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Abstract Recently, we proposed a nonlinear beamforming
method for a phased array weather radar (PAWR). In this
method, by evaluating two properties of signals from dis-
tributed targets with group `1-norms, beamforming perfor-
mance can be greatly improved compared to linear methods.
However, the reconstructed power spectral density still has
several peaks although the true density has only one peak. In
this paper, as a continuation of our nonlinear beamforming,
we propose to modify the cost function used in the previous
method. Specifically, we roughly estimate the support of the
power spectral density and use a novel group `1-norm having
a large weight for the nonsupport region. Simulations using
real PAWR data show that the proposed method accurately
reconstructs the power spectral density.

1 INTRODUCTION

Phased array weather radar (PAWR) [1], [2] has been de-
veloped for fast detection of hazardous weather phenomena
such as a thunderstorm with heavy rain. A classical parabolic
radar transmits a pencil beam and receives the backscattered
signals within a narrow range of elevation angles. On the
other hand, a PAWR transmits a fan beam and receives the
backscattered signals within a wide range of elevation angles
simultaneously by an antenna array. Then, the backscattered
signals within the narrow ranges are reconstructed from the
received signals of the antenna array by digital beamforming
[3]–[6]. This is the key technology in the PAWR because
it gets rid of the mechanical vertical scan and hence the
temporal resolution was drastically improved in weather ob-
servation. Indeed, the PAWR developed at Osaka University
[2] can observe the weather in a hemisphere of a radius 60
kilometers in 30 seconds, while the classical parabolic radar
requires 5 to 10 minutes for a similar observation [7].

Major beamforming methods [3]–[5] reconstruct the sig-
nal arriving from each elevation as a complex weighted sum
of the received signals. In particular, Capon beamforming [4]
is a famous method that can adaptively reduce the influence
of sidelobes if a sufficient number of pulses are transmitted.
For fast weather observation, however, the number of pulses
should be as small as possible. To deal with such a situa-
tion, the minimum mean square error (MMSE) beamforming
[5] was proposed. In this method, differently from Capon’s
method, the sample covariance matrix of the received signals
is not computed, and hence the signal arriving from each el-
evation can be robustly reconstructed even if the number of

pulses is small. Such beamforming methods were developed
originally for observation of point targets, but targets of the
PAWR are distributed targets such as raindrops. In this case,
the number of the backscattered signals is often very large,
and the spatial resolution of the above linear methods [3]–
[5] is limited, i.e., fine variation of the reflection intensity
corresponding to precipitation profile cannot be captured.

To overcome the limitation of the linear methodology, we
recently proposed a nonlinear beamforming method [6]. In
this method, we considered the beamforming as an inverse
problem and solved it by utilizing two properties of signals
from distributed targets. One is the continuity of the reflec-
tion intensity in the temporal and spatial domains. The other
is the narrow bandwidth in the frequency domain. We ex-
pressed these properties as group-sparsity of certain matrices
and reconstructed the signals by minimizing a convex cost
function that consists of the data-fidelity term and two group
`1-norms. This nonlinear method greatly improves the esti-
mation accuracy compared to the linear methods. However,
the reconstructed power spectral densities often have several
peaks although the true densities have only one peak.

As a continuation of the nonlinear beamforming in [6], in
this paper, we propose to minimize a modified convex cost
function. First, in the frequency domain, we roughly estimate
the support of each signal by using the estimation results of
[6]. Second, we replace the group `1-norm based on the con-
tinuity of the reflection intensity with a weighted group `1-
norm. One group having a small weight corresponds to the
estimated support area. The other having a large weight cor-
responds to the nonsupport area. The modified cost function
can be effectively minimized with the alternating direction
method of multipliers (ADMM) [8]. Numerical experiments
show the effectiveness of the proposed method in compari-
son with the linear and the previous nonlinear methods.

