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Abstract The algebraic phase unwrapping was established in 1998igsraus symbolic algebraic solution to the phase
unwrapping problem, i.e., the problem of computing the itardus phase function of a given complex polynomial. In this
paper, we propose a simple but a powerful numerical stalitim technique namettie mixed trigonometric interpolaticior

the algebraic phase unwrapping. This technique is basegjptecing a certain set of arithmetic operations in polyradming

by an interpolation of a certain mixed trigonometric funati By this technique we can obtain numerical stable appraxi
tion of general Sturm sequenedgthout suffering the coefficient growth. Moreover, by camibg the mixed trigonometric
interpolationwith FFT, we succeeded in makitige mixed trigonometric interpolaticfaster and more stable. The proposed
techniques allow us to solve phase unwrapping problem dlemgnit circle stably even if the degree of a given polyndisia
very large.

Keywords Algebraic phase unwrapping, Numerical stabilization, ficient growth, General Sturm sequence, Mixed
trigonometric interpolation, FFT.

array signal processing applications [3] in analogy with the idea of
the MUSIC algorithm [4].

1. Introduction

For a given complex polynomial(z) € C[z] such that However, in a direct computer implementation of the algebraic
h i Igorith A) in Fig. 1 f I ials of
A(z) £0 for all [2] = 1 o Ip asedunwrapplng algorithm (SG. ) in - ig . or t[)o:) .yno;nlas 0 h
) arge degree, we encounter certain serious instabilities due to the
R{A(L)} # 0 ge g9

unavoidable gap between numerical value computed by digital com-
the phase unwrapping along the unit circle is a problem to computguter and theoretical value. Therefore, thoughtless direct computa-

for w* € (0, 27] tion of SGA for polynomials of large degree, often results in the
o A failure of a key property of the desiregeneral Sturm sequence
Oa(w”) = 04(0) + /O R { A7) } dw which is generated by applying SGA, leading thus the failure of the
o S{A)) , exact phase unwrapping in the end.
=604(0) + /O (arctan {%{1‘1(6“)} }) dw, (2) In this paper, we propose a simple but a powerful numerical stabi-

lization technique nametthe mixed trigonometric interpolaticior

where—m < 04(0) < wandA(1) = |A(1)\ej9A(°). Arigorous  the algebraic phase unwrapping. The proposed stabilization tech-
symbolic algebraic solution to the phase unwrapping problem wasique produces a good approximation of the idgaheral Sturm
established in 1998 [1] (see Proposition 1 in Sect. 2. 2). This methodequencéy reducing the inductive step in SGA to a certain system
does not require any numerical root finding or numerical integratiorof linear equations. Moreover, by combinitige mixed trigono-
technique. metric interpolationwith FFT, we makethe mixed trigonometric

Recently, it was shown in[2] that the algebraic phase unwrapinterpolationfaster and more stable. Thanks to the key property of
ping can be applied as a powerful mathematical tool to compute ththe approximation, ofieneral Sturm sequencguaranteed by the
Minimum-Maximum distributions of self-reciprocal Laurent poly- proposed stabilization techniques, the algebraic phase unwrapping
nomial along the unit circlewhich implies that the algorithm can is stabilized greatly even for polynomials of large degree, which im-
be applied to the estimation tfie Directions-of-Arrival distribu-  plies that the algebraic phase unwrapping is applicable to practical
tion (DOA distribution): the number of directions of signals in an array signal processing problems formulated with polynomials of
arbitrarily specified range, which is a valuable information in manylarge degree.



2. Preliminaries wherero(:=)0 < vy <--- <w, <2m and

2.1 Notation +1
T T
Let C denote the set of all complex numbers. We vse C i« } Ap@ A p(@)>0 forwe(vi—e,v) and
i i
to denote the imaginary unit satisfyigg = —1. For anyc € C, Algyp(@) A pw) <0 forwe (v, vite),

R(c), I(c) ande stand respectively for the real part the imaginary

X(I/i):z —1
1, d | te of F C(z
2,2" S.t. ciem 0 and! < m), we definedeg = m,
! AIO)F(w)AEI)F(w)>O forwe(yi, Z/i—l—s),

ldeg(C) =1, cdeg(C) = W™, C*(2) == Y01, Cmpi2",
Cr(w) := C(e]w) CT(Z) = ZﬁCdeg(C)C(Z) S C[zl/2,271/2], 0 otherwise

) =
(w) = cf( ), Cloy(z) = CEEEE and Oy (2) =
C(z) C

forv; (i = 1,2,...,r) and for sufficiently smalt > 0. Then we
. The degrees of the constdhare defined adeg(0) =

ldeg(o) = cdeg(0) = 0. In particular,C(z) € C[z, 2~ ] satisfy-
ing C(z)=C"(z) is called a self-reciprocal Laurent polynomial. If

have the following relations.

