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Abstract—Diabetes mellitus leads to damage of the retina by a
high blood sugar level. This disease is called diabetic retinopathy
(DR), and it is one major cause of blindness among working-aged
people. DR affects about 80% of patients who have had diabetes
for twenty years or more. The longer a period of diabetes is, the
higher the risk of developing DR is. In order to prevent the blind-
ness caused by DR, accurate DR diagnosis from a retinal fundus
image is important. Recently, deep learning techniques play a sig-
nificant role in the field of computer vision. When we apply deep
learning to segmentation of abnormal parts in fundus images, two
major problems arise. One is that the number of available data is
insufficient to train a deep neural network. The other is that the
sizes of the abnormal parts are quite different depending on the
type of the disease, which leads to low segmentation accuracy of
small diseases. These two problems make the fundus image seg-
mentation challenging. In this paper, we propose a segmentation
method using multiple deep neural networks. To train the deep
neural networks from a small number of data, we use data aug-
mentation as preprocessing and adopt the Dice coefficient with the
binary cross entropy as a loss function. Moreover, to improve the
segmentation accuracy of small diseases, e.g., microaneurysms,
we construct one individual network for each type of the disease.
In experiments, the networks are trained from IDRiD dataset and
tested for MESSIDOR dataset. We compare and discuss the accu-
racy of the proposed method with modified U-Nets and SegNets.

I. INTRODUCTION

Diabetic retinopathy (DR) is one major cause of blindness. It
is a chronic eye disease, and 80% of all people suffering from
diabetes will face this problem [1]–[3]. DR causes damage to
the retina of eyes, but more than 90% of the blindness can be
prevented if DR is detected at an early stage. Diabetic patients
must regularly undergo the screening test to check the onset of
DR. However, manual examinations by ophthalmologists take
much time, and the number of experts is not sufficient to meet
the growing demand for screening. As a result, development of
an automatic diagnosis system for DR has been desired.

Fundus photography is the most commonly-used screening
for DR diagnosis. Fundus images of normal and damaged eyes
are shown in Figs. 1(a) and 1(b), respectively. In every fundus
image, there always exists one optic disc, which is also called
the blind spot because there are no photoreceptors in this part.
The optic disc represents the beginning of the optic nerve and
is shown as a bright circle in the fundus image. Blood vessels
come into the retina from the optic disc and spread in various
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(a) Fundus image of a normal eye

(b) Fundus image of a damaged eye

Fig. 1. Typical fundus images of normal and damaged eyes. Microaneurysms,
hard & soft exudates, and hemorrhages appear as abnormal parts in (b).

directions as capillaries to supply retinal cells with oxygen and
nutrition. If DR develops and progresses, then microaneurysms,
hard & soft exudates, and hemorrhages appear as shown in
Fig. 1(b). The microaneurysms are the first occurrence of DR.
These happen when tiny blood vessels in the retina begin to
swell. The hard exudates are lipid leakages from some blood
vessels and are the most visible signs of DR at an early stage.
Dot or blot hemorrhages also occur from damaged capillaries
as less-visible signs at the early stage. At the next stage of DR,



the soft exudates, which are more blurred compared with hard
ones, appear as died and dilated ganglion cell axons. Moreover,
blood flow is locally stopped, i.e., the ischemia happens, and
the hemorrhages become larger. When DR further progresses,
abnormal new blood vessels are created. These vessels are thin
and fragile, and if they are broken, then vitreous hemorrhages
occur and the hard exudates become larger and larger.

Automatic fundus image segmentation has been studied and
many methods have been developed based on traditional image
processing techniques [4]–[8] and machine learning techniques
[9]–[21]. In the machine learning approaches, by using training
data, the accuracy of segmentation can be improved compared
with the traditional image processing approaches. In particular,
deep learning techniques [12]–[21] are the most trendy machine
learning because they have been achieving tremendous success
in the fields of computer vision and medical image processing.