2 PRELIMINARIES

Let R and C be the sets of all real numbers and complex
numbers, respectively. We use j ∈ C to denote the imaginary
unit, i.e., j =

√
−1. For any x ∈ C, x̄ denotes its complex

conjugate, and |x| :=
√
xx̄ denotes its absolute value. We

write vectors with lowercase boldface letters and matrices
with capital letters. We use In ∈ Rn×n to denote the identity
matrix of order n. The transpose and the Hermitian transpose
of vectors or matrices are respectively expressed as (·)T and
(·)H. For any x := (x1, x2, . . . , xn)T ∈ Cn, the `2-norm (or



the Euclidean norm) is defined by ‖x‖2 :=
√∑n

i=1 |xi|2,
and a group `1-norm with non-overlapping groups is defined
by ‖x‖G1 :=

∑nG
i=1‖xGi‖2, where xGi (i = 1, 2, . . . , nG) are

sub-vectors of x divided by index sets Gi (i = 1, 2, . . . , nG)
s.t.
⋃nG
i=1 Gi = {1, 2, . . . , n} and Gi ∩ Gi′ = ∅ (i 6= i′). We

use E[·] to denote the expected values of random variables.

2.1 Signal Model
First of all, we give a signal model for the observation of

K point targets. Let a PAWR have an N -element uniform
linear array with the inter-element spacing d [m]. A plane
wave signal scattered from the kth point target impinges on
the antenna array at an angle θ?k ∈ [θmin, θmax] (θ?1 < θ?2 <
· · · < θ?K [rad]). Then, the lth time sample of the received
signal yl ∈ CN is given by

yl =

K∑
k=1

x?k,la(θ?k) + vl (l = 1, 2, . . . , L), (1)

where x?k,l ∈ C is the lth sample of the kth plane wave signal
s.t. E[x?k,l] = 0, a(θ?k) ∈ CN is the steering vector defined as

a(θ) :=
(
1, e−j

2πd sin θ
λ , e−j

4πd sin θ
λ , . . . , e−j

2(N−1)πd sin θ
λ

)T
with the carrier wavelength λ [m], and vl ∈ CN is the white
Gaussian noise of covariance matrix Rv :=E[vlv

H
l ] =σ2

vIN .
On the other hand, our targets such as raindrops are called

distributed targets, which are supposed to exist continuously
(strictly speaking, there are a number of raindrops within the
antenna beamwidth). Let us observe the distributed targets
while dividing the whole angular interval [θmin, θmax] into
M sub-intervals [θm−∆θ

2 , θm+∆θ
2 ], where ∆θ := θmax−θmin

M
and θm := θmin + (m − 1

2 )∆θ (m = 1, 2, . . . ,M ). There-
fore, instead of (1), we use the following signal model

yl =

M∑
m=1

xm,lsm + vl = Sxl + vl, (2)

where xm,l ∈ C s.t. E[xm,l] = 0 is the lth sample of the sum
of plane wave signals in the sub-interval [θm−∆θ

2 , θm+ ∆θ
2 ],

xl := (x1,l, x2,l, . . . , xM,l)
T ∈ CM , sm := a(θm) ∈ CN ,

and S := (s1, s2, . . . , sM ) ∈CN×M . We can derive (1) from
(2) by redefining K (≤M ) as the number of the sub-intervals
[θm− ∆θ

2 , θm+ ∆θ
2 ] where plane wave signals exist, and θ?k

as the centers of such sub-intervals. In the PAWR system, θm
means the mth elevation angle, and the reflection intensity

p :=
(
E
[
|x1,l|2

]
, E
[
|x2,l|2

]
, . . . , E

[
|xM,l|2

])T ∈ RM

corresponds to precipitation profile in the elevation angles.

2.2 Linear Beamforming
Beamforming is an estimation problem of xl from yl in

(2). Major beamforming methods estimate xl by multiplying
complex weights wm ∈ CN (m = 1, 2, . . . ,M ) and yl as

x̂l := (x̂1,l, x̂2,l, . . . , x̂M,l)
T

:= (wH
1 yl,w

H
2 yl, . . . ,w

H
Myl)

T = Wyl. (3)

In this paper, the methods based on (3) are called the linear
beamforming. Note that the least squares (LS) method

x̂LS,l := WLS yl := S†yl (4)

does not necessarily work well, even if N ≥M , because S
is ill-conditioned when ∆θ is smaller than the antenna beam-
width which is determined by the antenna size, where S† ∈
CM×N is the Moore-Penrose pseudoinverse of S. In the
following, we introduce three major linear methods, Fourier
(FR) beamforming [3], Capon (CP) beamforming [4], and
MMSE beamforming [5].