(a) For anyw™ € (0, 27],

C(z) is self-reciprocalCf (z) andC. (w) are expressed as follows, w* S Ar(w)}
i 0a(w™) = 04(0) +/ (arctan{ u }) d
5 0 R{Ar(w)}
k| = —k
Cim + Z (CH’";%Z +Cl+’"2+2’“z ) = 04(0) + cdeg(A)w™ — arctan{Q (0)}
k=1
(s.t.aJrJ € R) if (14 m)is even, + lim OarCtan{QA(V)} + Alw")m, (6)
Cl(z)= 2 (3
met (@)
o . t — <1)F ) L .
(Cl+'rrL+2k71 ZL21 +Ciymi2k—1 Z_2k2 1) WhereQA(w) ’ (O)F(w) ndA(w ) : Z X(Vl)'
P 2 2 v; €(0,w*)
if (I + ) is odd, (b) Let{®r(w)}F_, be a sequence of functions oveK w < 27
m-t obtained by applying the algorithm (SGA) in Fig. 14q.(z) and
Ciym +2 {?R(CL+m+2k>coskw A(l)(z) with
2 1 2
7%(Cl+m+2k) sinkw} if (I +m)is even, Dy(z) := z7tdee(Am) (ij)ﬁ" Ay (2) e
1_ _ 2 I
Cr@= . “) ®i(w) = D}p(w)
2 Z { (Cl+m+2k 1)C052k{1w where e, denotes the order of = 1 as a zero of polynomial
- _ _ Ay (z). Define for eachw € [0,2n] the number of variations
_ \s(cumtqu)sm w} if (I 4+ m) is odd. in the sign of{ @ (w)}?_, by

Obviously, C} (w) is a real-valued differentiable function ovir
For anyC(z) € C[z, 2™ '], we haveC(z) = C(o)(2) + jCa1)(2),
where C(g)(z) and C(1)(z) are self-reciprocal, anddeg(C) = 8)
cdeg(Clo)) =cdeg(C)). Moreover, we have where (i) := min{k € N* | ®;;,(w) # 0}. Then, for every
R{CTL(w)} = %{C(O)F(w)+j0(1)F(w)} C(O)F(w) ) w* € (0,2x], we have
%{CT( )= \‘{C(O)F(W)‘F.jc(z)p(w)} C(l)p(w)

V{®(w)}:=V{Po(w), P1(w),...,Pq(w)}
=|{i | 0<i<qand®;(w) Py o) (w)

04(w*)=04(0) + cdeg(A)w™ — arctan{Q', (0)}

2.2 Algebraic phase unwrapping arctan{QL(w*)} + [V{®(W)} —V{®(0)}]r
The next proposition is a slight generalization of the main theo- if Al (W) #0
a2 )

rem in[1]. This proposition enables us to solve the phase unwrap- + 9)

m/2+ [V{®(w")}=V{®(0)}]m

ping problem in symbolic algebraic ways.
if Al p(w") = 0.

[Proposition 1] (Algebraic phase unwrapping along the unit cir-
cle[2]) Let A(z) := Aq(z) + jAn)(z) € Clz], where In this paper, we call the sequence of functidds, (w)}{_, in
Awy(z), Aqy(z) € C[z] are self-reciprocal polynomials satisfy- (7) general Sturm sequence

ing cdeg(A) = cdeg(A(q)) = cdeg(Aq)), Awy(1) # 0 and

A(z) # 0for |2| = 1. Define [Example 1] By using the SGA and Proposition 1, let us construct
the unwrapped phase of the univariate complex polynomial

zl, ={welo,2m]| Al p(w) =0}

o A(z) == (6 — 45)z* + (8 — 2j)z — (18 + 127),

o if A(O)F( w)#0 forall we |0, 2n],
{v1,va,...,v,} otherwise which satisfieq1). Then, A« (z) and A«(z) are respectively

