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Abstract In this paper, we propose a simple but
a powerful numerical stabilization technique named
the mixed trigonometric interpolationfor the algebraic
phase unwrapping. The proposed stabilization tech-
nique produces a good approximation of the idealgen-
eral Sturm sequenceby reducing the inductive step in
(SGA) to a certain system of linear equations. Thanks
to the key property guaranteed by the approximation
by the proposed stabilization technique, the algebraic
phase unwrapping (SGA) is stabilized greatly even for
polynomials of large degrees, hence applicable to prac-
tical array signal processing problems formulated with
large polynomials.

1 Introduction

A rigorous symbolic algebraic solution to the phase
unwrapping problem was established in 1998 [1], where
for a given complex polynomialA(z) ∈ C[z] satisfying

A(z) 6= 0 for all |z| = 1
ℜ{A(1)} 6= 0

}
. (1)

With the algorithm in [1] (See Proposition 1 and Fig. 1
in Sec. 2.2), we can compute forω∗ ∈ (0, 2π]

θA(ω∗) = θA(0) +

∫ ω∗

0

(
arctan

{
ℑ{A(ejω)}

ℜ{A(ejω)}

})′

dω,

where−π < θA(0) ≤ π andA(1) = |A(1)|ejθA(0),
without using any numerical root finding or numerical
integration technique.

Recently, it was shown in [2] that the algebraic phase
unwrapping can be applied as a powerful mathematical
tool to compute theMinimum-Maximum distributions of
self-reciprocal Laurent polynomial along the unit cir-
cle, which implies that the algorithm can be applied to
the estimation ofthe Directions-of-Arrival distribution
(DOA distribution): the number of directions of signals
in an arbitrarily specified range, which is a valuable in-
formation in many array signal processing applications
[3] in analogy with the idea of the MUSIC algorithm
[4].

However, in a direct computer implementation of the
algebraic phase unwrapping algorithm (SGA) in Fig. 1

for polynomials of large degrees, we encounter certain
serious instabilities due to the unavoidable gap between
numerical value computed by digital computer and the-
oretical value. Therefore, thoughtless direct computa-
tion of (SGA) for polynomials of large degrees, often
results in the failure of a key property of the desired
general Sturm sequence, which is generated by apply-
ing (SGA), leading thus the failure of the exact phase
unwrapping in the end.

In this paper, we propose a simple but a power-
ful numerical stabilization technique namedthe mixed
trigonometric interpolationfor the algebraic phase un-
wrapping.

2 Preliminaries

2.1 Notation

Let C denote the set of all complex numbers. We
use j ∈ C to denote the imaginary unit satisfy-
ing j2 = −1. For any c ∈ C, ℜ(c), ℑ(c) and
c̄ stand respectively for the real part, the imaginary
part, and complex conjugate ofc. For anyC(z) =∑m

k=l ckz
k ∈ C[z, z−1] (s.t. clcm 6= 0 and l ≤ m),

we definedeg(C) := m, l deg(C) := l, c deg(C) :=
l+m

2 , C∗(z) :=
∑m

k=l c̄m−k+lz
k, CF (ω) := C(ejω),

C†(z) := z−c deg(C)C(z) ∈ C[z1/2, z−1/2], C†
F (ω) :=

C†(ejω), C(0)(z) := C(z)+C∗(z)
2 and C(1)(z) :=

C(z)−C∗(z)
2j . (Note: The degrees of the constant0 are de-

fined asdeg(0)=l deg(0)=c deg(0)=0). In particular,
C(z) ∈ C[z, z−1] satisfyingC(z) = C∗(z) is called
a self-reciprocal Laurent polynomial. IfC(z) is self-
reciprocal ,C†

F (ω) is a real-valued differentiable func-
tion overR. For anyC(z) ∈ C[z, z−1], we haveC(z) =
C(0)(z)+ jC(1)(z), whereC(0)(z) andC(1)(z) are self-
reciprocal, andc deg(C) = c deg(C(0)) = c deg(C(1)).
Moreover, we have

ℜ{C†
F (ω)}=C†

(0)F (ω), ℑ{C†
F (ω)}=C†

(1)F (ω). (2)

2.2 Algebraic phase unwrapping

Proposition 1 (Algebraic phase unwrapping along the
unit circle [1]) Suppose thatA(z) ∈ C[z] satisfying (1)
andθA(ω∗) denotes the unwrapped phase ofAF (ω) at



ω∗ ∈ [0, 2π]. Define

Z†
A(0)

