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Abstract Splines are piecewise polynomials and are widely
used for interpolation and smoothing of observed data, due
to their flexibility and optimality in the sense of variational
problems on one-dimensional (1D) data. However, spline in-
terpolation and smoothing are applicable only to the estima-
tion of continuous functions and are not suitable for that of
piecewise smooth functions. In this paper, we propose novel
spline smoothing for 1D piecewise smooth function estima-
tion. We define the set of splines permitted to have discontin-
uous knots. Then, we estimate a piecewise smooth function
by a spline which minimizes the sum of the data fidelity, the
roughness penalty, and the number of discontinuous knots.

1 INTRODUCTION

Let fj : (ζj−1, ζj)→ R (j = 1, 2, . . . ,m) be ρ-times con-
tinuously differentiable functions, i.e., fj ∈ Cρ(ζj−1, ζj),
where −∞ ≤ ζ0 < ζ1 < · · · < ζm ≤ ∞ and ρ ∈ N ∪ {∞}.
Define a piecewise smooth function f : (ζ0, ζm)→ R by

f(x) := fj(x) for x ∈ (ζj−1, ζj). (1)

As the function values at ζj (j = 1, 2, . . . ,m− 1), although
several cases such as limx→ζj−0 fj(x), limx→ζj+0 fj+1(x),
and lim

x→ζj−0
y→ζj+0

1
2 (fj(x) + fj+1(y)) can be considered, we

do not take care about them in this paper. Alternatively, sup-
pose the discontinuity of f at ζj (j = 1, 2, . . . ,m− 1), i.e.,
limx→ζj−0 fj(x) 6= limx→ζj+0 fj+1(x) exactly holds. We
observe noisy samples of the piecewise smooth function f by

zi := f(xi) + vi (i = 1, 2, . . . , n), (2)

where vi ∈ R is the additive white Gaussian noise, and sam-
pling points satisfy x1 > ζ0, xn < ζm, ∀i xi+1−xi = h > 0,
∀i∀j xi 6= ζj and ∀j ∃i xi ∈ (ζj−1, ζj). In this paper, we treat
the estimation problem of the piecewise smooth function f
in (1) from its finite noisy samples in (2). Such a problem
appears in wide areas from science to engineering [1]–[10].
In [11], the authors assume that common basis functions of
all pieces fj (j = 1, 2, . . . ,m) are known. On the other hand,
in this paper, we assume that basis functions are unknown.

Spline is a function which is piecewise-defined by polyno-
mials, and which can possess certain-times continuous dif-
ferentiability including places where the polynomial pieces
connect. Spline functions have been widely used for interpo-
lation and smoothing of data in many signal and image pro-
cessing areas [12], e.g., super-resolution [13], [14], computer
aided design [15], [16], and regression analysis [17], [18].
The most commonly used spline functions are cubic splines,
i.e., univariate spline functions which are expressed, on sub-
intervals, as polynomials of degree 3 at most. This is because
cubic splines are the unique solutions of the following vari-
ational problems on one-dimensional (1D) data [19]–[22].

Problem 1 (Variational Problem on 1D Interpolation) Find
g∗ ∈ C2(−∞,∞) minimizing∫ ∞

−∞
|g′′(x)|2 dx (3)

subject to

g(xi) = zi for all i = 1, 2, . . . , n.

Problem 2 (Variational Problem on 1D Smoothing) Find
g∗ ∈ C2(−∞,∞) minimizing

n∑
i=1

|g(xi)− zi|2 + λ

∫ ∞
−∞
|g′′(x)|2 dx, (4)

where the smoothing parameter λ > 0 controls the trade-off
between the data fidelity and the smoothness.

Problem 1 is called spline interpolation and it is especially
effective when noise-free data are available [13]–[16]. Prob-
lem 2 is called spline smoothing and it is often used for the
design of continuous functions from noisy samples [17], [18].
However, spline interpolation and smoothing consider the
estimation of continuous functions, and are not suitable for
that of piecewise smooth functions.

In this paper, we propose novel spline smoothing for the
estimation of piecewise smooth functions. For this purpose,
in Section 2, as a preliminary, we newly define the set of
spline functions which are permitted to have several dis-
continuous knots. The proposed piecewise smooth function
estimation is given in Section 3. By assuming the sampling
interval h is short enough compared with the length of each
(ζj−1, ζj) (j = 1, 2, . . . ,m), we can consider that the dis-
continuous knots should sparsely exist. We estimate f with a
spline function minimizing the sum of the data fidelity term,
the roughness penalty term, and a convex relaxation of the
number of the discontinuous knots. Numerical experiments
in Section 4 demonstrate the effectiveness of the proposed
method by comparison with the standard spline smoothing.

