量子化された符号化撮像からの高精度ライトフィールド再構成

北原 大地 杉浦 紫緒里 平林 晃

立命館大学情報理工学部

E-mail: d-kita@fc.ritsumei.ac.jp, akirahrb@media.ritsumei.ac.jp

Abstract

高解像度のライトフィールドを取得する方法として 符号化撮像がある.この方法では,符号化マスクを取り 替えながら撮像した少ない枚数の画像から元のライト フィールドを再構成している.従来は符号化マスクの 光の透過率を実数値としていたが,このようなマスクを 厳密に実装することは困難である.そこで本論文では, 光の透過率が0か1に量子化されている,実装が容易 なマスクを用いた符号化撮像を考え,凸最適化に基づ いた高精度なライトフィールド再構成手法を提案する.

1 はじめに

我々は感覚器である眼によって外部からの光を知覚 する.どの位置に立っても、どの方向を見ても、時事 刻々と途切れることなく明暗を感知できる.このこと は、我々の周囲の3次元空間のあらゆる位置において、 あらゆる方向から絶え間なく光が届いていることを意味 する.各点における各方向の光線の強度分布をライト フィールドという[1].通常の静止画カメラは、イメージ センサ前方から来る無数の光線が合成された際の輝度 値を記録する.仮に、合成前の各方向から来る光線の 輝度値を記録できれば、被写体を異なる視点で捉えた 複数枚の画像(多視点画像群と呼ぶ)を生成できる.他 にも、深度推定、デジタルリフォーカス、全焦点画像や 自由視点画像の作成など[2]、ライトフィールドを利用 することで様々な視覚効果を生み出すことができる.

ライトフィールドの取得には様々な方法が提案され ている.大別して,カメラを複数個使用するものと1つ のみ使用するものがある.前者の方法では,小型カメラ が縦と横に規則的に配置されたカメラアレイを用いて, ライトフィールドを直接取得する [3].しかし,カメラ アレイは大規模なハードウェアであるため,開発には 大きなコストが伴ってしまう.一方,後者の方法には マイクロレンズアレイを用いるもの [4] と符号化撮像を 用いるもの [5] がある.マイクロレンズアレイを用いる 方法では,主レンズの焦点面にマイクロレンズアレイを 置くことで,イメージセンサの各素子それぞれが単一 方向から来る光線の輝度値のみを記録できる.この際, 各素子が記録する光線の方向は、合成前の光線が通過 した主レンズ上の座標と対応しており、同一被写体に対 する異なる視点に相当する.したがって、1つのカメラ のみで多視点画像群を直接撮像できる.しかし、視点数 を増やすほど1視点あたりのイメージセンサ素子数が 減る、つまり画像解像度が低下するという欠点がある.

本論文では、符号化撮像を用いるライトフィールド の取得に注目する.この方法では、主レンズ(開口面) に光の透過率を制御するマスクを置いて被写体を撮像 し、得られた複数の画像から信号処理によってライト フィールド (多視点画像群)を再構成する. 符号化撮像 には、マイクロレンズアレイを用いる場合と違い、画像 解像度は低下しないという利点がある.一方で,通常 は,符号化マスクを取り替えながら被写体を視点数以上 撮像するため,全体の撮像時間が長くなり,被写体が 静止物体に限定されてしまうという問題がある.近年. 撮像時間短縮のために視点数より少ない撮像回数で高 精度にライトフィールドを再構成する研究が報告され ている [5-9]. これは劣決定逆問題であるため、従来法 では、過去に撮像したライトフィールドから作成された 辞書 [6-8] や畳み込みニューラルネットワーク [9] など を利用して、ライトフィールドの再構成を行う.特に、 過去のデータに対して主成分分析を行う再構成手法 [5] が,計算量と再構成精度の観点から優れている.

上記の手法では,符号化マスクにおける光の透過率 を実数値として取り扱っているが,このようなマスク を厳密に実装することは困難である.また,推定対象 のライトフィールドが過去のデータと類似した特徴を 必ずしも持つとは限らない.本論文では,光の透過率 が0か1に量子化された,実装が容易なマスクによる 符号化撮像を考える.そして,多視点画像群が持つ一般 的な性質に基づいた,過去のデータを必要としない再 構成手法を提案し,数値実験によりその有効性を示す.