:= {ω ∈ [0, 2π] | A†

(0)F (ω) = 0}

=





∅ if A†

(0)F (ω) 6= 0

for all ω ∈ [0, 2π],
{ν1, ν2, . . . , νr} otherwise,

(3)

whereν0(:=)0 < ν1 < · · · < νr < 2π, and

X (νi):=





+1 if

{
F(ω) > 0 for ω ∈ (νi − ε, νi) and
F(ω) < 0 for ω ∈ (νi, νi + ε),

−1 if

{
F(ω) < 0 for ω ∈ (νi − ε, νi) and
F(ω) > 0 for ω ∈ (νi, νi + ε),

0 otherwise,

(4)

for νi (i = 1, 2, . . . , r) and for sufficiently smallε > 0,
whereF(ω) := A†

(0)F (ω)A†

(1)F (ω). Then we have the
following relations.

(a)For anyω∗ ∈ (0, 2π],

θA(ω∗) = θA(0) +

∫ ω∗

0

(
arctan

{
ℑ{AF (ω)}

ℜ{AF (ω)}

})′

dω

= θA(0) + c deg(A)ω∗ − arctan{Q†
A(0)}

+ lim
ν→ω∗−0

arctan{Q†
A(ν)} + Λ(ω∗)π, (5)

whereQ†
A(ω) :=

A†

(1)F
(ω)

A†

(0)F
(ω)

andΛ(ω∗) :=
∑

νi∈(0,ω∗)

X (νi).

(b) Let{Φk(ω)}q
k=0 be a sequence of functions over0 ≤

ω ≤ 2π obtained by applying the algorithm (SGA) in
Fig. 1 toA(0)(z) andA(1)(z) with

Dk(z) := z−l deg(A(k))
(

j
z−1

)ek

A(k)(z)

Φk(ω) := D†
kF (ω) for k = 0, 1, 2, . . . , q

}
, (6)

whereek denotes the order ofz = 1 as a zero of poly-
nomialAk(z). Define for eachω ∈ [0, 2π] the number
of variations in the sign of{Φk(ω)}q

k=0 by

V {Φ(ω)} :=V {Φ0(ω),Φ1(ω), . . . ,Φq(ω)}

=
∣∣{i | 0≤ i<q andΦi(ω)Φi+Q(i)(ω)<0}

∣∣ , (7)

whereQ(i) := min{k ∈ N | Φi+k(ω) 6= 0} (i.e.,
V {Φ(ω)} denotes the number of sign changes of the
entries in{Φk(ω)}q

k=0 when these are scanned sequen-
tially from left to right. If there exists someΦk whose
value atω is Φk(ω) = 0, its sign is not counted). Then,
for everyω∗ ∈ (0, 2π], we have

θA(ω∗)=θA(0) + c deg(A)ω∗ − arctan{Q†
A(0)}

+





arctan{Q†
A(ω∗)} + [V {Φ(ω∗)}−V {Φ(0)}]π

if A†

(0)F (ω∗) 6= 0,

π/2 + [V {Φ(ω∗)}−V {Φ(0)}]π

if A†

(0)F (ω∗) = 0.

(8)

begin

DefineA(0)(z) andA(1)(z).

if deg(D1) = 0,

then p := 1

else

begin

k := 1;

Repeat

vk := deg(Dk−1) − deg(Dk)

βk :=
Dk−1(0)

Dk(0)
, γk := j1−vkβk

A(k+1)(z):=

8
>><
>>:

(βk + β̄kzvk )Dk(z)−Dk−1(z)
if vk > 0,

(γk + γ̄kz)Dk(z)−( z−1
j

)1−vkDk−1(z)

if vk ≤ 0,

k := k + 1

Until deg(Dk) = 0 (k ≥ 2)

p := k

end

q :=


p if Dp(z) 6≡ 0
p − 1 if Dp(z) ≡ 0

end;

Figure 1: Algorithm to generate general Sturm sequence
(SGA)

In this paper, we call the sequence of functions
{Φk(ω)}q

k=0 general Sturm sequence.

Example 1By using the SGA and Proposition 1, let us
construct the unwrapped phase of the univariate com-
plex polynomial

A(z) := −(2−8j)z3+(6−4j)z2−(4−6j)z+(6−10j),

which satisfies (1). Then, the result is the follows and
Fig. 2.