In [12]–[18], deep convolutional neural networks (CNNs) are
used. Gargeya and Leng [12] and Lam et al. [13] constructed
CNNs for detection of the stage of DR, and executed fundus
image segmentation roughly as abnormality heat maps by vis-
ualization of the learned features. P. Prentašić and S. Lončarić
[14], Yu et al. [15], Perdomo et al. [16], and Khojasteh et al.
[17] constructed CNNs for exudate segmentation, and achieved
77% sensitivity for DRiDB dataset1 [22], 88% sensitivity for e-
ophtha dataset2 [23], 99% sensitivity for e-ophtha dataset, and
99% sensitivity for DIARETDB1 v1 dataset3 [24], respectively.
Note that the quality of fundus images and segmentation labels
are different depending on the dataset, and we cannot directly
compare the above results. Orlando et al. [18] constructed a
CNN and combined it with a random forest for segmentation
of red lesions composed of hemorrhages and microaneurysms,
and achieved 48% sensitivity for DIARETDB1 v1 dataset and
36% sensitivity for e-ophtha dataset. From these papers, one
finds that segmentation of exudates is relatively easy compared
with those of hemorrhages and microaneurysms since the con-
trast of exudate parts is high while that of red lesions is low.

When we apply deep learning to fundus image segmentation,
two major problems arise. One is that the number of available
data is insufficient to train deep CNNs. The other is the distri-
bution of data is very imbalanced, i.e., the number of normal
pixels is much greater than that of abnormal pixels, and the
sizes of the abnormal parts are also different depending on the
type of the disease and the stage of DR. These two problems
make the fundus image segmentation challenging. Zheng et al.
[19] constructed a conditional generative adversarial network
(CGAN) [25] for resolving the above problems. Based on the
idea of Pix2Pix [26], they generated label-preserving virtual
fundus images of the minority class by the CGAN as data aug-
mentation. Then, they constructed an ensemble CNN based on
U-Net [27] for exudate segmentation and achieved 90% sen-
sitivity for HEI-MED detaset4 [4], 90% sensitivity for e-ophtha
dataset, 93% sensitivity for DIARETDB1 v1 dataset, and 95%

1https://ipg.fer.hr/ipg/resources/image_database
2http://www.adcis.net/en/third-party/e-ophtha/
3http://www.it.lut.fi/project/imageret/diaretdb1/
4https://github.com/lgiancaUTH/HEI-MED

sensitivity for MESSIDOR dataset5 [28]. However, they did
not challenge more difficult segmentation of hemorrhages and
microaneurysms. Moreover, the data augmentation method by
the CGAN cannot be applied, e.g., to IDRiD dataset6 [29] since
this dataset has no blood vessel labels.

Many researchers have focused on segmentation of only one
disease, and there are few papers trying to segmentation of all
types of diseases. Tan et al. [20] constructed a 10-layer CNN
for simultaneous segmentation of exudates, hemorrhages and
microaneurysms. For CLEOPATRA dataset7 [30], it achieved
87% and 71% sensitivities of exudates and red lesions, respec-
tively. It also achieved 62% and 46% sensitivities of hemor-
rhages and microaneurysms. Saha et al. [21] used SegNet [31]
for simultaneous segmentation of hard & soft exudates, hemor-
rhages, microaneurysms, and the optic disc. For IDRiD dataset,
hard exudates and the optic disc can be segmented well while
the results of soft exudates, hemorrhages, and microaneurysms
are bad. Especially, microaneurysms can hardly be segmented
because the number of microaneurysm pixels is very few.

In this paper, for mainly improving the segmentation accu-
racy of small diseases such as soft exudates, hemorrhages, and
microaneurysms, we propose to construct one individual deep
CNN for each type of the disease. Moreover, to train the deep
CNNs from a small number of data, we use data augmentation
as preprocessing and adopt the Dice coefficient with the binary
cross entropy as a loss function. The Dice coefficient enables
CNNs to learn fundus image features more robustly than the
binary cross entropy when the data distribution is imbalanced.
In experiments, the deep CNNs are trained from IDRiD dataset
and tested for MESSIDOR dataset. We compare and evaluate
the performance of the proposed method by using the original
U-Nets, modified U-Nets and SegNets as the deep CNNs.

