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Abstract In the last two decades, for three-dimensional (3D)
measurement of moving objects, estimation of the continu-
ous phase, which corresponds to 3D surface information,
from a single fringe image has been a challenging problem.
Differently from standard fringe projection using at least
three fringe images for 3D measurement of static objects, we
have to estimate the sign function of the sine of the contin-
uous phase before two-dimensional (2D) phase unwrapping.
In this paper, we newly formulate the sign estimation prob-
lem as a minimization problem for a certain energy of local
change of the continuous phase. For solving this combina-
torial optimization problem, we propose a branch cut type
algorithm which is inspired by Goldstein’s combinatorial
approach to 2D phase unwrapping. Numerical experiments
demonstrate that the proposed sign estimator achieves higher
estimation accuracy than a state-of-the-art estimator.

1 INTRODUCTION

Fringe projection is a major technique to obtain three-
dimensional (3D) information of objects in a non-contact
manner [1]–[3], and widely used in biomedical [4]–[6],
industrial [7]–[9], kinematics [10], [11], and biometric [12],
[13] applications. A typical fringe projection profilometry
system is illustrated in Fig. 1. It consists of a projector, a
camera and a digital computer. First, the projector projects
sinusoidal fringe patterns onto an object. Second, the camera
records intensity images of the fringe patterns which are dis-
torted due to the surface profile of the object. Third, from the
recorded images, the digital computer estimates the contin-
uous phase distribution which corresponds to the horizontal
projector pixels by using some fringe analysis composed
of wrapped phase detection and phase unwrapping steps.
Finally, a 3D surface is computed from the camera pixels
and the projector pixels on the basis of triangulation.

A most popular fringe projection technique is the phase-
shifting method (PSM) [14] because it can obtain 3D infor-
mation stably from at least three simple fringe images as
follows. Three fringe images Ik (k = 1, 2, 3), whose phases
are shifted by 2π/3 from each other, are recorded on two-
dimensional (2D) lattice points (x, y) ∈ L as

I1(x, y) = a(x, y)+b(x, y) cos(φ(x, y))+n1(x, y)

I2(x, y) = a(x, y)+b(x, y) cos(φ(x, y)− 2π
3 )+n2(x, y)

I3(x, y) = a(x, y)+b(x, y) cos(φ(x, y)+ 2π
3 )+n3(x, y)

,

(1)
where L is the set of all lattice points captured by the
camera, a is a slowly varying background illumination, b is
the fringe amplitude that is also a low-frequency signal, φ is
the continuous phase distribution (the so-called unwrapped
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Figure 1: Typical fringe projection profilometry system.

phase) to be estimated, and nk (k = 1, 2, 3) are independent
additive noises. The wrapped phase

φW (x, y) := W (φ(x, y) + ν(x, y)) ∈ (−π, π] (2)

is computed by using cos(φW ) = 2I1−I2−I3√
(2I1−I2−I3)2+3(I2−I3)2

and sin(φW ) =
√

3(I2−I3)√
(2I1−I2−I3)2+3(I2−I3)2

, where ν ∈
(−π, π] is phase noise and W : R → (−π, π] is the
wrapping operator defined by

∀ϕ ∈ R ∃η ∈ Z ϕ = W (ϕ) + 2πη and W (ϕ) ∈ (−π, π].

φ is estimated from φW by 2D phase unwrapping [15]–[18],
and a 3D surface corresponding to the camera pixel (x, y) ∈
L is obtained from the horizontal projector pixel θ = φ(x, y)
on the basis of triangulation.

However, PSM requires that the physical quantities a, b
and φ remain constant during the time needed to record the
images Ik (k = 1, 2, 3), i.e., a, b and φ must be common for
all indices k = 1, 2, 3 in (1). This condition is hardly satis-
fied when the measurement is for transient phenomena [19]
or the environment is hostile. To deal with such situations,
reconstruction of φ from a single fringe image I1 in (1)
has been challenged, and several phase recovery algorithms
have been proposed [19]–[25]. These algorithms usually use
a high pass filter [20] to remove the background illumination
a, and then use Hilbert transform [26] to normalize the
fringe amplitude b. As a result, the normalized fringe image
is generated from I1 as

I(x, y) = cos(φ(x, y) + ν(x, y)) ∈ [−1, 1]. (3)



From (2) and (3), the absolute value of the wrapped phase
is computed as

|φW (x, y)| = arccos(I(x, y)) ∈ [0, π].