—2



begin
Let Aq)(2) and A(;)(z) satisfy conditions.
if deg(D1) =0,
thenp:=1
else
begin
k:=1;
Repeat
vi := deg(Dg—_1) — deg(Dx)
B i= B = 5,
(B + Brz"*)Di(2) = Di—1(2)

A e if v > 0,
(k+1)( ) (i +,?kz)Dk(z)_(g)lf’ukafl(Z)
J
k._k—’—l ikaSO,
Until deg(Dy) =0 (k > 2)
pi=
end .
q::{ p if Dy(2) #0
end: p—1 if Dy(z)=0

Fig. 1 Sturm generating algorithm (SGA)

_A(z) + A%(2)

A(())(Z) = 2
= —(6—45)z" + (4+5)2* + (4—5)z — (6+47),
Ay(z) = ‘4(’2);7]‘4*(’2)

= —(8412§)2" —(1-45)2° — (1+45)z— (8—12).

Applying SGA toA g (z) and A(y(z), we obtain general Sturm
sequencd @, (w)}r_o by

Do (w) = —12cos2w — 8sin2w + §cosw — 2sinw,
Dy (w) = =16 cos 2w + 24sin 2w — 2cosw — 8sinw,

Py (w) = 15cos gw — 28sin gw + SCOSg + ].QSiIl%,

10878 23720 . 3792
®3(w) = ~T509 %+ Too9 ¢ ~ 1009’
a() — POBLUOTOS98 w0  TOSA0TIERIS
M) = 774501889 2 T 171774501889 T 2
21842706063300120792772424694
P5(w) =

3717391761629177305254024517
The unwrapped phagk: (w) over |0, 27] is depicted in Fig. 2.

6 A(w)[rad/r[]

15 2

0.5

1
wrad/m]

Fig. 2 Exact unwrapped phase by Proposition 1 (Example 1)

2.3 Numerical instabilities of SGA

To implement the algorithm (SGA) in Fig. 1 precisely, we
need large number of digits to express the rational coefficients of
the polynomialsAy(z) or Di(z) and functions®,(w) (k =
0,1,...,q) mainly due to the repeated computations@Gaf(k =
1,2,...,q — 1) (e.g., see Example 1). We call this phenomenon
the coefficient growthin analogy with the typical cases in the com-
putation of thestandard Sturm sequentirough the Euclid’s al-
gorithm[5]. In computer implementation éfs (w) in (9) through
SGA, we encounter certain serious instabilities due to, e.g., (i) the
truncation error of the trigonometric function values, and (ii) the
coefficient growth which causes the truncation error in the floating-
point expression of the rational coefficients (or memory shortages
by increasing number of digits for exact expression of the rational
coefficients). As a result, thoughtless direct computation of SGA
often results in the failure afeneral Sturm sequencekey prop-
erty:

Dy (wo)=0atwo €[0,27] = Pp_1(wo)Pr+1(wo) <0 (10)

for0 < k < q(>2),

leading thus the failure of (9). This situation restricts the practical
applicability of Proposition 1 especially for polynomialgz) €
C[z] of large degree.

In the next section, we propose a simple but powerful stabiliza-
tion technique to maintain the key property (10) for exact phase
unwrapping.

3. Mixed Trigonometric I nterpolation for
Stabilization of Algebraic Phase Unwrapping

For numerical implementation of the algebraic phase unwrapping
through SGA, we need a certain stable approximation of the value
V{®(w)}. This goal is achieved by a careful numerical approxima-
tion {$k(w) io(= {®r(w)}]_,) which is guaranteed to satisfy

o) = ¢)07&;1 =&y,
%k(u)o) =0atwp € [0, 27T] :><T>k_1(wo)&>k+1(wo) <0 (ll)
for0 < k < q(>2).

Indeed by (11), we can obtali{®(w)} — V{®(0)}(= V{®(w)}

—V{®(0)}) unlessw is in the vicinity of zeros ofd,. (Note:

The unavoidable gap between numerical and theoretical zefs of

does not guarantdé{®(w)} — V{®(0)}= V{®(w)}—V{®(0)}

for w in the vicinity of such zeros). The proposed construction of

{5k(w)}zzo(z {®r(w)}i_,) is presented inductively as follows.
Suppose that we have > 1,n > 1 and

Pr_1(w) = am cOSZw+am—1 SN Dw+am—2 cos 52w+ - - }

Dy (w) =bn CosGwHbn—18inFwby,—2 COS"T_2w+- .