2.2.1 FR Beamforming

FR beamforming [3] is the most basic method. Its com-
plex weight vector is defined by

wFR,m :=
sm
N

(5)

independently of yl. The weight vector wFR,m is a matched
filter maximizing the signal-to-noise ratio E[|xm,lwH

msm|
2]

E[|wH
mvl|2] .

However, from

x̂FR,m,l :=
sH
m

N
yl = xm,l+

1

N

∑
θ?k 6=θm

x?k,ls
H
ma(θ?k)+

1

N
sH
mvl,

the precipitation profile is overestimated for many elevation
angles θm since

p̂FR,m :=
1

L

L∑
l=1

|x̂FR,m,l|2 � E
[
|xm,l|2

]
+
σ2
v

N

often holds for m satisfying ∃θ?k 6= θm |sH
ma(θ?k)| 6≈ 0.

2.2.2 CP Beamforming

CP beamforming [4] is a data-dependent method which
minimizes 1

L

∑L
l=1 |x̂m,l|2 =wH

mR̂ywm under the condition
wH
msm = 1 to avoid the above overestimation, where R̂y :=

1
L

∑L
l=1 yly

H
l ∈ CN×N is the sample covariance matrix of

the zero-mean random variable yl. The weight vectorwCP,m

is defined as the solution of the optimization problem

minimize
wm

wH
mR̂ywm subject to wH

msm = 1

by

wCP,m :=
R̂−1
y sm

sH
mR̂
−1
y sm

(6)

if L ≥ N (strictly speaking, if rank(R̂y) = N ). Particularly,
if N ≥ K + 1 and L is sufficiently large, then we have

p̂CP,m :=
1

L

L∑
l=1

|x̂CR,m,l|2 ≈ E
[
|xm,l|2

]
+ σ2

v‖wCP,m‖22

for all m since ∀θ?k 6= θm |wH
CP,ma(θ?k)| ≈ 0 holds. How-

ever, if L is not large, then the precipitation profile is often
underestimated [5], and if L < N , R̂−1

y cannot be computed.

2.2.3 MMSE Beamforming

MMSE beamforming [5] was developed to improve the
estimation accuracy in case of small L, including L < N .
This method approximately solves the optimization problem

minimize
wm

E
[
|xm,l −wH

myl|2
]

subject to wH
msm = 1.



Assuming E[xm,lx̄m′,l] = E[xm,l]E[x̄m′,l] = 0 if m 6= m′,
the exact solution of the above optimization problem is

wMMSE,m :=
R−1
y sm

sH
mR
−1
y sm

, (7)

where Ry := E[yly
H
l ] is the covariance matrix of yl. By

using the covariance matrix Rx := E[xlx
H
l ] of xl, Ry is ex-

pressed as Ry = SRxS
H +σ2

vIN . Moreover, Rx = diag(p)

can be approximated by R̂x�IM := ( 1
L

∑L
l=1 xlx

H
l )�IM ,

where � denotes the Hadamard product. As a result, the
weight vector wMMSE,m in (7) is approximated, from the
initial estimate x̂(0)

MMSE,l = x̂FR,l = SHyl/N , by computing

R(i)
x =

(
1

L

L∑
l=1

x̂
(i)
MMSE,l x̂

(i)H
MMSE,l

)
� IM

R(i)
y = SR(i)

x SH + σ2
vIN

w
(i+1)
MMSE,m =

R
(i)−1
y sm

sH
mR

(i)−1
y sm

(m = 1, 2, . . . ,M )

x̂
(i+1)
MMSE,l = W

(i+1)
MMSE yl (l = 1, 2, . . . , L)

(8)

for i≥ 0 until δ(i+1) = 1
M

∑M
m=1

∑L
l=1|x̂

(i+1)
MMSE,m,l− x̂

(i)
MMSE,m,l|

2∑L
l=1|x̂

(i)
MMSE,m,l|2

becomes sufficiently small. In this method, even for small L,
Ry can be stably estimated. However, if K is close to N or
larger than N , then the estimation accuracy degrades, i.e.,
fine variation of the precipitation profile cannot be captured.

