A Branch Cut Type Sign Estimator for Single-Frame Fringe Projection Profilometry

Daichi KITAHARA
Isao YAMADA
†Department of Communications and Computer Engineering, Tokyo Institute of Technology

Abstract In the last two decades, for three-dimensional (3D) measurement of moving objects, estimation of the continuous phase, which corresponds to 3D surface information, from a single fringe image has been a challenging problem. Differently from standard fringe projection using at least three fringe images for 3D measurement of static objects, we have to estimate the sign function of the sine of the continuous phase before two-dimensional (2D) phase unwrapping. In this paper, we newly formulate the sign estimation problem as a minimization problem for a certain energy of local change of the continuous phase. For solving this combinatorial optimization problem, we propose a branch cut type algorithm which is inspired by Goldstein’s combinatorial approach to 2D phase unwrapping. Numerical experiments demonstrate that the proposed sign estimator achieves higher estimation accuracy than a state-of-the-art estimator.

1 INTRODUCTION

Fringe projection is a major technique to obtain three-dimensional (3D) information of objects in a non-contact manner [11]–[13], and widely used in biomedical [4]–[6], industrial [7]–[9], kinematics [10], [11], and biometric [12], [13] applications. A typical fringe projection profilometry system is illustrated in Fig. 1. It consists of a projector, a camera and a digital computer. First, the projector projects sinusoidal fringe patterns onto an object. Second, the camera records intensity images of the fringe patterns which are distorted due to the surface profile of the object. Third, from the recorded images, the digital computer estimates the continuous phase distribution which corresponds to the horizontal projector pixel by using some fringe analysis composed of two-dimensional (2D) phase unwrapping [15]–[18], and 3D surface corresponding to the camera pixel is obtained from the horizontal projector pixel on the basis of triangulation.

A most popular fringe projection technique is the phase-shifting method (PSM) [14] because it can obtain 3D information stably from at least three simple fringe images as follows. Three fringe images \(I_k \) \((k = 1, 2, 3)\), whose phases are shifted by \(2\pi/3\) from each other, are recorded on a two-dimensional (2D) lattice points \((x, y)\) \(\in \mathcal{L}\) as

\[
\begin{align*}
I_1(x, y) &= a(x, y) + b(x, y) \cos(\phi(x, y)) + n_1(x, y) \\
I_2(x, y) &= a(x, y) + b(x, y) \cos(\phi(x, y) - \frac{2\pi}{3}) + n_2(x, y) \\
I_3(x, y) &= a(x, y) + b(x, y) \cos(\phi(x, y) + \frac{2\pi}{3}) + n_3(x, y)
\end{align*}
\] (1)

where \(\mathcal{L}\) is the set of all lattice points captured by the camera, \(a\) is a slowly varying background illumination, \(b\) is the fringe amplitude that is also a low-frequency signal, \(\phi\) is the continuous phase distribution (the so-called unwrapped phase) to be estimated, and \(n_k\) \((k = 1, 2, 3)\) are independent noises. The wrapped phase

\[
\phi^W(x, y) := W(\phi(x, y) + \nu(x, y)) \in (-\pi, \pi]
\] (2)

is computed by using

\[
\cos(\phi^W) = \frac{2I_1 - I_2 - I_3}{\sqrt{(2I_1 - I_2 - I_3)^2 + 4b^2}}
\]

and

\[
\sin(\phi^W) = \frac{\sqrt{3}(I_2-I_3)}{\sqrt{(2I_1-I_2-I_3)^2+4b^2}}, \quad \nu \in (-\pi, \pi]
\]

is phase noise and \(W : \mathbb{R} \to (-\pi, \pi]\) is the wrapping operator defined by

\[
\forall \varphi \in \mathbb{R} \exists \eta \in \mathbb{Z} \quad \varphi = W(\varphi) + 2\pi\eta \quad \text{and} \quad W(\varphi) \in (-\pi, \pi].
\]

\(\phi\) is estimated from \(\phi^W\) by 2D phase unwrapping [15]–[18], and a 3D surface corresponding to the camera pixel \((x, y)\) \(\in \mathcal{L}\) is obtained from the horizontal projector pixel \(\theta = \phi(x, y)\) on the basis of triangulation.