A(0)(z)=(2 + 9j)z3+(1 − 5j)z2+(1 + 5j)z+(2 − 9j),

A(1)(z)=−(1 − 4j)z3+(1 − 5j)z2+(1 + 5j)z−(1 + 4j),

D0(z)=(2 + 9j)z3+(1 − 5j)z2+(1 + 5j)z+(2 − 9j),

D1(z)=−(4 + j)z2+z−(4 − j),

D2(z)=(4 − 4j)z+(4 + 4j),

D3(z)=1,

Φ0(ω)=4 cos
3

2
ω−18 sin

3

2
ω+2 cos

ω

2
+10 sin

ω

2
,

Φ1(ω)=−8 cos ω+2 sin ω+1,

Φ2(ω)=8 cos
ω

2
+8 sin

ω

2
,

Φ3(ω)=1.

2.3 Instabilities in (SGA)

To implement the algorithm (SGA) in Fig. 1 pre-
cisely, we need large number of digits to express the ra-
tional coefficients of the polynomialsA(k)(z) or Dk(z)
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Figure 2: Exact unwrapped phase by Proposition 1 (Ex-
ample 1)

(k = 0, 1, . . . , q) mainly due to the repeated computa-
tions of βk (k = 1, 2, . . . , q − 1). We call this phe-
nomenon thecoefficient growthin analogy with the typ-
ical cases in the computation of thestandard Sturm se-
quencethrough the Euclid’s algorithm [5]. In computer
implementation of (SGA), we encounter certain serious
instabilities due to, e.g., (i) the truncation error of the
trigonometric function values, and (ii) the coefficient
growth which causes the truncation error in the floating-
point expression of the rational coefficients (or memory
shortages by increasing number of digits for exact ex-
pression of the rational coefficients). Thoughtless direct
computation of (SGA) often results in the failure of the
key property:

Φk(ω0) = 0 atω0 ∈ [0, 2π] ⇒ Φk−1(ω0)Φk+1(ω0) < 0
for 0 < k < q(≥ 2),

(9)

leading thus the failure of (8). This situation restricts
the practical applicability of Proposition 1 especially for
polynomialsA(z) ∈ C[z] of large degrees.

In the next section, we propose a simple but powerful
stabilization technique to maintain the key property (9).

3 Numerical stabilization of algebraic phase un-
wrapping

For numerical implementation of the algebraic phase
unwrapping through (SGA), we need a certain sta-
ble approximation of the valueV {Φ(ω)}. This goal
is achieved by a certain numerical approximation
{Φ̃k(ω)}q

k=0(≈ {Φk(ω)}q
k=0) which is guaranteed to

satisfy

Φ̃0 = Φ0, Φ̃1 = Φ1 and for0 < k < q(≥ 2),

Φ̃k(ω0) = 0 atω0 ∈ [0, 2π] ⇒ Φ̃k−1(ω0)Φ̃k+1(ω0) < 0.
(10)

Indeed, by(10), we can obtainV{Φ̃(ω)}(=V{Φ(ω)})
unlessω is in the vicinity of zeros ofΦ0. (Note: The
unavoidable gap between numerical and theoretical ze-
ros of Φ0 does not guaranteeV {Φ̃(ω)} = V {Φ(ω)}
for ω in the vicinity of such zeros). The proposed con-
struction of{Φ̃k(ω)}q

k=0(≈ {Φk(ω)}q
k=0) is presented

inductively as follows.
Suppose that we have

eΦk−1(ω) = am cosm
2

ω+am−1 sinm
2

ω+am−2 cosm−2
2

ω+· · ·
eΦk(ω) = bn cosn

2
ω+bn−1 sinn

2
ω+bn−2 cosn−2

2
ω+· · ·

)
.

Under the standard assumption1, we can express
Φ̃k+1(ω) for m > n by

eΦk+1(ω)=cm−2cosm−2
2

ω+cm−3sin
m−2

2
ω+cm−4cosm−4

2
ω+· · ·,

for m ≤ n by

eΦk+1(ω)=cn−1 cosn−1
2

ω+cn−2 sinn−1
2

ω+cn−3 cosn−3
2

ω+· · ·.

In the following construction of̃Φk+1(ω), we assume
for simplicity, the casem > n (Note: The discussion for
the other case is almost same). To determine{ck}

m−2
k=0

in order to satisfy (10) without suffering the coefficient
growth in the direct computation of (SGA), we reduce
this problem to an interpolation problem of the mixed
trigonometric functioñΦk+1(ω). By choosing carefully
sample pointsωi ∈ [0, 2π] (i = 0, 1 . . . , m − 2) for
this interpolation problem, we can determine{ck}

m−2
k=0

uniquely by solving a system of linear equations.