3 NONLINEAR BEAMFORMING VIA CONVEX
OPTIMIZATION BASED ON GROUP-SPARSITY

In this section, at first, we introduce our previous nonlin-
ear beamforming method in [6]. Then, we propose its im-
proved version by modifying the convex cost function with
the use of the estimation results of [6].

3.1 Nonlinear Beamforming in [6]
First, we gather xl and yl into X := (x1,x2, . . . ,xL) =

(x̃1, x̃2, . . . , x̃M )T ∈ CM×L and Y := (y1,y2, . . . ,yL) ∈
CN×L, where x̃m := (xm,1, xm,2, . . . , xm,L)T ∈ CL. Then
the beamforming is translated into an estimation problem of
X from Y , and the data fidelity in (2) can be evaluated by
the Frobenius norm as

‖Y − SX‖2F :=

L∑
l=1

‖yl − Sxl‖22. (9)

In [6], we expressed two characteristics on the signal x̃m as
group-sparsity of certain two matrices, and solved a convex
optimization problem based on (9) and the double group-
sparsity. In the following, we summarize the characteristics
on x̃m and the convex cost function used in [6].

3.1.1 Continuity of the Precipitation Profile
Many PAWR systems employ contiguous pair sampling

[9]. In such systems, the pulse repetition time (PRT) is de-
signed by TPRT := 2rmax

c [s], where rmax [m] is the maxi-
mum range to be observed and c [m/s] is the speed of light.
For example, the PAWR system developed at Osaka Univer-
sity can observe the weather in a hemisphere of a radius 60
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Figure 1: Power spectral density function of the backscat-
tered signals from distributed targets. Blue line depicts the
power spectral density function. Red lines depicts E[|um,l|2]
(l = 1, 2, . . . , L := 20). In the above graph, the index m is
omitted for simplicity.

kilometers [2] and hence the PRT is TPRT ≈ 0.0004 [s]. If L
is not large, the total observation time LTPRT [s] is suffi-
ciently short to consider θ?k to be constant for the time index
l = 1, 2, . . . , L. Therefore, x̃m becomes a dense vector if
θm = θ?k for some k, and x̃m = 0 otherwise. Furthermore,
from the continuity of the precipitation profile, if x̃m = 0,
it is highly possible that x̃m−1 and x̃m+1 are also 0. This
property can be expressed as group-sparsity of the matrix
X and evaluated by a group `1-norm

‖X‖G1
1 :=

M/q∑
i=1

∥∥(x̃T
(i−1)q+1, x̃

T
(i−1)q+2, . . . , x̃

T
iq)

T
∥∥

2
(10)

with the use of a factor q ≥ 1 of M .

3.1.2 Narrow Bandwidth of the Backscatterd Signals

The power spectral density of the backscattered signals
from the distributed targets, such as raindrops, fog droplets
and cloud droplets, can be modeled by a Gaussian function
according to the central limit theorem [10], [11]. The first
raw moment of the normalized power spectral density, i.e.,
the center of the above Gaussian function, is called the mean
Doppler frequency (or the mean Doppler shift). The square
root of the second central moment, i.e., the standard division
of the Gaussian function, is called the Doppler frequency
spectrum width (see Fig. 1).

Define the normalized discrete Fourier transform matrix
by F := 1√

L
(f0,f1, . . . ,fL−1) ∈ CL×L, where

fi :=
(
1, e−j

2πi
L , e−j

4πi
L , . . . , e−j

2(L−1)πi
L

)T ∈ CL.

Then the vector um := F x̃m = (um,1, um,2, . . . , um,L)T ∈
CL is group-sparse. This is because the indices l having
large |um,l| concentrate in the vicinity of the mean Doppler
frequency as shown in Fig. 1. However, we cannot specify
the center and the width of such a group because the mean
Doppler frequency and the spectrum width are different for
each elevation angle θm. Alternatively, we divide um into



L overlapping blocks of size b:

bm,1 := (um,1, um,2, . . . , um,b)
T ∈ Cb

bm,2 := (um,2, um,3, . . . , um,b+1)T ∈ Cb
...

bm,L−b+1 := (um,L−b+1, um,L−b+2, . . . , um,L)T ∈ Cb

bm,L−b+2 := (um,L−b+2, . . . , um,L, um,1)T ∈ Cb
...