II. PROPOSED FUNDUS IMAGE SEGMENTATION

Simultaneous segmentation of different types of diseases in
fundus images by a single CNN is a difficult task as shown in
[20], [21]. Hence, in this paper, we construct multiple CNNs,
and each CNN segments only a single class, i.e., the optic disc,
hard exudates, soft exudates, hemorrhages, or microaneurysms.
We train each network by using IDRiD dataset [29]. This data-
set is recently released, and includes some fundus images which
are difficult to be segmented due to the lower contrast than other
datasets and lager abnormal parts caused by the progress of DR.
Therefore, it can be expected that if each CNN achieves good
segmentation results for IDRiD dataset, it also achieves good
results for the other segmentable datasets. Since the data aug-
mentation by a CGAN [19] is not applicable to IDRiD dataset,
we increase training data simply by rotation of fundus images.
To alleviate the imbalanced data problem, we combine the Dice
coefficient with the binary cross entropy as a loss function. We
adopt the original U-Net [27], its modified version by us, and
SegNet [31] as candidates of CNNs, and compare each result.

5http://www.adcis.net/en/third-party/messidor/
6https://ieee-dataport.org/open-access/indian-diabe

tic-retinopathy-image-dataset-idrid
7This dataset is not available publicly online.



A. Candidates of Individual Networks

1) U-Net: U-Net [27] was developed as a CNN for biomed-
ical image segmentation. The important change from the stan-
dard fully convolutional networks (FCNs) is how to implement
residual connections between an encoder and a decoder to pre-
serve the information on boundaries while encoding the input
image. The standard FCNs use simple additive operations with
hyperparameters which are weights of the residual connections.
U-Net uses concatenation operations to store channels of the
intermediate images between encoder and decoder layers. The
U-Net name signifies that the shape of the above network can
be seen as ‘U’ due to the concatenation operations. Important
parts and involved basic blocks in U-Net are explained below.

Encoder: The encoder part can be considered to be built
from 6 blocks. Each block has two 3× 3 convolutional layers
with ReLU activation functions. This is followed by one 2×2
max pooling layer with a stride of 2. The pooling layer is not
present in the 6th convolutional block because we do not need
to reduce the image size any further. After every such blocks,
the number of feature channels is doubled.

Decoder: The decoder part is a series of up-sampling op-
erations coupled with convolutions and concatenation opera-
tions. The first layer of the decoder receives a highly cropped
version, of the input image, separated into different feature
channels by the encoder part. The input to each block in the
decoder is first passed to one up-sampling layer which doubles
the size of the image, and then into one 2 × 2 convolutional
layer. After this, the corresponding outputs from the encoder
blocks, which were saved earlier, are concatenated with the re-
sults of this 2×2 convolutional layer to preserve the boundary
information which is otherwise lost in the pooling operations.
Then, two more 3×3 convolutional layers are applied and the
results are passed to the next block. Each convolutional layer
uses the ReLU activation function.

Classification: For pixel-wise classification, the final layer
is one 1× 1 convolutional layer with as many channels as the
number of segmentation classes. The activation function used
here is the sigmoid function since we are only concerned with
the binary classification, i.e., whether some disease is present
or not present for each pixel. The activation function can be re-
placed with the softmax function for multiclass segmentation.

2) Modified U-Net: Although U-Net was designed to learn
features from a relatively small number of data for biomedical
image segmentation, it is difficult to obtain good segmentation
results for every disease by the original U-Net due to the im-
balanceness in fundus images (see Section III). We reduce the
numbers of filters & layers, and modify the encoder as follows,
inspired by Pix2Pix [26]. Figure 2 shows our modified U-Net.

• We replace ReLU with Leaky ReLU of a hyperparameter
α = 0.2, which helps network neurons to go dead (i.e.,
activation = 0) in the early part of training, and hence the
learning speed and the training accuracy are improved.