2 PRELIMINARIES

2.1 Notation
Let R and N denote the set of all real numbers and non-

negative integers, respectively. For any open interval (a, b)
and ρ ∈ N ∪ {∞}, Cρ(a, b) stands for the set of all ρ-times
continuously differentiable real-valued functions on (a, b).
For any d ∈ N, Pd stands for the set of all univariate real
polynomials of degree d at most, i.e., Pd := {p : R → R :
x 7→

∑d
k=0 ckx

k | ck ∈ R}. We write a vector and a matrix
with a boldface small letter and a boldface capital letter, re-
spectively. For any vector x := (x1, x2, . . . , xn)T ∈ Rn, the
`2 norm of x is defined by ‖x‖2 :=

√∑n
i=1 |xi|2.



2.2 Spline Function Having Discontinuous Points
Let tn := {Ii := (ξi−1, ξi)}ni=1 be a set of subintervals Ii

on an open interval I := (ξ0, ξn) s.t. ξi − ξi−1 = hi > 0
(i = 1, 2, . . . , n). For tn and ρ, d ∈ N s.t. 0 ≤ ρ < d, define

Sρd (tn) :=

s : (ξ0, ξn)→ R

∣∣∣∣∣∣∣∣∣
s = pi ∈ Pd on Ii,
s = 1

2 (pi + pi+1) at ξi,

and s ∈ C0(ξi−1, ξi+1)

⇒ s ∈ Cρ(ξi−1, ξi+1)


(5)

as the set of all univariate spline functions, permitted to have
discontinuous knots ξi, of degree d and smoothness ρ on tn.
In what follows, we express a spline function s ∈ Sρd (tn)
in the following interval normalization form:

s(x) := pi(x) :=

d∑
k=0

c
〈i〉
k

(x− ξi−1
hi

)k
for x ∈ (ξi−1, ξi),

(6)
where c〈i〉k ∈ R (k = 0, 1, . . . , d) are coefficients of pi ∈ Pd.

2.2.1 Quadratic Form of the Roughness Penalty Term
By restricting the domain of interest to I and the function

space to Sρd (tn), the roughness penalty term used in (3) and
(4) is expressed as∫

I

|s′′(x)|2 dx =

n∑
i=1

∫
Ii

|s′′(x)|2 dx. (7)

By using the expression in (6), the roughness penalty on Ii
is expressed as the following quadratic form:∫
Ii

|s′′(x)|2 dx

=

d∑
k=2

d∑
l=2

k(k − 1)l(l − 1)c
〈i〉
k c
〈i〉
l

h4i

∫
Ii

(x− ξi−1
hi

)k+l−4
dx

=

d∑
k=2

d∑
l=2

k(k − 1)l(l − 1)

h3i (k + l − 3)
c
〈i〉
k c
〈i〉
l

=

d−2∑
k=0

d−2∑
l=0

(d− k)(d− k − 1)(d− l)(d− l − 1)

h3i (2d− k − l − 3)
c
〈i〉
d−kc

〈i〉
d−l

= cTi Qici, (8)

where ci := (c
〈i〉
d , c

〈i〉
d−1, . . . , c

〈i〉
0 )T ∈ Rd+1 and a symmetric

positive semidefinite matrixQi ∈ R(d+1)×(d+1) is defined as

[Qi]k+1,l+1 :=
(d− k)(d− k − 1)(d− l)(d− l − 1)

h3i (2d− k − l − 3)

(k = 0, 1, . . . , d− 2 and l = 0, 1, . . . , d− 2)

and [Qi]k+1,l+1 := 0 (k = d − 1, d or l = d − 1, d). From
(7) and (8), the roughness penalty on I can be expressed as∫

I

|s′′(x)|2 dx = cTQc, (9)

where c := (cT1 , c
T
2 , . . . , c

T
n )T ∈ Rn(d+1) is the coefficient

vector of s ∈ Sρd (tn) andQ ∈ Rn(d+1)×n(d+1) is a symmet-
ric positive semidefinite matrix based onQi (i= 1, 2, . . . , n).

2.2.2 Linear Equation for the ρ-Times Differentiability

For a spline function s ∈ Sρd (tn) in (5), to ensure the ρ-
times continuous differentiability on (ξi−1, ξi+1), i.e., s ∈
Cρ(ξi−1, ξi+1), the coefficients of the adjacent polynomials
pi and pi+1 in (6) have to satisfy the following equations:

s ∈ Cρ(ξi−1, ξi+1)

⇔ p
(l)
i (ξi) = p

(l)
i+1(ξi) (l = 0, 1, . . . , ρ)

⇔ 1

hli

d∑
k=l

k!

