)F (ω)<0 for ω∈(νi−ε, νi) and

A†

(0)F (ω)A†

(1)F (ω)>0 for ω∈(νi, νi+ε),

0 otherwise,

for νi (i = 1, 2, . . . , r) and for sufficiently smallε > 0. Then we

have the following relations.

(a)For anyω∗ ∈ (0, 2π],

θA(ω∗) = θA(0) +

∫ ω∗

0

(
arctan

{
ℑ{AF (ω)}

ℜ{AF (ω)}

})′

dω

= θA(0) + c deg(A)ω∗ − arctan{Q†
A(0)}

+ lim
ν→ω∗−0

arctan{Q†
A(ν)} + Λ(ω∗)π, (6)

whereQ†
A(ω) :=

A
†

(1)F
(ω)

A
†

(0)F
(ω)

andΛ(ω∗) :=
∑

νi∈(0,ω∗)

X (νi).

(b) Let {Φk(ω)}q
k=0 be a sequence of functions over0 ≤ ω ≤ 2π

obtained by applying the algorithm (SGA) in Fig. 1 toA(0)(z) and

A(1)(z) with

Dk(z) := z−l deg(A(k))
(

j
z−1

)ek A(k)(z)

Φk(ω) := D†

kF (ω)

}
, (7)

where ek denotes the order ofz = 1 as a zero of polynomial

A(k)(z). Define for eachω ∈ [0, 2π] the number of variations

in the sign of{Φk(ω)}q
k=0 by

V {Φ(ω)} :=V {Φ0(ω), Φ1(ω), . . . , Φq(ω)}

:=
∣∣{i | 0≤ i<q andΦi(ω)Φi+̺(i)(ω)<0}

∣∣ , (8)

where̺(i) := min{k ∈ N
∗ | Φi+k(ω) 6= 0}. Then, for every

ω∗ ∈ (0, 2π], we have

θA(ω∗)=θA(0) + c deg(A)ω∗ − arctan{Q†
A(0)}

+





arctan{Q†
A(ω∗)} + [V {Φ(ω∗)}−V {Φ(0)}]π

if A†

(0)F (ω∗) 6= 0,

π/2 + [V {Φ(ω∗)}−V {Φ(0)}]π

if A†

(0)F (ω∗) = 0.

(9)

In this paper, we call the sequence of functions{Φk(ω)}q
k=0 in

(7) general Sturm sequence.

[Example 1] By using the SGA and Proposition 1, let us construct

the unwrapped phase of the univariate complex polynomial

A(z) := (6 − 4j)z4 + (8 − 2j)z − (18 + 12j),

which satisfies(1). Then,A(0)(z) and A(1)(z) are respectively
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begin
Let A(0)(z) and A(1)(z) satisfy conditions.
if deg(D1) = 0,
then p := 1

else
begin
k := 1;

Repeat
vk := deg(Dk−1) − deg(Dk)

βk :=
Dk−1(0)

Dk(0)
, γk := j1−vkβk

A(k+1)(z):=





(βk + β̄kzvk )Dk(z)−Dk−1(z)

if vk > 0,

(γk + γ̄kz)Dk(z)−( z−1
j

)1−vkDk−1(z)

if vk ≤ 0,
k := k + 1

Until deg(Dk) = 0 (k ≥ 2)

p := k

end
q :=

{
p if Dp(z) 6≡ 0

p − 1 if Dp(z) ≡ 0
end;

Fig. 1 Sturm generating algorithm (SGA)

A(0)(z) =
A(z) + A∗(z)

2
= −(6−4j)z4 + (4+j)z3 + (4−j)z − (6+4j),

A(1)(z) =
A(z) − A∗(z)

2j

= −(8+12j)z4−(1−4j)z3−(1+4j)z−(8−12j).

Applying SGA toA(0)(z) and A(1)(z), we obtain general Sturm

sequence{Φk(ω)}5
k=0 by

Φ0(ω) = −12 cos 2ω − 8 sin 2ω + 8 cos ω − 2 sin ω,

Φ1(ω) = −16 cos 2ω + 24 sin 2ω − 2 cos ω − 8 sin ω,

Φ2(ω) = 15 cos
3

2
ω − 28 sin

3

2
ω + 3 cos

ω

2
+ 12 sin

ω

2
,

Φ3(ω) = −
10878

1009
cos ω +

23720

1009
sin ω −

3792

1009
,

Φ4(ω) =
3031140705948

171774501889
cos

ω

2
−

7054071488152

171774501889
sin

ω

2
,

Φ5(ω) = −
21842706063300120792772424694

3717391761629177305254024517
.