Under the standard assumptidhwe can expressf)Hl(w) for

(1): Almost always, we can assume @)y(1) # 0 (k = 2,3,...,q) and (ii)
deg(Dr-1) = -2 f
cg(Dk—1) =m = deg(Dr+1) = . ) e
deg(Dr) =n n—1 if m < n.



m > n by [Theorem 1] The matrixA in (15) is invertible, hencéc; }7 2 is
5k+1(w) = Cm—2008 52wy —35I0 52w Crm — €08 TR Wt - determined uniquely bf14) if we chosev; as follows.
form < n by (@) If mis even, i.e.m — 2 = 2l, for somel € N, wy = 0. For

Bpp1(w) =cn_1 €085 wtcn s sin®lwtc, gcosiiwt ... L SISLwi€ (0,7), wi # w; (i # j) andwiy; = —wi.

To determine{c:}7 5> (or {c:}7=") without suffering the coef- (D) If m is odd, i.e.m —2 = 2/ + 1, for somel € N, wo = 0,
ficient growth in the direct computation of SGA, we reduce this¥2i+1 = 7 Forl <i <l w € (0,7m),w #w; (i #j)and
problem to an interpolation problem of the mixed trigonometric¥+: = —Wi-
function @1 (w). By choosing carefully sample poinis (i = By Theorem 1, we can obtaif. ; (w) which satisfies at least
0,1...,m —2 (Ol’n — 1)) for this interpolation problem, we can \Af’k+1( ) = 5“1(%) (i = 0,1,...,m — 2) within finite pre-
determine{c: };2,* (or {c:};;') uniquely by solving a system of  iion of digital computer. Finally, we can constryey, (w)}7_,
linear equations.

Applying the idea in SGA tob,_;(w) and &4 (w), we found

that, in order to ensure (11§k+1(w) is desired to approximate

which satisfies (11). We name this numerical stabilization technique
the mixed trigonometric interpolation

4. Improvement of Mixed Trigonometric
Interpolation with FFT

V11 (w) for all w € [0, 27], where form > n

CI;]C+1(UJ) = bfi)-# {(ambn + am—1bn—1) cos m= nw
n-t " _ The mixed trigonometric interpolatioim Sect. 3 has two weak
—(ambn—1 = am-1bn) sin “’} = Pi-1(w), (12) points. First, the computational complexity for solving the system
form <n of linear equations (14) is in gener@(n?®). Therefore, if the de-
~ 20 (w) w—(14+n—m)xw gree of polynomial is very large, it takes a little computational time
Vi1 (w)i=75—75"4(@mbn+am1bn1) cos o2 . . e
ba+b2_, 2 to obtain{®,(w)}}_,. Second, if the degree of polynomial is very
(14— L - . .
(ambn_1 —am_1by) sin® (I+n m)ﬂ} large, the matrixA in (15) tends to be ill-conditioned
2 In this section, we present a technique which not only accelerates
1+n—m
_ lan— Lt — 11— 90 (7 — . . . . .
P (w) Z n—m COS( +n—m—2I)(r—w) a3) but also stabilizethe mixed trigonometric interpolation
=0 l 2 Consider to determine the coefficienfs:;}7>, of a self-
In the following construction ofby 1 (w), we assume for sim- reciprocal polynomial
plicity the casen > n. (Note: The discussion for the other case m
is almost same). Unfortunately, thoughtless direct computation of Dy(z) = Z csz®  (St.cmeo #0)

{ci-};’;’(f through the elementary trigonometric expansion of equa- =0

tion (12) causes the coefficient growth as remarked in Sect. 2.3.  from { Dy (z.)}Y= for someN > m + 1, where D . (v) =
We take a different path to find a stable numerical approxima<, (w). (Note: We can determine immediately the coefficients of
tion of {¢; }7%, by using the relation (12) for numerical evaluation ik( ) from {cs 17 by (4)). If we useN = 2" (s.t. t € Nand
of \IJ,CH(wi) (#=0,1,...,m — 2). Now by using these numeri- 2!~! <y +1 < 2%) andz, :=e’ N N (n=0,1,...,N —1),we
cal values at sample points and the expresswiz;ml interms of  have the solution of (14) by
{e;}7,2, we deduce

