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Abstract In this paper, we propose a simple bufor polynomials of large degrees, we encounter certain
a powerful numerical stabilization technique namederious instabilities due to the unavoidable gap between
the mixed trigonometric interpolatiofor the algebraic numerical value computed by digital computer and the-
phase unwrapping. The proposed stabilization tecloretical value. Therefore, thoughtless direct computa-
nique produces a good approximation of the idgat- tion of (SGA) for polynomials of large degrees, often
eral Sturm sequencey reducing the inductive step in results in the failure of a key property of the desired
(SGA) to a certain system of linear equations. Thankgeneral Sturm sequencehich is generated by apply-
to the key property guaranteed by the approximatioing (SGA), leading thus the failure of the exact phase
by the proposed stabilization technique, the algebraimwrapping in the end.

phase unwrapping (SGA) is stabilized greatly even for In this paper, we propose a simple but a power-
polynomials of large degrees, hence applicable to praftd numerical stabilization technique nam#te mixed
tical array signal processing problems formulated wittrigonometric interpolatiorfor the algebraic phase un-
large polynomials. wrapping.

1 Introduction 2 Preliminaries
A rigorous symbolic algebraic solution to the phas :
unwrapping problem was established in 1998 [1], whe?e'1 Notation
for a given complex polynomial(z) € C[z] satisfying Let C denote the set of all complex humbers. We
use j € C to denote the imaginary unit satisfy-
A(z) #0 for all [z] =1 1) ing j2 = —1. Foranyc € C, R(c), I(c) and
RIACY 20 SV . ) an
{A()} # ¢ stand respectively for the real part, the imaginary

With the algorithm in [1] (See Proposition 1 and Fig. 1%,53 injk ceorgiex _ﬁ?ng:?atf c@f #F%r aann(;/ZCS)mT

in Sec. 2.2), we can compute for 2 k=1 °k % e Aom = "

I ) w P € (0, 27] we definedeg(C) := m, ldeg(C) := [, cdeg(C) :=

' < S{AWE)N B CH(2) = gL meizts Cr(w) = C(e7¥),
Oa(w™) =04(0) —i—/o <arctan {W}) dw, CT(Z)' — Z_Cng(C)C(Z)CE C[CZ,*1/272—1/2], C}(w) —
, Cl(e™), Cy(z) = CETE and ¢y (2) =

where—7 < 04(0) < mandA(1) = |A(1)]e?940),  c)-c

. , . . , 57 ") (Note: The degrees of the constartre de-
without using any numerical root finding or numerlcalrined asleg(0) =1deg(0) = ¢ deg(0) = 0). In particular,

integration technique. C(2) _1 . PSRN
. . . € Clz,z7 ] satisfyingC(z) = C*(z) is called
Recen_tly, ttwas showr_l in [2] that the algebraic phﬁsﬁ self-reciprocal Laurent polynomial. #'(z) is self-
unwrapping can be applied as a powerful mathematlcraelzciprocal ol (w) is a real-valued differentiable func-
tool to compute thdMinimum-Maximum distributions of F

: : .~ tion overR. ForanyC(z) € C[z, 2], we haveC'(z) =
self-reciprocal Laurent polynomial along the unit cir- (2) + jCrp) (2), whereC\ o, (2) andC (=) are self-
cle, which implies that the algorithm can be applied tg (¥ I ) ), ©) (1)

the estimation ofhe Directions-of-Arrival distribution reciprocal, and deg(C’) = cdeg(Clo)) = cdeg(Cy)).

o L . Moreover, we have
(DOA distribution): the number of directions of signals

inan a_rbltrarlly specified range, which is a valuz_:lble_ in- %{C;(W)}:C(TO)F(W% %{C}(w)}:C&)F(w)- 2)

formation in many array signal processing applications

[3] in analogy with the idea of the MUSIC algorithm 2.2 Algebraic phase unwrapping

[4]. Proposition 1 (Algebraic phase unwrapping along the
However, in a direct computer implementation of theunit circle [1]) Suppose thatl(z) € C[z] satisfying (1)

algebraic phase unwrapping algorithm (SGA) in Fig. Andd 4(w*) denotes the unwrapped phasedf(w) at