Therefore, the key to compute φW (x, y) for all (x, y) ∈ L
is reliable estimation of the sign in

φW (x, y) = sgn(φW (x, y))|φW (x, y)|, (4)

where sgn(t) := +1 for t ≥ 0 and sgn(t) := −1 for t < 0.
In this paper, we newly formulate a minimization problem

for a certain energy of local change of φ so that we use a
minimizer of the energy as an estimate of sgn(φW (x, y))
(see Section 2.1). To solve this combinatorial optimiza-
tion problem, we propose a branch cut type algorithm in
Section 3 which is inspired by Goldstein’s combinatorial
approach to 2D phase unwrapping1 [17] (see Section 2.2).
Numerical experiments in Section 4 demonstrate that the
proposed method provides a remarkable improvement over
an existing path-following method [23]. Finally, in Section 5,
we conclude this paper.

2 PRELIMINARIES

Let Z, R and R+ be respectively the set of all integers,
real numbers and nonnegative real numbers. Boldface small
letters express vectors, and boldface capital letters express
matrices. The norm of x := (x1, x2, . . . , xn)T ∈ Rn is
defined as ‖x‖ :=

√∑n
i=1 x

2
i . In what follows, let L :=

{(xi, yj)}i=1,2,...,m
j=1,2,...,n s.t. x1 < x2 < · · · < xm and y1 <

y2 < · · · < yn. For any function f define on Ω := [x1, xm]×
[y1, yn], we use notation fi,j := f(xi, yj).

2.1 Energy Minimization for Sign Ambiguity Resolution
Assuming that the normalized image I in (3) is noise-

free, i.e., ν(x, y) = 0 ∀(x, y) ∈ Ω, the image gradi-
ent ∇I(x, y) := ( ∂I∂x (x, y), ∂I∂y (x, y))T and the unwrapped
phase gradient ∇φ(x, y) := (∂φ∂x (x, y), ∂φ∂y (x, y))T satisfy

∇I(x, y) = − sin(φ(x, y))∇φ(x, y).

Therefore, the orientation of ∇φ(x, y) is the same as or
opposite to that of ∇I(x, y) depending on s(x, y) :=
sgn(W (φ(x, y))) = sgn(sin(φ(x, y))). On the basis of the
idea of functional data analysis [18], [27], i.e., minimization
of the energy of local change of φ:∫∫

Ω

[∣∣∣∣∂2φ

∂x2

∣∣∣∣2 + 2

∣∣∣∣ ∂2φ

∂x∂y

∣∣∣∣2 +

∣∣∣∣∂2φ

∂y2

∣∣∣∣2
]

dxdy

≈
m∑
i=1

n−1∑
j=1

‖∇φ(xi, yj+1)−∇φ(xi, yj)‖2

+

m−1∑
i=1

n∑
j=1

‖∇φ(xi+1, yj)−∇φ(xi, yj)‖2 ,

we newly introduce Problem 1 below, which is similar to the
optimization problem proposed in [19] for estimation of si,j .

1For higher resolution in 2D phase unwrapping, see an algebraic ap-
proach [18] which is robust against the measurement errors.

Problem 1 (Approximated energy minimization problem)
Find S∗ := (s∗i,j) ∈ {−1,+1}m×n minimizing

J(S) :=

m∑
i=1

n−1∑
j=1

‖si,j+1vi,j+1 − si,jvi,j‖2

+

m−1∑
i=1

n∑
j=1

‖si+1,jvi+1,j − si,jvi,j‖2 , (5)

where vi,j :=
∇I(xi,yj)
‖∇I(xi,yj)‖ (i = 1, 2, . . . ,m and j =

1, 2, . . . , n) are the normalized image gradient vectors at
(xi, yj), and ∇I(xi, yj) are approximately computed by
applying, e.g., the Prewitt or the Sobel operator, to I in (3).

After finding a minimizer S∗ = (s∗i,j), from (4) and
φWi,j 6= −π, the wrapped phase φWi,j is estimated by

φWi,j =

{
|φWi,j | if |φWi,j | = 0 or |φWi,j | = π;

s∗i,j |φWi,j | otherwise.

Remark 1 There are at least two minimizers of (5) because
J(S) = J(−S) for any S ∈ {−1,+1}m×n. Actually, we
need other information to judge which minimizer should be
used for the above wrapped phase estimation.

2.2 Goldstein’s Branch Cut for 2D Phase Unwrapping

All commonly used 2D phase unwrapping algorithms
assume that φi,j+1 − φi,j ∈ (π, π], φi+1,j − φi,j ∈ (π, π],
and |νi,j | is small for most i and j. To reconstruct φi,j
satisfying the above assumption, Goldstein et al. proposed
the following branch cut algorithm [17].