(k − l)!
c
〈i〉
k =

l!

hli+1

c
〈i+1〉
l (l = 0, 1, . . . , ρ)

⇔ 1

hli

d∑
k=l

k!

(k − l)!
c
〈i〉
k −

l!

hli+1

c
〈i+1〉
l = 0 (l = 0, 1, . . . , ρ).

(10)

From (10), there is a matrix Hi ∈ R(ρ+1)×2(d+1) satisfying

s ∈ Cρ(ξi−1, ξi+1) ⇔ Hi

[
ci
ci+1

]
= 0. (11)

In this paper, to remove the ambiguity of Hi on (i) constant
multiplication and (ii) the order of the row vectors, assume
that each matrix Hi (i = 1, 2, . . . , n− 1) satisfies

Hi

[
ci
ci+1

]
=


pi(ξi)− pi+1(ξi)
p′i(ξi)− p′i+1(ξi)

...
p
(ρ)
i (ξi)− p(ρ)i+1(ξi)

 . (12)

3 PIECEWISE SMOOTH FUNCTION ESTIMATION
BASED ON SPLINE SMOOTHING

In this section, we estimate the piecewise smooth function
f in (1) with the use of a spline function s ∈ Sρd (tn). We
define ξ0 := x1 − h/2 and ξi := xi + h/2 (i = 1, 2, . . . , n).
Then from (6), the function values of s at sampling points
xi ∈ (ξi−1, ξi) (i = 1, 2, . . . , n) are given by

s(xi) =

d∑
k=0

c
〈i〉
k

1

2k
=

[
1

2d
1

2d−1
· · · 1

]
ci =: aTci.

(13)
Therefore, the data fidelity term used in (4) is expressed as

n∑
i=1

|s(xi)− zi|2 = ‖Ac− z‖22, (14)

where z := (z1, z2, . . . , zn)T ∈ Rn and A ∈ Rn×n(d+1) is
a matrix whose row vectors are based on aT in (13).

Suppose that the sampling interval h is short enough com-
pared with the length of each (ζj−1, ζj) (j = 1, 2, . . . ,m),
i.e., there are enough samples to accurately reconstruct each
fj if the discontinuous points ζj (j = 1, 2, . . . ,m−1) can be
detected. Then, the discontinuous knots ξi of s ∈ Sρd (tn),
approximating f , should sparsely exist on (ξ0, ξn). Moreover,
even if lim

x→ζj−0
y→ζj+0 |f

(l)
j (x)− f (l)j+1(y)| 6≈ 0 (l = 0, 1, 2) and

xi < ζj < xi+1 hold for some i and j, the roughness penalty∫ ξi+1

ξi−1
|s′′(x)|2 dx can become small for s 6∈ C0(ξi−1, ξi+1).



On the basis of the above discussion, we consider the fol-
lowing non-convex optimization problem:

minimize
s∈Sρd(tn)

n∑
i=1

|s(xi)− zi|2 + λ

∫
I

|s′′(x)|2 dx+ w‖s‖0,

(15)
where λ > 0, w > 0, and ‖s‖0 ∈ N denotes the number of
discontinuous knots ξi s.t. pi(ξi) 6= pi+1(ξi). From (9), (11),
and (14), the problem in (15) is expressed as an optimization
problem on the coefficient vector c ∈ Rn(d+1):

minimize
c∈Rn(d+1)

‖Ac− z‖22 + λcTQc+ w

n−1∑
i=1

Γ

(
Hi

[
ci
ci+1

])
,

(16)
where Γ : Rρ+1 → {0, 1} is defined by Γ(x) = 0 if x = 0,
and Γ(x) = 1 otherwise. In order to approximately solve the
problem in (16), we use a convex relaxation.

The third term of the cost function in (16) can be consid-
ered as a group `0 (pseudo) norm without overlapping:

‖Hc‖G0 :=

n−1∑
i=1

Γ

(
Hi

[
ci
ci+1

])
(17)

with the use of some matrixH ∈ R(n−1)(ρ+1)×n(d+1) based
on Hi (i = 1, 2, . . . , n−1). Therefore, we replace the group
`0 norm in (17) with a weighted group `1 norm:

‖Hc‖G1,w :=

n−1∑
i=1

∥∥∥∥Hi

[
ci
ci+1

]∥∥∥∥
2,wi

:=

n−1∑
i=1

√√√√ ρ∑
l=0

w
〈i〉
l

∣∣∣p(l)i (ξi)− p(l)i+1(ξi)
∣∣∣2, (18)

where w〈i〉l > 0, wi := (w
〈i〉
0 , w

〈i〉
1 , . . . , w

〈i〉
ρ )T ∈ Rρ+1, and

w := (wT
1 ,w

T
2 , . . . ,w

T
n−1)T ∈R(n−1)(ρ+1). In (18), we use

the definitions of the matrices Hi in (12). As a result, we
propose to solve the following convex optimization problem:

minimize
c∈Rn(d+1)