2 符号化撮像からのライトフィールド再構成

2.1 ライトフィールド再構成

時刻 τ における位置 (V_x, V_y, V_z) , 方向 (θ, ϕ) , 波長 λ の光線の強度を 7 変数関数

$$P(V_x, V_y, V_z, \theta, \phi, \lambda, \tau)$$

図 1: ライトフィールドのプレノプティック関数表現から4次元画像表現への変換

として表現する. ここで, Pはプレノプティック関数 (Plenoptic Function¹)と呼ばれ, Pで表わされる光の 分布をライトフィールドという [2].本論文では,光源 と被写体が固定された状態における光線の輝度値分布 のみを推定するため,時刻 τ と波長 λ を考慮しなくて よい. このとき, プレノプティック関数は5変数関数 と見なせる (図1左).また,光には輝度不変則という 性質があり,更に空気中を進む光は屈折・反射・遮蔽 がなく直進するため,直線方向で輝度値が一定という 冗長性が生まれる.結果として,ライトフィールドは, 2つの平面上の座標 (s,t), (u,v)を通る光線の輝度値を 示す4変数関数 l(s,t,u,v)として表現される (図1右).

符号化撮像では、図2のように開口面が st 平面に、 イメージセンサが uv 平面に相当する。開口面の座標 $(s,t) \ge N$ 個のブロックに離散化し、m 回目の撮像で 用いる符号化マスクの n 番目のブロックにおける光の 透過率を $a_{m,n} \in [0,1]$ で表す。イメージセンサの座標 (u,v) において観測される輝度値 $y_m(u,v)$ は、

$$y_m(u,v) = \sum_{n=1}^{N} a_{m,n} l_n(u,v)$$
(1)

のように与えられる.ここで, $l_n(u,v)$ は開口面の n 番 目のブロックを通過してイメージセンサの座標 (u,v)に到達する光線の輝度値であり,全ての (u,v) における $l_n(u,v)$ からなる画像を「sub-aperture 画像」という [5]. sub-aperture 画像は,開口面の n 番目のブロックに視点 を置いて被写体を撮像した画像に相当するため,ライト フィールドは多視点画像群と見なせる.異なるマスク で撮像した M 個の観測値 $y_m(u,v)$ (m = 1, 2, ..., M)からなる M 次元ベクトルを $y_{u,v} \in \mathbb{R}^M$,再構成対象の ライトフィールドの輝度値 $l_n(u,v)$ (n = 1, 2, ..., N)からなる N 次元ベクトルを $l_{u,v} \in \mathbb{R}^N$, $a_{m,n}$ を成分に 持つ行列を $A \in [0, 1]^{M \times N}$ とすれば,式 (1) をまとめて

$$\boldsymbol{y}_{u,v} = A \boldsymbol{l}_{u,v} \tag{2}$$

と表せる. 符号化撮像におけるライトフィールド再構成 とは, 既知の $y_{u,v}$ から未知の $l_{u,v}$ を推定する問題である.

図 2: 符号化撮像の模式図

撮像回数 M が視点数 N よりも少ないときには,式 (2) を満たす $l_{u,v}$ が無数に存在する劣決定逆問題となる.

2.2 主成分分析を利用した再構成手法

$$\boldsymbol{l}_{u,v} = Q\boldsymbol{c} \tag{3}$$

と一意に表現できる.ここで、 $c := (c_1, c_2, \dots, c_N)^{\mathrm{T}} \in \mathbb{R}^N$ は各主成分ベクトルに対応する主成分係数である. 撮像回数を M < N とするとき、ライトフィールドは

$$\boldsymbol{l}_{u,v} \approx \hat{Q}\hat{\boldsymbol{c}} \tag{4}$$

のように推定される.ここで、 $\hat{Q} := (\boldsymbol{q}_1, \boldsymbol{q}_2, \dots, \boldsymbol{q}_M) \in \mathbb{R}^{N \times M}$, $\hat{\boldsymbol{c}} := (c_1, c_2, \dots, c_M)^{\mathrm{T}} \in \mathbb{R}^M$ であり、主成分 ベクトルの正規直交性から、 $\hat{\boldsymbol{c}} = \hat{Q}^{\mathrm{T}} Q \boldsymbol{c}$ と表される. 符号化マスクを $A := \hat{Q}^{\mathrm{T}}$ とすれば、式 (2) と式 (3) から

$$\boldsymbol{y}_{u,v} = \hat{Q}^{\mathrm{T}} Q \boldsymbol{c} = \hat{\boldsymbol{c}}$$

¹Plenoptic は「完全な」を意味するラテン語 "Plenus"と「視覚 の」を意味する英語 "optic"を足してできる造語である [1].