The unwrapped phaseθA(ω) over[0, 2π] is depicted in Fig. 2.
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)[
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d/
π]

Fig. 2 Exact unwrapped phase by Proposition 1 (Example 1)

2. 3 Numerical instabilities of SGA

To implement the algorithm (SGA) in Fig. 1 precisely, we

need large number of digits to express the rational coefficients of

the polynomialsA(k)(z) or Dk(z) and functionsΦk(ω) (k =

0, 1, . . . , q) mainly due to the repeated computations ofβk (k =

1, 2, . . . , q − 1) (e.g., see Example 1). We call this phenomenon

thecoefficient growthin analogy with the typical cases in the com-

putation of thestandard Sturm sequencethrough the Euclid’s al-

gorithm [5]. In computer implementation ofθA(ω) in (9) through

SGA, we encounter certain serious instabilities due to, e.g., (i) the

truncation error of the trigonometric function values, and (ii) the

coefficient growth which causes the truncation error in the floating-

point expression of the rational coefficients (or memory shortages

by increasing number of digits for exact expression of the rational

coefficients). As a result, thoughtless direct computation of SGA

often results in the failure ofgeneral Sturm sequence’skey prop-

erty:

Φk(ω0)=0 atω0∈ [0, 2π]⇒Φk−1(ω0)Φk+1(ω0)<0

for 0 < k < q(≥ 2),
(10)

leading thus the failure of (9). This situation restricts the practical

applicability of Proposition 1 especially for polynomialsA(z) ∈

C[z] of large degree.

In the next section, we propose a simple but powerful stabiliza-

tion technique to maintain the key property (10) for exact phase

unwrapping.

3. Mixed Trigonometric Interpolation for
Stabilization of Algebraic Phase Unwrapping

For numerical implementation of the algebraic phase unwrapping

through SGA, we need a certain stable approximation of the value

V {Φ(ω)}. This goal is achieved by a careful numerical approxima-

tion {Φ̃k(ω)}q
k=0(≈ {Φk(ω)}q

k=0) which is guaranteed to satisfy




Φ̃0 = Φ0, Φ̃1 = Φ1,

Φ̃k(ω0)=0 atω0∈ [0, 2π]⇒ Φ̃k−1(ω0)Φ̃k+1(ω0)<0

for 0 < k < q(≥ 2).

(11)

Indeed by (11), we can obtainV {Φ̃(ω)}−V {Φ̃(0)}(= V {Φ(ω)}

−V {Φ(0)}) unlessω is in the vicinity of zeros ofΦ0. (Note:

The unavoidable gap between numerical and theoretical zeros ofΦ0

does not guaranteeV {Φ̃(ω)} − V {Φ̃(0)}= V {Φ(ω)}−V {Φ(0)}

for ω in the vicinity of such zeros). The proposed construction of

{Φ̃k(ω)}q
k=0(≈ {Φk(ω)}q

k=0) is presented inductively as follows.

Suppose that we havem ≥ 1, n ≥ 1 and

Φ̃k−1(ω) = am cosm
2

ω+am−1 sinm
2

ω+am−2 cosm−2
2

ω+· · ·

Φ̃k(ω) = bn cosn
2
ω+bn−1 sinn

2
ω+bn−2 cosn−2

2
ω+· · ·

}
.

Under the standard assumption,(1) we can express̃Φk+1(ω) for

(1) : Almost always, we can assume (i)A(k)(1) 6= 0 (k = 2, 3, . . . , q) and (ii)

deg(Dk−1) = m

deg(Dk) = n

}
⇒ deg(Dk+1) =

{
m − 2 if m > n,

n − 1 if m ≤ n.
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m > n by

Φ̃k+1(ω)=cm−2cosm−2
2

ω+cm−3sin
m−2

2
ω+cm−4cosm−4

2
ω+· · ·,

for m ≤ n by

Φ̃k+1(ω)=cn−1 cosn−1
2

ω+cn−2 sinn−1
2

ω+cn−3 cosn−3
2

ω+· · ·.