Applying (SGA) directly toΦ̃k−1(ω) andΦ̃k(ω), we
obtain an expression of the desiredΦ̃k+1(ω) as

Φ̃k+1(ω)=
2Φ̃k(ω)

b2
n + b2

n−1

{
(ambn + am−1bn−1) cos

m − n

2
ω

−(ambn−1 − am−1bn) sin
m − n

2
ω

}
− Φ̃k−1(ω). (11)

Unfortunately, thoughtless direct computation of
{ck}

m−2
k=0 through the elementary trigonometric expan-

sion causes the coefficient growth as remarked in Sec.
2.3.

We take a different path to find a stable numerical
approximation of{ck}

m−2
k=0 by using the relation (11) for

numerical evaluation of̃Φk+1(ωi) (i = 0, . . . , m − 2).
Now by using these numerical values at sample points
and the expression of̃Φk+1 in terms of{ck}

m−2
k=0 , we

1Almost always, we can assume (i)A(k)(1) 6= 0 (k = 2, 3, . . . , q) and

(ii)
deg(Dk−1) = m
deg(Dk) = n

ff

⇒ deg(Dk+1)=



m − 2 if m > n
n − 1 if m ≤ n



deduce

A




cm−2

cm−3

...
c1

c0




=




Φ̃k+1(ω0)

Φ̃k+1(ω1)
...

Φ̃k+1(ωm−3)

Φ̃k+1(ωm−2)




, (12)

where

A =




cos m−2
2 ω0 sin m−2

2 ω0 · · · · · ·
cos m−2

2 ω1 sin m−2
2 ω1 · · · · · ·

...
...

...
...

cos m−2
2 ωm−3 sin m−2

2 ωm−3 · · · · · ·
cos m−2

2 ωm−2 sin m−2
2 ωm−2 · · · · · ·




. (13)

To determine{ck}
m−2
k=0 uniquely, we propose the fol-

lowing careful selection of sample pointsωi (i =
0, . . . , m − 2).

Theorem 1 The matrixA in (13) is invertible hence
{ck}

m−2
k=0 is determined uniquely by (12) if we choseωi

as follows.

(a) Whenm is even, i.e.,m − 2 = 2k, for somek ∈ N,
ω0 = 0. For 1 ≤ i ≤ k, ωi ∈ (0, π), ωi 6= ωj (i 6= j)
andωk+i = −ωi.

(b) Whenm is odd, i.e.,m − 2 = 2k + 1, for some
k ∈ N, ω0 = 0, ω2k+1 = π. For 1 ≤ i ≤ k, ωi ∈ (0, π),
ωi 6= ωj (i 6= j) andωk+i = −ωi.

We name the above numerical stabilization technique
(based on Theorem 1)the mixed trigonometric interpo-
lation.

To obtain the value ofV {Φ̃(ω)} as precise as possi-
ble, we additionally introduce a simple multiplication of
the coefficients̃Φk by 2±1. If there is a coefficient of̃Φk

whose absolute value is too small or too large to evalu-
ate numerically the value of̃Φk+1(ω), all coefficients
are multiplied by2 or 1/2 repeatedly until the absolute
values of all coefficients fall between the lower and up-
per limits. (Note: Multiplication by2 or 1/2 does not
cause any numerical error in digital computer).

4 Numerical example

We apply the numerical stabilization techniques in
Sec. 3 to the phase unwrapping of

A(z) :=−(120294+12204j)z11+(16155+16551j)z10

+14145jz9+(11513+15115j)z8−(15512+20397j)z7

+(19512−24151j)z6−(21515−21515j)z4+12431z3

−10243jz2+(173316+16362j)z−16693j,

which satisfies (1). This is an example for which a di-
rect computation of (SGA) fails to return the exact un-
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Figure 3: Exact unwrapped phase withthe mixed
trigonometric interpolation

wrapped phase due to the severe coefficient growth re-
marked in Sec. 2.3. From the result shown in Fig. 3,
we verified that the exact phase unwrapping is achieved
successfully by the proposed stabilization techniques.

5 Conclusion

A simple but powerful numerical stabilization tech-
nique namedthe mixed trigonometric interpolationis
presented for the algebraic phase unwrapping problem.
Application of the proposed technique to an example,
which causes the severe coefficient growth by a direct
computation of (SGA), demonstrates the effectiveness
of the proposed technique.
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