However, PSM requires that the physical quantities \(a, b\) and \(\phi\) remain constant during the time needed to record the images \(I_k\) \((k = 1, 2, 3)\), i.e., \(a, b\) and \(\phi\) must be common for all indices \(k = 1, 2, 3\) in (1). This condition is hardly satisfied when the measurement is for transient phenomena [19] or the environment is hostile. To deal with such situations, reconstruction of \(\phi\) from a single fringe image \(I_1\) in (1) has been challenged, and several phase recovery algorithms have been proposed [19]–[25]. These algorithms usually use a high pass filter [20] to remove the background illumination \(a\), and then use Hilbert transform [26] to normalize the fringe amplitude \(b\). As a result, the normalized fringe image is generated from \(I_1\) as

\[
I(x, y) = \cos(\phi(x, y) + \nu(x, y)) \in [-1, 1].
\] (3)
From (2) and (3), the absolute value of the wrapped phase is computed as
\[|\phi^W(x,y)| = \arccos(I(x,y)) \in [0, \pi]. \]

Therefore, the key to compute \(\phi^W(x,y) \) for all \((x,y) \in \mathcal{L} \) is reliable estimation of the sign in
\[\phi^W(x,y) = \text{sgn}(\phi^W(x,y))|\phi^W(x,y)|, \tag{4} \]
where \(\text{sgn}(t) := +1 \) for \(t \geq 0 \) and \(\text{sgn}(t) := -1 \) for \(t < 0 \).

In this paper, we newly formulate a minimization problem for a certain energy of local change of \(\phi \) so that we use a minimizer of the energy as an estimate of \(\text{sgn}(\phi^W(x,y)) \) (see Section 2.1). To solve this combinatorial optimization problem, we propose a branch cut type algorithm in Section 3 which is inspired by Goldstein’s combinatorial approach to 2D phase unwrapping\(^1\) [17] (see Section 2.2). Numerical experiments in Section 4 demonstrate that the proposed method provides a remarkable improvement over an existing path-following method [23]. Finally, in Section 5, we conclude this paper.

2 PRELIMINARIES

Let \(\mathbb{Z} \), \(\mathbb{R} \), and \(\mathbb{R}_+ \) be respectively the set of all integers, real numbers and nonnegative real numbers. Boldface small letters express vectors, and boldface capital letters express matrices. The norm of \(\mathbf{x} := (x_1, x_2, \ldots, x_n)^T \in \mathbb{R}^n \) is defined as \(\|\mathbf{x}\| := \sqrt{\sum_{i=1}^{n}x_i^2} \). In what follows, let \(\mathcal{L} := \{(x_j, y_j)\}_{j=1,2,\ldots,n} \) s.t. \(x_1 < x_2 < \cdots < x_m \) and \(y_1 < y_2 < \cdots < y_n \). For any function \(f \) defined on \(\Omega := [x_1, x_m] \times [y_1, y_n] \), we use notation \(f_{i,j} := f(x_i, y_j) \).

2.1 Energy Minimization for Sign Ambiguity Resolution

Assuming that the normalized image \(I \) in (3) is noise-free, i.e., \(\nu(x,y) = 0 \) \(\forall (x,y) \in \Omega \), the image gradient \(\nabla I(x,y) := (\frac{\partial I}{\partial x}(x,y), \frac{\partial I}{\partial y}(x,y))^T \) and the unwrapped phase gradient \(\nabla \phi(x,y) := (\frac{\partial \phi}{\partial x}(x,y), \frac{\partial \phi}{\partial y}(x,y))^T \) satisfy
\[\nabla I(x,y) = -\sin(\phi(x,y)) \nabla \phi(x,y). \]