• Before each pooling operation, we add a layer of batch
normalization to smooth the loss function written in the
next subsection, which improves the learning speed.

Fig. 2. Modified U-Net architecture.

3) SegNet: SegNet [31], in essence, is similar to the above
described U-Net architecture. In fact, both models came out in
the same year8 as further developments of the FCNs. Only one
principal difference is the residual connection between the en-
coder and the corresponding decoder layer. Differently from
U-Net, instead of concatenating outputs from the encoder and
the decoder layers, SegNet sends only the max pooling indices
from the encoder to the decoder. In pooling operations of the
encoder, the indices of the maximum activations are selected
and saved for later uses in the corresponding decoder layers.
Then in the decoder, the same indices are used to place outputs
of the previous convolutional layers while the rest of positions
are set to 0s. This operation is called the unpooling, and acts a
similar role to the up-sampling operation in U-Net. Note that
the up-sampling operation in U-Net doubles the image size by
2× 2 convolutions while the unpooling operation doubles the
image size without any convolution. The other components of
SegNet are explained below.

Encoder: Similar to U-Net, the encoder of SegNet is built
from 5 basic blocks. Each block has two or three 3×3 convo-
lutional layers followed by the batch normalization layers with
ReLU activation functions. Each block is succeeded by one
2×2 max pooling layer with a stride of 2 except the 5th block
because we do not need to reduce the image size any further.
After every such blocks, the number of feature channels is dou-
bled and the image size is reduced by half.

Decoder: The decoder part is built from 5 basic blocks,
which are reversed versions of the blocks in the encoder. At the
beginning of each block, the image size is doubled from the
output of the previous block by the unpooling operation. After
unpooling, each block in the decoder is composed of three or
two 3×3 convolutional layers, and each convolutional layer is
followed by the batch normalization operation with the ReLU
activation function.

Classification: The final layer for pixel-wise classification
is the same one as U-Net and the modified U-Net.

8SegNet was first published in arXiv:1511.00561, 2015.



B. Loss Function

Since the segmentation problem is spanning six classes, i.e.,
the optical disc, hard exudates, soft exudates, hemorrhages, mi-
croaneurysms, and non-disease pixels, Saha et al. [21] used the
softmax function in the final layer of SegNet. Let Z =(zi,j,c)∈
(0, 1)I×J×C be the final output of SegNet, where I and J res-
pectively are the height and the width of the input image, and
C is the number of classes, i.e., C = 6. The softmax function
converts the previous output X = (xi,j,c) ∈RI×J×C into Z by

zi,j,c =
exi,j,c∑C

c′=1 e
xi,j,c′

for all i, j, and c. (1)

From Equation (1), zi,j = (zi,j,1, zi,j,2, . . . , zi,j,C) satisfies∑C
c=1 zi,j,c = 1 for all i and j, and zi,j,c ∈ (0, 1) represents

the probability of the c th class at the (i, j) pixel. True labels
ti,j = (ti,j,1, ti,j,2, . . . , ti,j,C) ∈ {0, 1}C are given as one-hot
vectors of size C, and the multiclass binary cross entropy

BCE =
−1
IJ

∑
i,j,c

ti,j,c log(zi,j,c) (2)

was used as a loss function. If we conduct such multiclass seg-
mentation by a single CNN, with the use of IDRiD dataset [29]
as training data, the results are not satisfactory and are subpar
especially for microaneurysms as shown in [21].