図 3: 主成分分析を用いて作成した実数値マスク

図 4: 図 3 のマスクを {0,1} の 2 値に量子化したもの

が成立するため、観測値をそのまま主成分係数とする ことで、式 (4) から $l_{u,v}$ が再構成される.

実際には、第1主成分ベクトル以外の全ての主成分 ベクトルが負の成分を持つため、 \hat{Q}^{T} を符号化マスク $A \in [0,1]^{M \times N}$ とすることはできない、そこで、正則 行列 $R \in \mathbb{R}^{M \times M}$ をランダムに生成し、符号化マスクを $A := R\hat{Q}^{T} \in [0,1]^{M \times N}$ のように作成する、 $A = R\hat{Q}^{T}$ を式 (2) に代入すると、式 (3) から

$$\boldsymbol{y}_{u,v} = R\hat{Q}^{\mathrm{T}}Q\boldsymbol{c} = R\hat{\boldsymbol{c}}$$

となるため,式(4)に基づいてライトフィールドは

$$\boldsymbol{l}_{u,v} \approx \hat{Q}\hat{\boldsymbol{c}} = \hat{Q}R^{-1}\boldsymbol{y}_{u,v} \tag{5}$$

のように再構成される.

3 量子化された符号化撮像からの再構成

文献[5]ではライトフィールドを高精度に再構成する ために,開口面の各ブロックにおける光の透過率を区間 [0,1]内の実数値としている.文献[5]の実験の記述に 基づいて作成した N = 5×5 = 25, M = 3のときの 符号化マスクは図3のようになる.しかしながら,光の 透過率が実数値で設定されている図3のような符号化 マスクを,厳密に実装することは決して容易ではない. 特に,視点数 Nを増やす場合には,開口面の透過率を より細かなブロックごとに制御する必要があり,符号 化マスクの実装が更に困難となる.また,式(5)による 再構成では,学習用のライトフィールドと再構成対象 のライトフィールドの主成分ベクトルが大きく異なる 場合に,再構成精度が劣化してしまうと考えられる.

本論文では、実機における実装の容易さを考慮して、 光の透過率が0または1に量子化された図4のような 符号化マスクを用いた撮像を考える。その上で、量子 化された符号化撮像からもライトフィールドを高精度 かつ比較的高速に再構成する手法を提案する。

(a) 元の sub-aperture 画像

(b) 第1主成分のみからなる画像

(c) 第2主成分以降からなる画像

図 5: Dragon and Bunnies (視点数 5×5)の主成分分析

3.1 観測モデルとライトフィールドの低ランク性

式 (2) の観測モデルは、センサ内部の「電圧・電流・ 電荷の揺らぎ」に起因する観測雑音を考慮していない. 本論文では、観測雑音に加えて、符号化マスクの透過 率の実装誤差も考慮した観測モデルを構築する.以下 では、s = 1, 2, ..., S, t = 1, 2, ..., T, u = 1, 2, ..., U,v = 1, 2, ..., V, N := STとする.また、視点 (s, t) の sub-aperture 画像を $\tilde{l}_{s,t} \in \mathbb{R}^{UV}$ で表す.観測値をY := $(y_{1,1}, y_{1,2}, ..., y_{U,V}) \in \mathbb{R}^{M \times UV},$ ライトフィールド を $L := (l_{1,1}, l_{1,2}, ..., l_{U,V}) = (\tilde{l}_{1,1}, \tilde{l}_{1,2}, ..., \tilde{l}_{S,T})^{T} \in$ $\mathbb{R}^{N \times UV},$ 観測雑音を $E \in \mathbb{R}^{M \times UV},$ 符号化マスクの 実装誤差を $\delta A \in \mathbb{R}^{M \times N}$ とすれば、式 (2) から

$$Y = (A + \delta A)L + E =: AL + E' \tag{6}$$

が成り立つ.本論文では,式(6)を観測モデルとする.