To determine{ci}
m−2
i=0 (or {ci}

n−1
i=0 ) without suffering the coef-

ficient growth in the direct computation of SGA, we reduce this

problem to an interpolation problem of the mixed trigonometric

function Φ̃k+1(ω). By choosing carefully sample pointsωi (i =

0, 1 . . . , m − 2 (or n − 1)) for this interpolation problem, we can

determine{ci}
m−2
i=0 (or {ci}

n−1
i=0 ) uniquely by solving a system of

linear equations.

Applying the idea in SGA tõΦk−1(ω) and Φ̃k(ω), we found

that, in order to ensure (11),̃Φk+1(ω) is desired to approximate

Ψ̃k+1(ω) for all ω ∈ [0, 2π], where form > n

Ψ̃k+1(ω) :=
2Φ̃k(ω)

b2
n + b2

n−1

{
(ambn + am−1bn−1) cos

m − n

2
ω

−(ambn−1 − am−1bn) sin
m − n

2
ω
}
− Φ̃k−1(ω), (12)

for m ≤ n

Ψ̃k+1(ω):=
2Φ̃k(ω)

b2
n+b2

n−1

{
(ambn+am−1bn−1) cos

ω−(1+n−m)π

2

−(ambn−1−am−1bn) sin
ω−(1+n−m)π

2

}

−Φ̃k−1(ω)

1+n−m∑

l=0

(
1+n−m

l

)
cos

(1+n−m−2l)(π−ω)

2
.(13)

In the following construction of̃Φk+1(ω), we assume for sim-

plicity the casem > n. (Note: The discussion for the other case

is almost same). Unfortunately, thoughtless direct computation of

{ci}
m−2
i=0 through the elementary trigonometric expansion of equa-

tion (12) causes the coefficient growth as remarked in Sect. 2.3.

We take a different path to find a stable numerical approxima-

tion of {ci}
m−2
i=0 by using the relation (12) for numerical evaluation

of Ψ̃k+1(ωi) (i = 0, 1, . . . , m − 2). Now by using these numeri-

cal values at sample points and the expression ofΦ̃k+1 in terms of

{ci}
m−2
i=0 , we deduce

A




cm−2

cm−3

...

c1

c0




=




Ψ̃k+1(ω0)

Ψ̃k+1(ω1)

...

Ψ̃k+1(ωm−3)

Ψ̃k+1(ωm−2)




, (14)

where

A =




cos m−2
2

ω0 sin m−2
2

ω0 · · · · · ·

cos m−2
2

ω1 sin m−2
2

ω1 · · · · · ·
...

...
...

...

cos m−2
2

ωm−3 sin m−2
2

ωm−3 · · · · · ·

cos m−2
2

ωm−2 sin m−2
2

ωm−2 · · · · · ·




. (15)

To determine{ci}
m−2
i=0 uniquely, we propose the following careful

selection of sample pointsωi (i = 0, 1, . . . , m − 2).

[Theorem 1] The matrixA in (15) is invertible, hence{ci}
m−2
i=0 is

determined uniquely by(14) if we choseωi as follows.

(a) If m is even, i.e.,m − 2 = 2l, for somel ∈ N, ω0 = 0. For

1 ≤ i ≤ l, ωi ∈ (0, π), ωi 6= ωj (i 6= j) andωl+i = −ωi.

(b) If m is odd, i.e.,m − 2 = 2l + 1, for somel ∈ N, ω0 = 0,

ω2l+1 = π. For 1 ≤ i ≤ l, ωi ∈ (0, π), ωi 6= ωj (i 6= j) and

ωl+i = −ωi.

By Theorem 1, we can obtaiñΦk+1(ω) which satisfies at least

Ψ̃k+1(ωi) = Φ̃k+1(ωi) (i = 0, 1, . . . , m − 2) within finite pre-

cision of digital computer. Finally, we can construct{Φ̃k(ω)}q
k=0

which satisfies (11). We name this numerical stabilization technique

the mixed trigonometric interpolation.

4. Improvement of Mixed Trigonometric
Interpolation with FFT

The mixed trigonometric interpolationin Sect. 3 has two weak

points. First, the computational complexity for solving the system

of linear equations (14) is in generalO(n3). Therefore, if the de-

gree of polynomial is very large, it takes a little computational time

to obtain{Φ̃k(ω)}q
k=0. Second, if the degree of polynomial is very

large, the matrixA in (15) tends to be ill-conditioned.