Therefore, the orientation of \(\nabla \phi(x,y) \) is the same as or opposite to that of \(\nabla I(x,y) \), depending on \(s(x,y) := \text{sgn}(W(\phi(x,y))) = \text{sgn}(\sin(\phi(x,y))) \). On the basis of the idea of functional data analysis [18], [27], i.e., minimization of the energy of local change of \(\phi \):
\[\iint_{\Omega} \left[\frac{\partial^2 \phi}{\partial x^2} + 2 \frac{\partial^2 \phi}{\partial x \partial y} + \frac{\partial^2 \phi}{\partial y^2} \right] dx \, dy \]
\[\approx \sum_{i=1}^{m} \sum_{j=1}^{n-1} \|\nabla \phi(x_i, y_{j+1}) - \nabla \phi(x_i, y_j)\|^2 \]
\[+ \sum_{i=1}^{m} \sum_{j=1}^{n} \|\nabla \phi(x_{i+1}, y_j) - \nabla \phi(x_i, y_j)\|^2, \]

we newly introduce Problem 1 below, which is similar to the optimization problem proposed in [19] for estimation of \(s_{i,j} \).

\(^1\)For higher resolution in 2D phase unwrapping, see an algebraic approach [18] which is robust against the measurement errors.
subject to

Problem 2 (Alternative expression of Problem 1) Find

\[
\begin{align*}
(J^*_h, C^*_v) \in \{0, 1\}^{m \times (n-1)} \times \{0, 1\}^{(m-1) \times n}
\end{align*}
\]

minimizing

\[
\hat{J}(C_h, C_v) := \sum_{i=1}^{m} \sum_{j=1}^{n-1} \hat{J}^h_{i,j}(c_{i,j}^h) + \sum_{i=1}^{m-1} \sum_{j=1}^{n} \hat{J}^v_{i,j}(c_{i,j}^v)
\]

subject to

\[
c_{i,j}^h \oplus c_{i,j+1}^h \oplus c_{i+1,j}^h \oplus c_{i,j}^v = 0 \quad \text{for all } i = 1, 2, \ldots, m - 1 \text{ and } j = 1, 2, \ldots, n - 1, \text{ where}
\]

\[
\oplus \text{ denotes the exclusive disjunction, i.e., } 0 \oplus 0 = 1 \oplus 1 = 0 \text{ and } 0 \oplus 1 = 1 \oplus 0 = 1 \text{ hold.}
\]

3.2 Branch Cut Type Algorithm for Solving Problem 2

To solve Problem 2 approximately, we present the following branch cut type algorithm, which consists of steps similar to residue detection and branch construction steps in Goldstein’s branch cut [17] developed for 2D phase unwrapping (see Section 2.2). In what follows, assume \(J^h_{i,j}(0) \neq J^h_{i,j}(1)\) and \(J^v_{i,j}(0) \neq J^v_{i,j}(1)\) for all \(i\) and \(j\).

1. Define \(c_{i,j}^{h,\text{min}} := \arg \min_{c \in \{0,1\}} \hat{J}^h_{i,j}(c)\) and \(c_{i,j}^{v,\text{min}} := \arg \min_{c \in \{0,1\}} \hat{J}^v_{i,j}(c)\) as locally ideal sign changes. Detect every \(C_{i,j}\) satisfying

\[
c_{i,j}^{h,\text{min}} \oplus c_{i,j+1}^{v,\text{min}} \oplus c_{i+1,j}^{h,\text{min}} \oplus c_{i,j}^{v,\text{min}} = 1. \quad (10)
\]

Mark the center of such \(C_{i,j}\) (see Fig. 3(a)).

2. Create branches as shown in Fig. 3(b). Each branch is defined as a path connecting two centers marked in the first step, or one center and the outside of \(\Omega\).