前述の通り、ライトフィールドは視点の異なる subaperture 画像の集まりである.各画像間で視点が僅か に異なるのみであるため、それぞれの画像は非常に似て

(a) 視点 (1,1) の sub-aperture 画像

(b) 視点 (2,1) の sub-aperture 画像

(c) 視点 (1,1) と (2,1) の差分画像 (輝度値 5 倍で表示)
図 6: Dragon and Bunnies の縦に隣り合う画像の差分

おり相関が極めて高い.したがって、ライトフィールド Lは主成分分析により低ランク行列で近似できる [5]. 例として、視点数 $N = 5 \times 5 = 25$ のライトフィールド "Dragon and Bunnies" [10] に対して主成分分析を行う. 図 5(a) は元の sub-aperture 画像、図 5(b) は第1主成分 のみを表現した画像、図 5(c) は第2主成分以降を表現 した画像である.このように、L は第1主成分のみで 十分近似できるという低ランク性を持つ.

3.2 隣接視点間の類似性と凸最適化による再構成

ライトフィールドは多視点画像群であり,図6と図7 からも確認できるように,隣接視点間の sub-aperture 画像の輝度値の差分が,ほとんどの画素において非常 に小さいという性質を持つ.この性質を評価するため の新たな指標として,本論文では視差全変動 (Disparity Total Variation: DTV)

$$DTV(L) := \sum_{s=1}^{S-1} \sum_{t=1}^{T} \|\tilde{\boldsymbol{l}}_{s+1,t} - \tilde{\boldsymbol{l}}_{s,t}\|_1 + \sum_{s=1}^{S} \sum_{t=1}^{T-1} \|\tilde{\boldsymbol{l}}_{s,t+1} - \tilde{\boldsymbol{l}}_{s,t}\|_1$$
(7)

(a) 視点 (1,1) の sub-aperture 画像

(b) 視点 (1,2) の sub-aperture 画像

(c) 視点 (1,1) と (1,2) の差分画像 (輝度値5倍で表示)
図 7: Dragon and Bunnies の横に隣り合う画像の差分

を提案する.式 (7) の第1項と第2項は,縦に隣り合う sub-aperture 画像間と横に隣り合う sub-aperture 画像 間の差分の絶対値和をそれぞれ表しており,隣接する $\hat{l}_{s,t}$ どうしが似ているほど DTV の値は小さくなる.

式 (6) の観測モデルと Lの低ランク性,及び隣接する $\tilde{l}_{s,t}$ の類似性を利用して,本論文では凸最適化問題

minimize
$$\frac{1}{2} \|Y - AL\|_F^2 + \nu_1 \|L\|_* + \nu_2 \text{DTV}(L)$$

subject to $L \in [0, 1]^{N \times UV}$ (8)

を解くことで、ライトフィールドを再構成する手法を 提案する.ここで、 $\nu_1 > 0$ かつ $\nu_2 > 0$ であり、ライト フィールドの輝度値の最大値は1に正規化されている と仮定している.式(8)において、第1項は観測誤差を 評価しており、第2項の核ノルムはランク関数 rank(·) の凸緩和であり L の低ランク性を評価している.式(8) の解は交互方向乗数法 (Alternating Direction Method of Multipliers)[11]により比較的高速に計算できる.

4 数值実験

公開されているライトフィールド"Lego Knight"と "Tarot small" [10] を用いてシミュレーションを行う. どちらのライトフィールドも,視点数5×5,画素数 512×512である.これらのライトフィールドを符号化 マスクを取り替えながら3回撮像し,得られた3枚の 画像から25枚の多視点画像を再構成する.観測雑音 *E* は平均0,標準偏差0.01のガウス分布から生成し,符号 化マスクの実装誤差 δA は \pm [0.01,0.03]の一様分布から 生成した.符号化マスクに図3の実数値マスクを用いる 場合と,図4の2値マスクを用いる場合で実験を行い, 提案法と従来法[5]の再構成結果のPSNRを比較した.

まず, Lego Knight の再構成結果を比較する. 表1は 実数値マスクにより撮像を行った際の提案法と従来法 の再構成精度を示している.表1の結果ではどの視点 においても提案法と従来法にほとんど差はなく、全て の画像を良好に再構成できている. 図8は視点(5,5)の sub-aperture 画像の再構成結果を示している. この図 からも, どちらの手法も良好にライトフィールドを再 構成していることが確認できる.表2は2値マスクに より撮像を行った際の提案法と従来法の再構成精度を 示している.表2から、この場合には、中心視点である 視点(3.3)を除いた全ての視点において提案法のほう が優れた再構成結果を与えている. 更には, 提案法の 再構成精度は実数値マスクを用いた場合と同等である のに対し, 従来法では中心視点から離れるほど再構成 精度が大きく劣化している. 図9は視点(5,5)の subaperture 画像の再構成結果,及び真値との差分画像を 示している. これらの図からも, 従来法においては再 構成精度が著しく劣化していることが分かる.