In this section, we present a technique which not only accelerates

but also stabilizesthe mixed trigonometric interpolation.

Consider to determine the coefficients{cs}
m
s=0 of a self-

reciprocal polynomial

D̃k(z) =

m∑

s=0

csz
s (s.t. cmc0 6= 0)

from {D̃k(zn)}N−1
n=0 for someN ≥ m + 1, whereD̃†

kF (ω) =

Φ̃k(ω). (Note: We can determine immediately the coefficients of

Φ̃k(ω) from {cs}
m
s=0 by (4)). If we useN := 2t (s.t. t ∈ N and

2t−1 < m + 1 ≤ 2t) andzn := ej
2nπ
N (n = 0, 1, . . . , N − 1), we

have the solution of (14) by

cs =
1

N

N−1∑

n=0

e−j
2n(s−c deg(D̃k))π

N Φ̃k

(
2nπ

N

)

(s = 0, 1, . . . , m),

(16)

which requires onlyO(N log2 N) with FFT.

5. Numerical Examples

5. 1 Stabilization by the proposed techniques

In this section, we examine the performance of the proposed

method in the algebraic phase unwrapping, along the unit circle, of

a univariate complex polynomial which satisfies (1). We define the

following criterion to evaluate the gap betweenΨ̃k(ω) andΦ̃k(ω)

(see (12) and (13))

σerror(ω) :=

q∑

k=2

∣∣∣∣
Ψ̃k(ω) − Φ̃k(ω)

Ψ̃k(ω)

∣∣∣∣ . (17)
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[Example 2] We define a self-reciprocal polynomialA(0)(z) of de-

gree69 whose all coefficients’ are generated by the uniform distri-

bution for[−10000, 10000] + j[−10000, 10000] and define a self-

reciprocal polynomialA(1)(z) of degree43 whose all coefficients’

are generated by the uniform distribution for[−10000, 10000] +

j[−10000, 10000]. The estimations of the unwrapped phaseθA(ω)

for A(z) := A(0)z+jA(1)z with (i) direct SGA, (ii) mixed trigono-

metric interpolation with Theorem 1 and (iii) mixed trigonometric

interpolation with FFT are depicted in Fig. 3 and the gaps between

Ψ̃k(ω) and Φ̃k(ω) with each techniques are depicted in Fig. 4.

From Fig. 3, the direct SGA fails in exact phase unwrapping at

0.04π and1.92π. The mixed trigonometric interpolation with The-

orem 1 successes in exact phase unwrapping at1.92π but fails at

0.04π. The mixed trigonometric interpolation with FFT successes

in exact phase unwrapping at allω ∈ (0, 2π]. From Fig. 4, the

mixed trigonometric interpolation with FFT achieves the smallest

gap betweeñΨk(ω) andΦ̃k(ω) in average. The direct SGA results

in the largest gap is in average.
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Fig. 3 The estimations of the unwrapped phaseθA(ω) by direct SGA and

by stabilization techniques (Example 2)
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Fig. 4 The gap betweeñΨk(ω) andΦ̃k(ω) (Example 2)

5. 2 Computational time of the proposed techniques

[Example 3] For a polynomialA(z) of deg(A) = 1 ∼ 300

whose all coefficients’ are generated by the uniform distribution

for [0, 10] + j[0, 10], Fig. 5 shows the computational time for ob-

taining {Φ̃k(ω)}deg(A)+1
k=0 . Solid line expresses the computational

time for solving the system of linear equations(14) with Theorem 1

and dashed line expresses the computational time by(16) with FFT.

From Fig. 5, we verified that FFT helps greatly to accelerate com-

putation of{Φ̃k(ω)}n+1
k=0 especially for polynomials of large degree.
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Fig. 5 Computational time for obtaining{Φ̃k(ω)}
deg(A)+1
k=0

(Example 3)

6. Conclusion

A pair of numerical stabilization techniques namedthe mixed

trigonometric interpolationare presented for the algebraic phase

unwrapping. By combiningthe mixed trigonometric interpolation

with FFT, we succeeded in making the algebraic phase unwrapping

faster and more stable. Numerical examples demonstrate the effec-

tiveness of the proposed techniques.
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