N- j2nls= cdeg(Dk))Tr o
Cm—2 ‘T’k+1(w0) Z: P (T) (16)
Cm—3 U1 (wr) (s=0,1,...,m),
A ; = : 7 (14)
’ - ’ which requires onlyO(N log, N) with FFT.
c1 Vi1 (wWm—3)
co Tpos1 (Wim—2) 5. Numerical Examples
where 5.1 Stabilization by the proposed techniques
cos "2 wo sin 52w e e In this section, we examine the performance of the proposed
cos 2w sin 2w B method in the algebraic phase unwrapping, along the unit circle, of
A= : : : : . (15) a univariate complex polynomial which satisfies (1). We define the
cos ™20,y sin 520, s following criterion to evaluate the gap betweén (w) andik(w)
cos " 2wy sin 22wy, o e e (see (12) and (13))
To determine{c; }7",% uniquely, we propose the following careful Germon(@) = Zq: ‘Ik(ui) — %k(w) . a7
selection of sample points; (i = 0,1,...,m — 2). P Uy (w)




[Example 2] We define a self-reciprocal polynomidlo (z) of de-
gree69 whose all coefficients’ are generated by the uniform distri-
bution for[—10000, 10000] + 5[—10000, 10000] and define a self-
reciprocal polynomialA ;) (z) of degree43 whose all coefficients’
are generated by the uniform distribution fbr10000, 10000] +
j[—10000, 10000]. The estimations of the unwrapped phégéw)

for A(z) := Aoz +j A1)z with (i) direct SGA, (ii) mixed trigono-
metric interpolation with Theorem 1 and (iii) mixed trigonometric

interpolation with FFT are depicted in Fig. 3 and the gaps betweenputation Of{q;k(w)}nﬂ

\f/k(w) and @(w) with each techniques are depicted in Fig. 4.
From Fig. 3, the direct SGA fails in exact phase unwrapping at
0.047 and 1.927. The mixed trigonometric interpolation with The-

5.2 Computational time of the proposed techniques

[Example 3] For a polynomial A(z) of deg(A) 1 ~ 300
whose all coefficients’ are generated by the uniform distribution
for [0, 10] + 5[0, 10], Fig. 5 shows the computational time for ob-
taining {®y, (w) }o& A+
time for solving the system of linear equatidig) with Theorem 1
and dashed line expresses the computational tiné &ywith FFT.
From Fig. 5, we verified that FFT helps greatly to accelerate com-

. Solid line expresses the computational

v, especially for polynomials of large degree.

orem 1 successes in exact phase unwrappingy®tr but fails at * mixed trigonometric interpolation
0.047. The mixed trigonometric interpolation with FFT successes = = = mixed trigonometric interpolation with FFT
in exact phase unwrapping at all € (0,2x]. From Fig. 4, the s |
mixed trigonometric interpolation with FFT achieves the smallest -
gap betweeny,, (w) and 5k(w) in average. The direct SGA results g 10r )
in the largest gap is in average. h
5t 4
40 :
““““ direct SGA
3501 - - - mixed trigonometric interpolation 00 =0 _180 150 260 25‘)0 200
v mixed trigonometric interpolation with FFT - deg(A)
- Fig. 5 Computational time for obtainin@fgk(w)}‘,ie:gé“>+1 (Example 3)

6. Conclusion

A pair of numerical stabilization techniques namtse mixed
trigonometric interpolationare presented for the algebraic phase
unwrapping. By combininghe mixed trigonometric interpolation

E
£ |
8
ot - LN
1.9 1.95 4
5 .0 005 0.1 ‘
0 0.5 1 15 2
wfrad/n

with FFT, we succeeded in making the algebraic phase unwrapping

faster and more stable. Numerical examples demonstrate the effec

Fig. 3 The estimations of the unwrapped phéggw) by direct SGA and

by stabilization techniques (Example 2)

0 T

v direct SGA

- = = mixed trigonometric interpolation

:| — mixed trigonometric interpolation with FFT

IOglO(ceroor(w))

-100

-120

-140 ‘ I ‘
wrad/m

Fig. 4 The gap betweeﬁk(w) and%k(w) (Example 2)

(1

(2]

(3]

4

(5]

tiveness of the proposed techniques.
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