次に, Tarot small の再構成結果を比較する.表3と 図 10 から,このライトフィールドに対しても,実数値 マスクを用いた場合には,提案法と従来法どちらも良好 な再構成結果を与えている.また,表4と図 11 から, 2 値マスクを用いた場合には,従来法では再構成精度が 大きく劣化する一方,提案法では実数値マスクと同等の 再構成精度を維持している.なお,再構成時間に関して は,従来法では式(5)の閉形式により再構成を行うため 時間がほとんどかからないのに対し,提案法では90秒 から140 秒程度の時間がかかっている.したがって, 提案法の更なる高速化が今後の課題として挙げられる.

5 おわりに

本論文では、光の透過率が0と1に量子化された符号 化撮像から、ライトフィールドを高精度に再構成する 手法を提案した.提案法では、ライトフィールドの低 ランク性を核ノルムで評価し、隣接する sub-aperture 画像の類似性を新たに定義した DTV により評価した. 再構成結果は凸最適化問題の解として与えられ,交互 方向乗数法により比較的高速に計算される.提案法に より,2値マスクを用いた場合においても実数値マスク と同等の精度でライトフィールドを再構成できるため, 符号化マスクの実装がより現実的なものとなった.

参考文献

- E. H. Adelson and J. R. Bergen, "The plenoptic function and the elements of early vision," in *Computational Models of Visual Processing*, Cambridge, MA: MIT Press, 1991, pp. 3–20.
- [2] 日浦慎作, "コンピュテーショナルフォトグラフィ:画像獲得の再定義,"情報処理学会研究報告,
 vol. 2010-CG-141, no. 4, pp. 1–6, 2010.
- [3] 蚊野浩, "ライトフィールドカメラによる三次元 計測:原理・現状・将来,"第25回三次元工学シンポジウム, 5 pages, 2015.
- [4] 藤井俊彰, "ライトフィールドイメージングの基礎と その応用," 光学, vol. 46, no. 10, pp. 398–402, 2017.
- [5] 八木祐亮,高橋桂太,藤井俊彰,園田聡葵,長原一, "主成分分析を用いた符号化撮影による光線空間取 得の検討,"信学技報, vol. 117, no. 48, pp. 75–79, 2017.
- [6] K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, "Compressive light field photography using overcomplete dictionaries and optimized projections," in *Proceedings of SIGGRAPH 2013* (ACM TOG), vol. 32, no. 4, 12 pages, 2013.
- [7] X. Zang, Y. Shi, J. Wang, W. Ding, and B. Yin, "Optimizing collaborative sparse dictionary for compressive light field photography," in *Proceed*ings of 2016 Visual Communications and Image Processing (VCIP 2016), 4 pages, 2016.
- [8] J. Chen and L. P. Chau, "Light field compressed sensing over a disparity-aware dictionary," *IEEE Trans. Circuits Syst. Video Tech.*, vol. 27, no. 4, pp. 855–865, 2017.
- [9] Y. Yoon, H. G. Jeon, D. Yoo, J. Y. Lee, and I. S. Kweon, "Light-field image super-resolution using convolutional neural network," *IEEE Signal Process. Lett.*, vol. 24, no. 6, pp. 848–852, 2017.
- [10] The (New) Stanford Light Field Archive. [Online] http://lightfield.stanford.edu/lfs.html
- [11] D. Gabay and B. Mercier, "A dual algorithm for the solution of nonlinear variational problems via finite element approximation," *Comput. Math. Appl.*, vol. 2, no. 1, pp. 17–40, 1976.

表 1: 実数値マスクによる再構成結果 (Lego Knight)

視点	提案法	従来法	視点	提案法	従来法
(1,1)	24.85	25.01	(3,4)	27.15	27.16
(1,2)	26.06	27.10	(3,5)	26.54	25.81
(1,3)	26.80	27.83	(4,1)	26.18	25.02
(1, 4)	26.55	27.06	(4,2)	28.23	27.08
(1,5)	25.05	24.41	(4,3)	28.11	28.08
(2,1)	26.12	25.44	(4,4)	28.66	28.64
(2,2)	28.24	27.47	(4,5)	26.80	26.55
(2,3)	27.92	27.94	(5,1)	24.64	24.02
(2,4)	28.07	27.86	(5,2)	26.01	26.29
(2,5)	26.67	25.81	(5,3)	26.63	27.79
(3,1)	25.97	24.71	(5,4)	26.35	27.87
(3, 2)	26.96	26.01	(5,5)	25.15	25.46
(3,3)	26.75	26.66	平均	26.66	26.52