w* € [0, 2x]. Define begin

Z:[A — {w c [072,”} ‘ A](Lo)F(w) _ 0} DefineA(O)(z) andA(l)(z).
© o if deg(D1) = 0,
0 if A(O)F<w) #0 thenp :=1
= forallwe[0,27], () e
{v1,va,...,v,} oOtherwise begin
whereyy(:=)0 < v; < --- < v, < 2w, and k=1,
Repeat
. [F(w)>0 forwe (v; —e,v;) and
HLif {]—"(w) <0 forwe (v, v; +¢), ka = f})e:é(ll()ok) 1) — degl(lzk)ﬂ
= s Yk =7 F Ok
X(v)=q . [Flw)<0 forwe (v, —e,v;)and (4) g De(0) i B
Lif {]—'(w) >0 forw e (v;,v; +¢), (B + B2 ) De(2) Dk_l(izf)vk <0
0 otherwise A= (3 4 502) Di(2) — (351)1 7 Dy (2)
if vp <0
fory; (i = 1,2,...,r) and for sufficiently smal > 0, ki=k+1 =D
Where_}“(w) = AZO)F(W)A](Ll)F(w)' Then we have the  yngil deg(Dy) =0 (k > 2)
following relations. pi=k
end
(a) For anyw* € (0, 27], { p if Dy(2) 20
. p—1 i Dp(z)=0
Y S{Ar(w)}
Oa(w*) = 04(0 t
A(w¥) A()—i—/o <arcan{§R{AF I >
= 04(0) + cdeg(A)w* — arctan{QL(O Figure 1: Algorithm to generate general Sturm sequence
+ lim arctan{QA( v)} + Alw*)m,  (5) (SGA)
WhereQQ( ) Ag)F( w) andA(w") = Z X (). In this paper, we call the sequence of functions
Ayr@) e (0 {®1(w)}]_, general Sturm sequence

(b) Let{®;,(w)}?_, be a sequence of functions ovex Example 1By using the SGA and Proposition 1, let us

w < 27 obtained by applying the algorithm (SGA) in¢qsirict the unwrapped phase of the univariate com-
Fig. 1t0 A(g)(z) and Ay)(z) with plex polynomial

Di(z) = 2 'dealda) (%)ekA(k)(z) } 6 A= —(2-8)2H6—45)2"~(4—65)=+(6-10j).

Op(w) = Djp(w) fork=0,1,2,...,q which satisfies (1). Then, the result is the follows and

wheree;, denotes the order of = 1 as a zero of poly- Fig. 2.
nomial Ax(z). Define for eachv € [0, 2] the number
of variations in the sign of ®; (w)}7_, by

0
V{d(w)}:=V{®o(w), &1 (w),. .., yw)} 1()1 E
= [{i | 0<i<qand®;(w)®;, o (w) . @) O(Z

(

(

2)=(2+95)22+(1 — 55)22+(1 + 55)2+(2 — 97),
—(1 = 4§)22+(1 = 55)22+(1 + 55)z— (1 + 45),

(24 95)234+(1 — 55) 22+ (1 4 55) 2+ (2 — 95),
—(4+ ) +z—(4 - ),

(4 49)z+ (4 + 45),

3 3
4cos —w—18sin —w+2cos nglO sin 87

z

>

1\Z
where Q(i) := min{k € N | &, p(w) # 0} (i.e., Da(z
V{®(w)} denotes the number of sign changes of thep,(
entries in{®;(w)}{_, when these are scanned sequen- g, (.,

)
)
)
)
)
)
)
)
)
)

(
tially from left to rlght If there exists some;, whose o _ g 2 ) 2 y 2 2
value atw is @ (w) = 0, its sign is not counted). Then, 1(w)=—8cosw+ Smw”JF
for everyw* € (0, 27|, we have Dy (w)=8cos 54—8 sin
Oa(w*)=04(0) 4+ cdeg(A)w™ — arctan{QTA(())} P3(w)=
T %
arctan{Q, (W)} + [Vid(w “;} vie( )y 2.3 Instabilities in (SGA)
+ . 20 FW) # (8) To implement the algorithm (SGA) in Fig. 1 pre-

m/2+ [V{®(w")} = V{®(0)}]7 cisely, we need large number of digits to express the ra-
if A](LO)F(W*) =0. tional coefficients of the polynomiald ;) (z) or Dy(z)



Indeed, by (10), we can obtaif{ ®(w)} (=V{®(w)})
unlessw is in the vicinity of zeros of?,. (Note: The
unavoidable gap between numerical and theoretical ze-
ros of &, does not guaranteB {®(w)} = V{d(w)}
1t ] for w in the vicinity of such zeros). The proposed con-
struction of {®(w) io(m {Pr(w)}]_,) is presented
0.5¢ 1 inductively as follows.

Suppose that we have

15r

0 A(m)[rad/pi]

D1 (W) = Am COSF WA 1 SINF WA 2 COS 7”2_2w—|—~ .
-0.5¢ . Dp(w) =bn CosGwWHbn—18inFw-+by—2 COS"TJLA)#" .