bm,L := (um,L, um,1, . . . , um,b−1)T ∈ Cb

under the periodic boundary condition. Therefore, if we de-
fine a matrix B ∈ RbL×L satisfying

BF x̃m = Bum = (bT
m,1, b

T
m,2, . . . , b

T
m,L)T ∈ CbL,

the matrix BFXT becomes group-sparse without overlap-
ping, and this property can be evaluated by a group `1-norm

‖BFXT‖G2
1 :=

M∑
m=1

L∑
l=1

‖bm,l‖2. (11)

In [6], on the basis of (9), (10), and (11), we estimated
X from Y by solving a convex optimization problem

minimize
X

1

2
‖Y −SX‖2F +ν1‖X‖G1

1 +ν2 ‖BFXT‖G2
1 (12)

with the use of ADMM [8] (see Appendix), where ν1 > 0
and ν2 > 0. This nonlinear method greatly improved the
estimation accuracy compared to the linear methods [3]–[5].

3.2 The Proposed Nonlinear Beamforming
Although the true power spectral densities have only one

peak as shown in Fig. 1, the reconstructed densities by the
method in [6] often have several peaks (mainly two peaks).
Therefore, we propose to modify the cost function in (12)
so that the power spectral densities reconstructed from the
optimal solution will have only one peak. For this purpose,
first we roughly estimate the vicinity of the mean Doppler
frequency by using the estimation results of [6] as follows.

1. Obtain the minimizer X̂ of (12) by ADMM.
2. Compute Û := (û1, û2, . . . , ûm) = FX̂T.
3. For each ûm, replace components, whose absolute val-

ues are lower than a certain threshold τ , with 0s.
4. For each replaced ûm, detect blocks of any size, whose

all components are nonzero, under the periodic bound-
ary condition, and compute the norms of such blocks.

5. Estimate the support of um with the use of the block
having the largest norm, which is computed in Step 4.

Second, we divide um into two groups (i) vm correspond-
ing the estimated support area and (ii) vC

m corresponding the
nonsupport area (i.e., the complement of the support). To be
more specific, vm and vC

m are expressed as{
vm = (um,s, um,s+1, . . . , um,e)T

vC
m = (um,1, um,2, . . . , um,s−1, um,e+1, , . . . , um,L)T

or{
vm = (um,1, um,2, . . . , um,e, um,s, um,s+1, . . . , um,L)T

vC
m = (um,e+1, um,e+2, . . . , um,s−1)T

with the use of the start index s and the end index e of the
estimated support area. Then, this support property can be
evaluated by a weighted group `1-norm

‖FXT‖G3
1,κ :=

M∑
m=1

(
κm,1‖vm‖2 + κm,2‖vC

m‖2
)
, (13)

where κ := (κ1,1, κ1,2, κ2,1, . . . , κM,2)T ∈ R2M , κm,1 > 0
is a small weight and κm,2 > κm,1 is a large weight.

At this point, if elevation angles θm satisfying x̃m = 0
have been detected by vC

m = um, the group `1-norm in (10)
is no longer required. Therefore, on the cost function, we
replace (10) with the weighted group `1-norm in (13), and
re-estimate X by solving a convex optimization problem

minimize
X

1

2
‖Y − SX‖2F + ν ‖BFXT‖G2

1 + ‖FXT‖G3
1,κ

(14)

with the use of ADMM, where ν > 0. The problem in (14)
is expressed as an ADMM-form

minimize
X∈X ,Z∈Z

1

2
‖Y − SX‖2F + ν ‖Z1‖G2

1 + ‖Z2‖G3
1,κ

subject to Z :=

[
Z1

Z2

]
= L(X) :=

[
BF ◦ T
F ◦ T

]
(X), (15)

where X := CM×L, Z := CbL×M ×CL×M , T is the trans-
pose operator, ◦ denotes the composition of mappings, and
convex functions f and g in (21) are respectively defined by
f(X) := 1

2 ‖Y − SX‖
2
F and g(Z) := ν ‖Z1‖G2

1 + ‖Z2‖G3
1,κ.