1. Detect every closed loop CLi,j := ((xi, yj)→(xi, yj+1)
→ (xi+1, yj+1) → (xi+1, yj) → (xi, yj)) having a
nonzero residue by discretized contour integrals:

ri,j :=
1

2π

(
W
(
φWi,j+1−φWi,j

)
+W

(
φWi+1,j+1−φWi,j+1

)
−W

(
φWi+1,j+1 − φWi+1,j

)
−W

(
φWi+1,j − φWi,j

))
=

{
0 (CLi,j has no residue);
±1 (CLi,j has a positive/negative residue).

(6)

Mark the center of such CLi,j with ±1 (see Fig. 2(a)).
2. Create branches as shown in Fig. 2(b). Each branch

is defined as a path connecting the same number of
positive residues and negative residues, or the residues
and the outside of Ω.

3. Construct the unwrapped phase φi,j based on the
branches by satisfying φ1,1 = φW1,1 +2πη1,1 (η1,1 ∈ Z),

φi,j+1 − φi,j = W
(
φWi,j+1 − φWi,j

)
∈ (π, π]

if there is no branch between (xi, yj) and (xi, yj+1),
and

φi+1,j − φi,j = W
(
φWi+1,j − φWi,j

)
∈ (π, π]

if there is no branch between (xi, yj) and (xi+1, yj).
This algorithm guarantees W (φi,j) = φWi,j for all i =
1, 2, . . . ,m and j = 1, 2, . . . , n (see Fig. 2(b)).



(a) (b)
Figure 2: Illustration of the idea of Goldstein’s branch cut [17] for 2D phase unwrapping: (a) detection of every closed loop
having a nonzero residue ri,j = ±1 in (6) from given normalized wrapped phase φWi,j/π (i = 1, 2, . . . , 5 and j = 1, 2, . . . , 6)
and (b) construction of branches and corresponding unwrapped phase φi,j/π (i = 1, 2, . . . , 5 and j = 1, 2, . . . , 6).

3 BRANCH CUT TYPE SIGN ESTIMATOR

3.1 Reformulation of Problem 1
In (5), let Jhi,j(si,j , si,j+1) := ‖si,j+1vi,j+1 − si,jvi,j‖2

and Jvi,j(si,j , si+1,j) := ‖si+1,jvi+1,j − si,jvi,j‖2. Then
Jhi,j and Jvi,j depend only sign changes between neighboring
pairs (si,j , si,j+1) and (si,j , si+1,j), respectively. For each
sign matrix S = (si,j) ∈ {−1,+1}m×n, by defining
sign change matrices Ch = (chi,j) ∈ {0, 1}m×(n−1) and
Cv = (cvi,j) ∈ {0, 1}(m−1)×n as

chi,j :=

{
0 if si,j+1 = si,j ;
1 if si,j+1 = −si,j ,

(7)

and

cvi,j :=

{
0 if si+1,j = si,j ;
1 if si+1,j = −si,j ,

(8)

and by defining new cost functions Ĵhi,j : {0, 1} → R+ and
Ĵvi,j : {0, 1} → R+ as{

Ĵhi,j(0) := Jhi,j(+1,+1) = Jhi,j(−1,−1);

Ĵhi,j(1) := Jhi,j(+1,−1) = Jhi,j(−1,+1),

and {
Ĵvi,j(0) := Jvi,j(+1,+1) = Jvi,j(−1,−1);

Ĵvi,j(1) := Jvi,j(+1,−1) = Jvi,j(−1,+1),

we reformulate Problem 1 as Problem 2 below.

Problem 2 (Alternative expression of Problem 1) Find
(C∗h,C

∗
v) ∈ {0, 1}m×(n−1) × {0, 1}(m−1)×n minimizing

Ĵ(Ch,Cv) :=

m∑
i=1

n−1∑
j=1

Ĵhi,j(c
h
i,j) +

m−1∑
i=1

n∑
j=1

Ĵvi,j(c
v
i,j)

subject to

chi,j ⊕ cvi,j+1 ⊕ chi+1,j ⊕ cvi,j = 0 (9)

for all i = 1, 2, . . . ,m − 1 and j = 1, 2, . . . , n − 1, where
⊕ denotes the exclusive disjunction, i.e., 0⊕ 0 = 1⊕ 1 = 0
and 0⊕ 1 = 1⊕ 0 = 1 hold.

3.2 Branch Cut Type Algorithm for Solving Problem 2
To solve Problem 2 approximately, we present the fol-

lowing branch cut type algorithm, which consists of steps
similar to residue detection and branch construction steps
in Goldstein’s branch cut [17] developed for 2D phase
unwrapping (see Section 2.2). In what follows, assume
Ĵhi,j(0) 6= Ĵhi,j(1) and Ĵvi,j(0) 6= Ĵvi,j(1) for all i and j.