Hence, in this paper, we construct multiple CNNs, and each
CNN segments only a single class, i.e., each CNN determines
whether some disease is present or not present for each pixel.
This strategy is inspired by the loss function used for training
Mask R-CNN [32] on 20 classes of COCO dataset [33]. In the
proposed method, we swap the softmax function for the sig-
moid function. Let Z = (zi,j) ∈ (0, 1)I×J and X = (xi,j) ∈
RI×J be the final output and the previous output, respectively.
The sigmoid function converts X into Z by

zi,j =
1

1 + e−xi,j
=

exi,j

exi,j + 1
for all i and j. (3)

From Equation (3), zi,j ∈ (0, 1) holds, which represents the
probability of some disease at the (i, j) pixel. The binary cross
entropy in (2) is replaced with the following single class one

BCE =
−1
IJ

∑
i,j

[
ti,j log(zi,j) + (1− ti,j) log(1− zi,j)

]
. (4)

Although individual CNNs, using the single class binary cross
entropy in (4) as a loss function, can significantly improve the
performance, there still exist artifacts and spots which should
be corrected. This is due to the imbalanced data problem, i.e.,
the number of non-disease pixels is much greater than that of
disease pixels, especially for microaneurysms, and hence train-
ing would be finished before learning features of the diseases.

To alleviate the above problem, we use the Dice coefficient

DC =
2〈T,Z〉

‖T‖2F + ‖Z‖2F
=

2
∑

i,j ti,jzi,j∑
i,j t

2
i,j +

∑
i,j z

2
i,j

(5)

in conjunction with the binary cross entropy as a loss function,
where 〈 · , · 〉 is the inner product, and ‖ · ‖F is the Frobenius
norm. Since the Dice coefficient can penalize each pixel which

has been incorrectly labeled, each CNN learns features more
robustly than the binary cross entropy when the data distribu-
tion is imbalanced. Note that the Dice coefficient equals 0 if
Z = T , and is positive otherwise. Therefore we have to make
(1−DC) as small as possible. By using Equations (4) and (5),
finally the proposed loss function to be minimized is given by

Loss = BCE + (1−DC). (6)

III. NUMERICAL EXPERIMENTS

A. Experimental Settings
We used all 81 fundus images in IDRiD dataset [29] and a

few fundus images in MESSIDOR dataset [28] to evaluate the
performance of the proposed method. Each individual CNN for
segmentation of the optical disc, hard exudates, soft exudates,
hemorrhages, or microaneurysms, was trained from 54 images
in IDRiD dataset, and tested for the rest 27 images in IDRiD
dataset and the images in MESSIDOR dataset. The image size
in IDRiD dataset is 4288× 2848, and it is too large to fit the
images into the limited GPU memory as one minibatch. We
resized the original images between 1920×1280 and 400×400
and checked each training result. From these results, 960×640
was selected as the best image size with regard to the balance
between the quality of the resized images, training speed, and
segmentation accuracy. To obtain better results from 54 images,
we used data augmentation techniques to create more images.
The augmentation was executed in Keras by using the options
rotation range = 30, zoom range = 0.05, width shift range =
0.2, height shift range = 0.2, horizontal flip = True, vertical
flip = False, fill mode = ‘constant’, and cval = 0.

The choice of an optimizer is crucial because if the choice is
poor, then overfitting, slow training speed, or low performance
happens. We used ADAM [34] as the optimizer with a learning
rate of 0.0001 and a minibatch size of 4. Since Leaky ReLU
(α = 0.2) is used in the modified U-Net, careful consideration
has to be taken for the initialization of network parameters. We
used He’s initialization [32] already implemented in Keras.

B. Results and Discussion
We compared the performance of the proposed method by

using the original U-Nets, the modified U-Nets and SegNets
as the individual CNNs. The results were evaluated using the
Dice coefficient in (5) and the loss function in (6) for training
and test data. Tables I, II, and III show the values of the Dice
coefficient and the loss function of each class by the original
U-Net, our modified U-Net, and SegNet, respectively. From
Table I, we can observe that the original U-Net achieved good
results for the optic disc and hard exudates as shown in Fig. 3.
On the other hand, for hemorrhages, the Dice coefficient of test
data is lower than 0.5, and soft exudates and microaneurysms
are not detected at all. Moreover, the original U-Net required
4 hours for training while the modified one required 1 hour.