On the first line in (22), since X is updated as the solution
of a least squares problem, the solution X(i+1) satisfies(
SHS +

1

γ
L∗ ◦ L

)
(X(i+1)) = SHY +

1

γ
L∗(Z(i)−D(i)),

(16)

where L∗ : Z → X is the adjoint operator of L, defined by
L∗(Z) := T ◦FHBT(Z1)+T ◦FH(Z2) = (ZT

1 B+ZT
2 )FH.

Moreover, the composite mapping L∗ ◦ L is expressed as

L∗ ◦ L =
[
T ◦ FHBT T ◦ FH

] [BF ◦ T
F ◦ T

]
= T ◦ FHBTBF ◦ T + T ◦ FHF ◦ T
= T ◦ FH(bIL)F ◦ T + T ◦ IL ◦ T
= T ◦ bIL ◦ T + IM = (b+ 1)IM . (17)

By substituting (17) into (16), X(i+1) is computed by

X(i+1) =

(
SHS +

b+ 1

γ
IM

)−1

·
(
SHY +

1

γ

((
Z

(i)T
1 −D(i)T

1

)
B+Z

(i)T
2 −D(i)T

2

)
FH

)
.

(18)

On the second line in (22), since the computation of g(Z) is
divided into ν ‖Z1‖G2

1 and ‖Z2‖G3
1,κ, Z(i+1) is computed byZ

(i+1)
1 = prox

γν‖·‖G2
1

(
BFX(i+1)T +D

(i)
1

)
Z

(i+1)
2 = prox

γ‖·‖G3
1,κ

(
FX(i+1)T +D

(i)
2

) (19)



with the use of the proximity operators of the group `1-norms
in (23). On the third line in (22), D(i+1) is computed byD

(i+1)
1 = D

(i)
1 +BFX(i+1)T − Z(i+1)

1

D
(i+1)
2 = D

(i)
2 + FX(i+1)T − Z(i+1)

2

(20)

and the solution of the problem in (15) is obtained by re-
peating (18)–(20) until a convergence condition is satisfied.

4 NUMERICAL EXPERIMENTS

To show the effectiveness of the proposed nonlinear beam-
forming, we conducted simulations based on the real reflec-
tion intensity, observed by the PAWR at Osaka University,
in Fig. 2. At the range r = 7.5 [km], we picked out 55 data
between θmin = −15◦ [deg] and θmax = 30◦ [deg]. The true
reflection intensity p was created by the cubic spline inter-
polation of these 55 samples followed by adding Gaussian
random numbers. We set λ = 0.0318 [m], d = 0.0165 [m],
and TPRT = 0.0004 [s]. Random signals x̃m were generated
in the frequency domain so that E[|um,l|2] would follow a
Gaussian distribution wrapped into [− 1

2TPRT
, 1

2TPRT
], on the

basis of [10]. The mean Doppler frequency was generated
from a uniform distribution U(− 1

2TPRT
, 1

2TPRT
) for each ele-

vation angle, and the Doppler frequency spectrum width was
simply fixed to σ = 125.7 [Hz]. The standard division of vl
was set to σv =

√
5. For1 N = 128 and M = 110, 160, we

compared the proposed method with LS in (4),2 FR in (5),
MMSE in (8), and our previous method (Nonlinear I) in (12),
in cases of L = 20. Note that CP in (6) is not compared since
R̂−1
y cannot be computed. The parameters in (12) were set to

ν1 = 0.0025N
√
qL

M and ν2 = 0.25 N
M
√
b
. The group sizes of

‖·‖G1
1 and ‖·‖G2

1 were set to q = 5 for M = 110, q = 8 for
M = 160, and b= 3. On the proposed method (Nonlinear II),
the threshold was set to τ = 5, and the parameters in (14)
were set to ν = 0.25 N

M
√
b
, κm,1 = 0.05 N

M
√

card(vm)
, and

κm,2 = 12.5 N

M
√

card(vC
m)

, where card is the cardinal number.

Table 1 shows the average, for each situation, of the nor-
malized errors 100 ‖X̂ −X‖F/‖X‖F [%] in 10 trials. From
Table 1, we can see that the proposed method achieved the
highest accuracy for both cases of M = 110 and M = 160.
Figure 3(a) depicts the true power spectral density E[|um,l|2]
in case of M = 110. Figures 3(b), 3(c), 3(d), 3(e), and 3(f)
depict the estimated ones |ûm,l|2 by LS, FR, MMSE, Non-
linear I, and Nonlinear II, respectively. From Figure 3, LS
and FR failed in estimation particularly from 23◦ [deg] to
27◦ [deg] because the power spectral density should be 0 in
this interval. MMSE reconstructed only a rough shape of the
power spectral density and could not capture its fine shape.
Nonlinear I greatly improved the estimation accuracy com-
pared with the linear methods, but the support of the recon-
structed power spectral density is slightly broad. The pro-
posed method, Nonlinear II, reconstructed the power spectral
density including its fine shape even from a few samples.