1. Define ch,min
i,j := argminc∈{0,1}Ĵ

h
i,j(c) and cv,min

i,j :=

argminc∈{0,1}Ĵ
v
i,j(c) as locally ideal sign changes.

Detect every CLi,j satisfying

ch,min
i,j ⊕ cv,min

i,j+1 ⊕ c
h,min
i+1,j ⊕ c

v,min
i,j = 1. (10)

Mark the center of such CLi,j (see Fig. 3(a)).
2. Create branches as shown in Fig. 3(b). Each branch is

defined as a path connecting two centers marked in the
first step, or one center and the outside of Ω.

3. Construct sign change matrices Ch and Cv satisfying
condition (9) by defining

chi,j :=


ch,min
i,j if

{
there is no branch between
(xi, yj) and (xi, yj+1);

ch,min
i,j ⊕1 otherwise,

and

cvi,j :=


cv,min
i,j if

{
there is no branch between
(xi, yj) and (xi+1, yj);

cv,min
i,j ⊕1 otherwise.

Construct a sign matrix S corresponding to sign change
matrices Ch and Cv by using relations (7) and (8)
(see Fig. 3(b)).



(a) (b)
Figure 3: Illustration of the idea of the proposed branch cut type sign estimator: (a) detection of every closed loop satisfying
(10) by using the locally ideal sign changes ch,min

i,j and ch,min
i,j computed from vi,j (i = 1, 2, . . . , 5 and j = 1, 2, . . . , 6) and

(b) constructions of branches, sign changes chi,j and cvi,j , and corresponding signs si,j (i = 1, 2, . . . , 5 and j = 1, 2, . . . , 6).

4 NUMERICAL EXPERIMENTS

We compare the effectiveness of the proposed sign esti-
mator with that of an existing path-following sign estimator
[23] for two objects shown in Figs. 4(a) and 5(a). In both
experiments, we set L := {(xi, yj)}i=1,2,...,256

j=1,2,...,256, and set
a(x, y) = 2, b(x, y) = 1, and n1(x, y) = 0 for all (x, y) ∈ L
in (1). We generate the normalized fringe image I(x, y)
by subtracting 1

65536

∑256
i=1

∑256
j=1 I1(xi, yj) from I1(x, y)

followed by the normalization into [−1, 1].
Figure 4(b) shows2 the normalized fringe image I(x, y)

based on the object in Fig. 4(a). Figure 4(c) shows the
true sign s(x, y) = sgn(W (φ(x, y))), to be estimated (see
Section 2.1), of the noiseless wrapped phase W (φ(x, y))
in Fig. 4(f). Figures 4(d) and 4(g) respectively depict the
sign and the wrapped phase estimated by the algorithm in
[23] using the parameters µ = 1 and Γ = 11. Figures 4(e)
and 4(h) respectively depict the sign and the wrapped phase
estimated by the proposed method, where we construct
branches by repeatedly connecting the closest pair of centers
of closed loops satisfying (10). From these figures, we
observe that the proposed branch cut type sign estimator
achieves lower error rate ( 190

65536 ≈ 0.29%) compared with
the existing method [23] ( 1053

65536 ≈ 1.61%) especially around
the edges of the object.

Figure 5(b) shows I(x, y) for the other object (“teapot”
provided in MATLAB R©) in Fig. 5(a). Figure 5(c) shows
the sign s(x, y) of W (φ(x, y)) in Fig. 5(f). Figures 5(d) and
5(g) depict the sign and the wrapped phase estimated by the
algorithm in [23]. Figures 5(e) and 5(h) depict the sign and
the wrapped phase estimated by the proposed method. In
this experiment, the proposed sign estimator achieves again
lower error rate ( 141

65536 ≈ 0.22%) compared with the existing
method [23] ( 1167

65536 ≈ 1.78%).

2For each image in Figs. 4(b)–4(h) and 5(b)–5(h), the sample values in
[Min,Max] on L are rescaled into [0 (black), 255 (white)].

5 CONCLUSION

In this paper, for sign ambiguity resolution in (4), first
we have formulated a minimization problem for a certain
energy of local change of the unwrapped phase (Problem 1).
Second we reformulated this combinatorial optimization
problem on signs into an equivalent constrained binary
optimization problem on sign changes (Problem 2). Third,
inspired by Goldstein’s combinatorial approach to 2D phase
unwrapping, we proposed a branch cut type algorithm for
the constrained binary optimization problem. The proposed
method can efficiently construct an approximate solution of
the original combinatorial optimization problem. Numerical
experiments demonstrate that the proposed method provides
a remarkable improvement over a state-of-the-art method
especially around the edges of objects.
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