L5 2 Under the standard assumptlonwe can express
®p1(w) form > n by

0 0.5 1
wrad/pi]

Figure 2: Exact unwrapped phase by Proposition 1 (E?Ml(w)=Cm—zcosmT’Qercm_gsinmT*w+cm_4cosmT*4w+~ -

ample 1
ple 1) form < n by

fons Of 5, (1 1.3 — 1) We call this phe. P+(4)=en-s e 5w tenssin? s o2t
nomenon theoefficient growthin analogy with the typ- ) ) ~
ical cases in the computation of tetandard Sturm se- !N the following construction ofb,(w), we assume
quencethrough the Euclid’s algorithm [5]. In computer for simplicity, the casen > n (Note: The discussion for
implementation of (SGA), we encounter certain serioutie other case is almost same). To deternfing ;"
instabilities due to, e.g., (i) the truncation error of thén order to satisfy (10) without suffering the coefficient
trigonometric function values, and (i) the coefficieniyrowth in the direct computation of (SGA), we reduce

growth which causes the truncation error in the floatingg;g hroplem to an interpolation problem of the mixed
point expression of the rational coefficients (or memori/. tric functiord BY Choosi full

shortages by increasing number of digits for exact e tigonometric lunctio ’““(“,))' y choosing caretully
pression of the rational coefficients). Thoughtless dire€@MPIe pointsy; € [0,27] (@ = 0,1...,m —2) f02r
computation of (SGA) often results in the failure of thethis interpolation problem, we can determife },";

key property: uniguely by solving a system of linear equations.

. (wo) = 0 atwo € [0,27] = Bp_1(wo)Prpr (wo) < 0 Applying (SGA) directly to@k,L(w) and®(w), we
for0 < k < q(>2), obtain an expression of the desirég,  (w) as

) -

leading thus the failure of (8). This situation restrict§{’k+1(w):l)22qu();u)l {(amb" 1) eos T

the practical applicability of Proposition 1 especially for S m

polynomialsA(z) € C[z] of large degrees. —(@mbn—1 — @m—1by) sin
In the next section, we propose a simple but powerful

stabilization technique to maintain the key property (91-Jnfortunately, thoughtless direct computation of

. - . . -2 : :
3 Numerical stabilization of algebraic phase un- {¢x}po through the elementary trigonometric expan-
wrapping sion causes the coefficient growth as remarked in Sec.

o . . 3.
For numerical implementation of the algebraic phas% . , .
unwrapping through (SGA), we need a certain sta- We take a different path to find a stable numerical

ble approximation of the valu& {®(w)}. This goal approximation ofc,};'* by using the relation (11) for
is achieved by a certain numerical approximatiomumerical evaluation o®y 1 (w;) (i = 0,...,m — 2).
{&)k(w) izo(z {®(w) Z:o) which is guaranteed to Now by using these numerical values at sample points

satisfy and the expression @b, in terms of {c. }1°)%, we

nw} — &) (w). (11)

. 20=20, 21 =0y and f9r0 <k <~q(2 2), 'Almost always, we can assume @) (1) #0(k =2,3,...,q) and
Oy (wo) = 0atwy € [0,27] = Pp_1(wo)Prt1(wo) < 0.  deg(Dy_1) =m dea(Dy ] m—2im>n
(10) (i) deg(Dy) =n = deg(Di+1)= n—1 ifm<n



deduce

Cm—2 Ppp1(wo)
Cm—3 Ppyq(wr)
A = : , (12)
€ Ppot1(wm-—3)
o @pp1(Wm—2)
where
cos %wo sin mT_QwO
cos %wl sin mT_le
A= : : - (13)
L m—2 oom—2
€08 =Wy, 3 sin MEw,, 3
cos =2, 5 sin 2w, o

2 2

m—2

To determine{c; };";
lowing careful selection of sample points; (i =
0,...,m—2).

Theorem 1 The matrix A in (13) is invertible hence
{ck )72 is determined uniquely by (12) if we chasge

as follows.

(&) Whenm is even, i.e.mmn — 2 = 2k, for somek € N,
wp=0.Forl <i <k w € (0,m),w; #wj(i#7)
andwk+i = —Ww;.

(b) Whenm is odd, i.e.,m — 2 = 2k + 1, for some

kEN,wOZO,w2k+1 =m Forl1 <i<kw; € (0,7‘(),
Wi %w]‘ (Z %j) andwkH = —Wj.

lation.

To obtain the value of {®(w)} as precise as possi-
ble, we additionally introduce a simple multiplication of

the coefficientsfk by 2+, If there is a coefficient ob,,

uniquely, we propose the fol-

0 A(cu)[rad/pi]

25
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0.5 1
wrad/pi]

Figure 3: Exact unwrapped phase withe mixed
trigonometric interpolation

wrapped phase due to the severe coefficient growth re-
marked in Sec. 2.3. From the result shown in Fig. 3,
we verified that the exact phase unwrapping is achieved
successfully by the proposed stabilization techniques.

5 Conclusion

A simple but powerful numerical stabilization tech-
nique namedhe mixed trigonometric interpolatiors
presented for the algebraic phase unwrapping problem.
Application of the proposed technique to an example,
We name the above numerical stabilization techniquehich causes the severe coefficient growth by a direct
(based on Theorem e mixed trigonometric interpo- computation of (SGA), demonstrates the effectiveness
of the proposed technique.
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