‖Ac− z‖22 + λcTQc+ ‖Hc‖G1,w, (19)

for the estimation of the piecewise smooth function f . The
optimal solution of the problem in (19) is computed by the
alternating direction method of multipliers (ADMM) [23]:

ct+1 =

(
ATA+ λQ+

1

γ
HTW 2H

)−1
·
(
ATz +

1

γ
HTW (µt − νt)

)
µt+1 = proxγλ

2 ‖·‖
G
1

(WHct+1 + νt)

νt+1 = νt +WHct+1 − µt+1

with γ > 0 and any initialization (µ0,ν0) ∈ R(n−1)(ρ+1)×
R(n−1)(ρ+1), whereW ∈ R(n−1)(ρ+1)×(n−1)(ρ+1) is a diag-
onal matrix whose components are the square roots of w〈i〉l .

Finally, in order to obtain a spline function s ∈ Sρd (tn) as
an estimate of f , we re-solve the problem in (15). From the
optimal coefficient vector c∗ of the problem in (19), detect
the continuous knots ξi of s ∈ Sρd (tn) by checking whether
|p∗i (ξi) − p∗i+1(ξi)| is lower than a threshold value τ > 0.
In (5), if ξi is the continuous knot, then s ∈ Cρ(ξi−1, ξi+1)
must hold. Therefore, to obtain the solution of (15), we solve

minimize
c∈Rn(d+1)

‖Ac− z‖22 + λcTQc

subject to Hi

[
ci
ci+1

]
= 0 for all continuous knots ξi.

(20)
The problem in (20) is solved by quadratic programming.

4 NUMERICAL EXPERIMENTS

Define ζ0 := 0, ζ1 := 20, ζ2 := 50, ζ3 := 70, ζ4 := 95,
ζ5 := 100, and xi := i − 0.5 (i = 1, 2, . . . , n := 100). As
a result, knots of a spline function s ∈ S23 (tn) are defined
as ξi := i (i = 0, 1, . . . , 100). For two piecewise smooth
functions depicted by yellow lines in Figs. 1 and 2, we try
to reconstruct them from their noisy samples in (2), where
the standard division of the additive white Gaussian noise vi
is σ = 5. We compare the estimation results by the standard
spline smoothing (see Problem 2) and the proposed methods
(problem in (19) followed by problem in (20)). The smooth-
ing parameter is set to λ = 65. The weights in the weighted
group `1 norm are set to w〈i〉0 = 360000

(zi+1−zi)2+1 , w〈i〉1 = 3600,

and w〈i〉2 = 0.36. In Figs. 1 and 2, black circles denote the
observed noisy samples. Blue, red, and green lines depict the
estimation results by spline smoothing, the proposed method
in (19), and the proposed method in (20), respectively.

From Figs. 1 and 2, we can see that the estimation results
by spline smoothing lose the edges of the original piece-
wise smooth functions because the standard spline smooth-
ing cannot express discontinuous points. On the other hand,
the estimation results by the proposed methods are very
good. In particular, we can see that the proposed method in
(19) achieves both the detection of the discontinuous knots
and the smoothing around the continuous knots.

5 CONCLUSION

In this paper, we have proposed spline smoothing for the
estimation of piecewise smooth functions. For this purpose,
we defined the set of spline functions permitted to have dis-
continuous knots. We estimated a piecewise smooth function
with a spline function which minimizes the sum of the data
fidelity, the roughness penalty, and the convex relaxation of
the number of the discontinuous knots. The minimizer can
be effectively computed by ADMM, and the numerical ex-
periments showed the effectiveness of the proposed method.

APPENDIX Alternating Direction Method of Multipliers
The alternating direction method of multipliers (ADMM)

solves the following convex optimization problem [23]:

Find x∗ ∈ argmin
x∈Rn

f(x) + g(Lx),

where L ∈ Rm×n and two functions f : Rn → R ∪ {∞}
and g : Rm → R ∪ {∞} are proper, lower semicontinuous
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Figure 2: Experimental Results II

and convex.1 The ADMM iteratively computes
xt+1 = argmin

x∈Rn
f(x) +

1

2γ
‖µt −Lx− νt‖

2
2

µt+1 = proxγg(Lxt+1 + νt)

νt+1 = νt +Lxt+1 − µt+1

(21)

with γ > 0 and any initialization (µ0,ν0) ∈ Rm × Rm,
where proxγg : Rm → Rm denotes the proximity operator2

of γg. Then (xt)
∞
t=1 converges to the optimal solution x∗.
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