1When M = 110, the number of the sub-intervals, where signals exist, is
K = 93 < N . On the other hand, when M = 160, the number of the sub-
intervals is K = 137 > N , and hence it is very difficult to estimate X .

2To avoid the numerical instability in the computation of S†, we trun-
cated the singular values of S that are smaller than 0.005.
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Figure 2: PAWR data.

Table 1: Mean of the normalized
errors of each method in 10 trials.

Method
∆θ = 45◦

110
∆θ = 45◦

160

K = 93 K = 137

L = 20 L = 20

LS 76.96 83.28

FR 105.0 142.1

MMSE 72.73 118.1

Nonlinear I 22.23 49.54

Nonlinear II 10.21 45.64

5 CONCLUSION

In this paper, we have proposed a novel nonlinear beam-
forming method for a PAWR. The proposed method is an
improved version of our previous nonlinear beamforming
method, which utilizes group sparsity of the backscattered
signals from distribute targets. Based on a rough estimation
of the support of each power spectral density, we modified
the previous convex cost function so that the power spectral
densities of the optimal solution would have only one peak.
Numerical experiments showed that the proposed method re-
constructs the power spectral densities with higher accuracy
compared to the linear and the previous nonlinear methods.

APPENDIX Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM)
[8] solves the following convex optimization problem:

minimize
x∈X, z∈Z

f(x) + g(z) subject to z = L(x), (21)

where X and Z are finite-dimensional Hilbert spaces with
the standard inner products, L : X → Z is a linear mapping,
and functions f : X → R∪{∞} and g : Z → R∪{∞} are
proper, lower semicontinuous, and convex.3 ADMM itera-
tively computes, from any initial value (z(0),d(0)) ∈ Z×Z ,
x(i+1) = argmin

x∈X
f(x) +

1

2γ
‖z(i) − L(x)− d(i)‖2Z

z(i+1) = proxγg(L(x(i+1)) + d(i))

d(i+1) = d(i) + L(x(i+1))− z(i+1)

(22)

for i ≥ 0, and then (x(i))∞i=1 converges to the optimal solu-
tion of the problem in (21), where γ > 0, ‖·‖Z denotes the
Euclidean norm introduced by the standard inner product in
Z , and proxγg : Z → Z is the proximity operator defined by

proxγg(y) := argmin
z∈Z

g(z) +
1

2γ
‖z − y‖2Z .

If g is a group `1-norm with non-overlapping groups, from
g(z) + 1

2γ ‖z − y‖
2
Z =

∑nG
i=1(‖zGi‖2 + 1

2γ ‖zGi − yGi‖
2
2),

the computation of proxγg is divided into those of proxγ‖·‖2 .
Therefore, proxγ‖·‖G1 (y) can be computed for each group by

3A function f : X → R∪ {∞} is called proper, lower semicontinuous,
and convex if dom(f) := {x ∈ X | f(x) < ∞} 6= ∅, lev≤α(f) :=
{x ∈ X | f(x) ≤ α} is closed for all α ∈ R, and f(λx + (1− λ)y) ≤
λf(x) + (1− λ)f(y) for all x,y ∈ X and all λ ∈ (0, 1), respectively.
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(a) True power spectral density
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(b) Least squares method
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(c) Fourier beamforming
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(d) MMSE beamforming
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(e) Nonlinear beamforming I
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(f) Nonlinear beamforming II (proposed)

Figure 3: True power spectral density E[|um,l|2] [dB] and the estimated one |ûm,l|2 by each method (M = 110, L = 20).

using the proximity operator of the `2-norm

proxγ‖·‖2(yGi) =


‖yGi‖2 − γ
‖yGi‖2

yGi if ‖yGi‖2 > γ,

0 if ‖yGi‖2 ≤ γ.
(23)
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