表 2:2 値マスクによる再構成結果 (Lego Knight)					
視点	提案法	従来法	視点	提案法	従来法
(1,1)	24.93	13.62	(3,4)	26.04	18.59
(1,2)	25.91	15.28	(3,5)	24.95	14.04
(1,3)	26.15	19.44	(4,1)	27.11	16.42
(1,4)	26.82	25.39	(4,2)	25.57	21.03
(1,5)	24.62	18.66	(4,3)	25.96	23.93
(2,1)	26.54	13.71	(4, 4)	28.76	15.92
(2,2)	28.57	15.93	(4,5)	26.57	12.85
(2,3)	26.89	21.95	(5,1)	22.72	18.30
(2,4)	28.58	22.89	(5,2)	26.04	24.43
(2,5)	25.93	16.25	(5,3)	26.17	20.77
(3,1)	27.04	14.51	(5,4)	28.49	14.94
(3, 2)	27.10	17.54	(5,5)	26.30	12.50
(3,3)	25.70	25.93	平均	26.50	18.19

(a) 真の sub-aperture 画像(b) 提案法 (PSNR = 25.15)(c) 従来法 (PSNR = 25.46)図 8: 実数値マスクによる視点 (5,5) の sub-aperture 画像の再構成結果 (Lego Knight)

(a) 真の sub-aperture 画像

(b) 提案法 (PSNR = 26.30)

(c) 従来法 (PSNR = 12.50)

図 9:2 値マスクによる視点 (5,5)の sub-aperture 画像の再構成結果 (Lego Knight)

表 3: 実数値マスクによる再構成結果 (Tarot small)

視点	提案法	従来法	視点	提案法	従来法
(1,1)	22.30	22.43	(3,4)	23.77	23.90
(1, 2)	23.16	24.19	(3,5)	23.37	23.01
(1,3)	23.72	24.40	(4,1)	23.47	22.87
(1, 4)	23.36	23.75	(4,2)	25.08	24.50
(1,5)	21.67	21.34	(4,3)	24.75	24.75
(2,1)	22.68	22.71	(4,4)	24.92	25.04
(2,2)	24.56	24.33	(4,5)	23.25	24.41
(2,3)	24.56	24.61	(5,1)	21.31	21.01
(2,4)	25.09	25.04	(5,2)	22.67	23.01
(2,5)	23.84	23.36	(5,3)	23.25	23.91
(3, 1)	23.23	22.69	(5,4)	23.57	24.66
(3, 2)	23.89	23.54	(5,5)	22.53	22.57
(3, 3)	23.45	23.39	平均	23.50	23.54

表 4: 2 値マスクによる再構成結果 (Tarot small)					
視点	提案法	従来法	視点	提案法	従来法
(1,1)	22.39	13.75	(3,4)	22.92	17.43
(1,2)	23.05	14.92	(3,5)	22.40	13.28
(1,3)	23.22	18.37	(4,1)	24.18	15.98
(1,4)	23.30	21.90	(4,2)	25.19	19.76
(1,5)	21.24	16.90	(4,3)	23.15	21.95
(2,1)	22.95	13.89	(4, 4)	25.37	15.19
(2,2)	24.66	15.53	(4,5)	23.17	12.13
(2,3)	23.96	20.68	(5,1)	20.11	16.55
(2,4)	25.55	21.44	(5,2)	22.49	20.66
(2,5)	23.31	15.36	(5,3)	23.03	19.36
(3,1)	24.03	14.64	(5,4)	25.27	14.42
(3, 2)	23.74	17.01	(5,5)	23.34	11.84
(3,3)	22.55	22.78	平均	23.38	17.03

(a) 真の sub-aperture 画像(b) 提案法 (PSNR = 22.53)(c) 従来法 (PSNR = 22.57)図 10: 実数値マスクによる視点 (5,5) の sub-aperture 画像の再構成結果 (Tarot small)

(a) 真の sub-aperture 画像

(b) 提案法 (PSNR = 23.34)

(c) 従来法 (PSNR = 11.84)

図 11:2 値マスクによる視点 (5,5) の sub-aperture 画像の再構成結果 (Tarot small)