3. Construct sign change matrices \(C_h\) and \(C_v\) satisfying condition (9) by defining

\[
c_{i,j}^{h} := \begin{cases} c_{i,j}^{h,\text{min}} & \text{if } \text{there is no branch between } (x_i, y_j) \text{ and } (x_i, y_{j+1}); \\ c_{i,j}^{h,\text{min}} \oplus 1 & \text{otherwise,} \end{cases}
\]

and

\[
c_{i,j}^{v} := \begin{cases} c_{i,j}^{v,\text{min}} & \text{if } \text{there is no branch between } (x_i, y_j) \text{ and } (x_{i+1}, y_j); \\ c_{i,j}^{v,\text{min}} \oplus 1 & \text{otherwise.} \end{cases}
\]

Construct a sign matrix \(S\) corresponding to sign change matrices \(C_h\) and \(C_v\) by using relations (7) and (8) (see Fig. 3(b)).
4 Numerical Experiments

We compare the effectiveness of the proposed sign estimator with that of an existing path-following sign estimator [23] for two objects shown in Figs. 4(a) and 5(a). In both experiments, we set $L := \{(x, y)\}$, and set $a(x, y) = 2$, $b(x, y) = 1$, and $v_i(x, y) = 0$ for all $(x, y) \in L$ in (1). We generate the normalized fringe image $I(x, y)$ by subtracting $\sum_{i=1}^{256} \sum_{j=1}^{256} I_1(x, y, j)$ from $I_1(x, y)$ followed by the normalization into $[-1, 1]$.

Figure 4(b) shows the normalized fringe image $I(x, y)$ based on the object in Fig. 4(a). Figure 4(c) shows the true sign $s(x, y) = \text{sgn}(W(\phi(x, y)))$, to be estimated (see Section 2.1), of the noiseless wrapped phase $W(\phi(x, y))$ in Fig. 4(f). Figures 4(d) and 4(g) respectively depict the sign and the wrapped phase estimated by the algorithm in [23] using the parameters $N = 1$ and $\Gamma = 11$. Figures 4(e) and 4(h) respectively depict the sign and the wrapped phase estimated by the proposed method, where we construct branches by repeatedly connecting the closest pair of centers of closed loops satisfying (10). From these figures, we observe that the proposed branch cut type sign estimator achieves lower error rate ($\approx 0.29\%$) compared with the existing method [23] ($\approx 1.61\%$) especially around the edges of the object.

Figure 5(b) shows $I(x, y)$ for the other object (“teapot” provided in MATLAB®) in Fig. 5(a). Figure 5(c) shows the sign $s(x, y)$ of $W(\phi(x, y))$ in Fig. 5(f). Figures 5(d) and 5(g) depict the sign and the wrapped phase estimated by the algorithm in [23]. Figures 5(e) and 5(h) depict the sign and the wrapped phase estimated by the proposed method. In this experiment, the proposed sign estimator achieves again lower error rate ($\approx 0.22\%$) compared with the existing method [23] ($\approx 1.78\%$).

5 Conclusion

In this paper, for sign ambiguity resolution in (4), first we have formulated a minimization problem for a certain energy of local change of the unwrapped phase (Problem 1). Second we reformulated this combinatorial optimization problem on signs into an equivalent constrained binary optimization problem on sign changes (Problem 2). Third, inspired by Goldstein’s combinatorial approach to 2D phase unwrapping, we proposed a branch cut type algorithm for the constrained binary optimization problem. The proposed method can efficiently construct an approximate solution of the original combinatorial optimization problem. Numerical experiments demonstrate that the proposed method provides a remarkable improvement over a state-of-the-art method especially around the edges of objects.

Acknowledgment

This work was supported in part by JSPS Grants-in-Aid Grant Numbers 26-920 and B-15H02752.

References

Figure 4: Experimental results (I): (a) object, (b) $I(x,y)$, (c) $s(x,y) = \text{sgn}(W(\phi(x,y)))$ (to be estimated), (d) signs estimated by [23], (e) signs estimated by the proposed sign estimator, (f) $W(\phi(x,y))$, (g) $\phi^W(x,y)$ based on (d), and (h) $\phi^W(x,y)$ based on (e).

Figure 5: Experimental results (II): (a) object, (b) $I(x,y)$, (c) $s(x,y) = \text{sgn}(W(\phi(x,y)))$ (to be estimated), (d) signs estimated by [23], (e) signs estimated by the proposed sign estimator, (f) $W(\phi(x,y))$, (g) $\phi^W(x,y)$ based on (d), and (h) $\phi^W(x,y)$ based on (e).