Figures 4, 5, 6, 7, and 8 show the segmentation results, by
the modified U-Net and SegNet, of the optic disc, hard exu-
dates, soft exudates, hemorrhages, and microaneurysms, res-
pectively. From these figures and Tables III, we can observe
that SegNet achieved better results than the original U-Net, and



(a) Original fundus image (b) Segmentation result by the original U-Net

Fig. 3. Segmentation result of hard exudates by the original U-Net.

TABLE I
VALUES OF THE DICE COEFFICIENT AND THE LOSS FUNCTION OF EACH

CLASS FOR TRAINING AND TEST DATA BY THE ORIGINAL U-NET

Type of DR DC for Loss for DC for Loss for
Disease Training Training Test Test

Data Data Data Data
Optic Disc 0.9337 0.0765 0.9204 0.0911
Hard Exudates 0.7556 0.2662 0.6837 0.3640
Soft Exudates 0 1.0579 0 1.1480
Hemorrhages 0.7244 0.3007 0.4968 0.5657
Microaneurysms 0 1.0252 0 1.0234

TABLE II
VALUES OF THE DICE COEFFICIENT AND THE LOSS FUNCTION OF EACH

CLASS FOR TRAINING AND TEST DATA BY THE MODIFIED U-NET

Type of DR DC for Loss for DC for Loss for
Disease Training Training Test Test

Data Data Data Data
Optic Disc 0.9904 0.0109 0.9565 0.0549
Hard Exudates 0.8522 0.1582 0.7082 0.3336
Soft Exudates 0.9401 0.0615 0.7125 0.3267
Hemorrhages 0.8653 0.1461 0.7793 0.2240
Microaneurysms 0.7950 0.2093 0.6920 0.4430

TABLE III
VALUES OF THE DICE COEFFICIENT AND THE LOSS FUNCTION OF EACH

CLASS FOR TRAINING AND TEST DATA BY SEGNET

Type of DR DC for Loss for DC for Loss for
Disease Training Training Test Test

Data Data Data Data
Optic Disc 0.9880 0.0207 0.9632 0.0439
Hard Exudates 0.5560 0.4321 0.5250 0.4320
Soft Exudates 0.8852 0.1191 0.6198 0.4829
Hemorrhages 0.6988 0.3336 0.5281 0.5260
Microaneurysms 0.7520 0.2333 0.6523 0.3561

the Dice coefficient of test data is larger than 0.5 for all the
classes. Furthermore, from the figures and Tables II, we can
observe that the modified U-Net achieved the best results, and
the Dice coefficient is larger than about 0.7 for all the classes.
Especially, the modified U-Net could detect microaneurysms,
which is very small but important to specify early stage DR.

IV. CONCLUSION

Early stage DR detection is important to prevent the blind-
ness, but regular screening tests are becoming heavy burdens
for ophthalmologists with increasing number of diabetic pa-
tients. To reduce the burdens, in this paper, we addressed the
fundus image segmentation problem by deep learning for DR
diagnosis. In this problem, the most challenging task is to con-
struct a deep CNN from a limited number of imbalanced data.
Since it is difficult to simultaneously segment different types
of diseases by a only one CNN, we proposed to construct one
individual CNN for each type of disease. Moreover, to allevi-
ate the imbalanced data problem, we proposed to use data aug-
mentation and adopt the Dice coefficient in conjunction with
the binary cross entropy as a loss function. Numerical experi-
ments showed that the modified U-Net achieved the good re-
sults even for soft exudates, hemorrhages, and microaneurysm.
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“DIARETDB1 diabetic retinopathy database and evaluation protocol,”
in Proceedings of Medical Image Understanding and Analysis (MIUA),
2007, pp. 61–65.

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proceedings of Annual Conference on Neural Information Processing
Systems (NIPS), 2014, pp. 2672–2680.

[26] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image trans-
lation with conditional adversarial networks,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 1125–1134.

[27] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proceedings of Interna-
tional Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), 2015, pp. 234–241.

[28] E. Decencière, X. Zhang, G. Cazuguel, B. Laÿ, B. Cochener, C. Trone,
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