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PAPER
Modal Interval Regression Based on Spline Quantile Regression

Sai YAO†a), Nonmember, Daichi KITAHARA†∗b), Hiroki KURODA†∗∗c), and Akira HIRABAYASHI†, Members

SUMMARY The mean, median, and mode are usually calculated from
univariate observations as the most basic representative values of a random
variable. To measure the spread of the distribution, the standard deviation,
interquartile range, and modal interval are also calculated. When we ana-
lyze continuous relations between a pair of random variables from bivariate
observations, regression analysis is often used. By minimizing appropriate
costs evaluating regression errors, we estimate the conditional mean, me-
dian, and mode. The conditional standard deviation can be estimated if the
bivariate observations are obtained from a Gaussian process. Moreover, the
conditional interquartile range can be calculated for various distributions by
the quantile regression that estimates any conditional quantile (percentile).
Meanwhile, the study of the modal interval regression is relatively new, and
spline regression models, known as flexible models having the optimality on
the smoothness for bivariate data, are not yet used. In this paper, we propose
a modal interval regression method based on spline quantile regression. The
proposed method consists of two steps. In the first step, we divide the bivari-
ate observations into bins for one random variable, then detect the modal in-
terval for the other random variable as the lower and upper quantiles in each
bin. In the second step, we estimate the conditional modal interval by con-
structing both lower and upper quantile curves as spline functions. By using
the spline quantile regression, the proposed method is widely applicable to
various distributions and formulated as a convex optimization problem on
the coefficient vectors of the lower and upper spline functions. Extensive ex-
periments, including settings of the bin width, the smoothing parameter and
weights in the cost function, show the effectiveness of the proposed modal
interval regression in terms of accuracy and visual shape for synthetic data
generated from various distributions. Experiments for real-world meteoro-
logical data also demonstrate a good performance of the proposed method.
key words: regression analysis, modal interval, spline function, quantile
regression, convex optimization

1. Introduction

In the big data era, data analysis [1] is becoming more and
more important. When we obtain a large number of univari-
ate observations, we compute the mean, median, and mode
as the most basic representative values of the observations.
We also compute the standard deviation, interquartile range,
and modal interval to analyze the spread of the observations.
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For non-Gaussian asymmetric data, the mean with the stan-
dard deviation is not appropriate as a representative value,
and the median with the interquartile range is used instead.
The mode and the modal interval are used to directly repre-
sent the region where observations appear most frequently.

When we obtain multivariate observations, it is impor-
tant to analyze the relation between multiple components in
addition to the univariate analysis for each component. This
paper focuses on the simplest case where we analyze the re-
lation between a pair of random variables from bivariate ob-
servations. In this case, regression analysis [1]–[7] is widely
used because it can give a continuous relation by construct-
ing a univariate continuous function that maps one random
variable to the other one. This continuous function is often
constructed as a low-order univariate polynomial having the
least square errors, which represents the conditional mean.

In robust statistics [8]–[12], we construct a polynomial
having the least absolute errors, which represents the condi-
tional median and suppresses the influence of outliers. The
quantile regression [13]–[16] is regarded as a generalization
of the median regression and constructs a polynomial mini-
mizing certain asymmetric absolute errors, which represents
the conditional quantile (percentile). The modal regression
[17]–[22] can estimate the conditional mode, i.e., the curve
where bivariate observations appear most frequently. How-
ever, the modal regression is relatively difficult to use since
it has to minimize certain kernel-based nonconvex errors.

Though polynomial regression models are easy to han-
dle, such simple models cannot flexibly express the true con-
ditional mean, median, quantile, and mode of various shapes.
To make the most of each regression analysis, spline regres-
sion models are used [7], [9], [15], [22]. Spline functions are
smooth piecewise polynomials and widely used to estimate
smooth functions because of their flexibility and optimality
for bivariate data [23]–[28]. The spline functions are locally
low-order polynomials, and hence they are fairly tractable.

Compared with regression of a certain single curve, re-
gression of a certain interval is more informative since it can
also express the change of the spread of observations. If bi-
variate observations are given from a Gaussian process, the
conditional mean and the conditional standard deviation can
be estimated by the Gaussian process regression [29]–[32].
For non-Gaussian asymmetric observations, the conditional
interquartile range is more important, and it can be estimated
by the quantile regression for the first and third quartiles. The
conditional modal interval (see Definition 2) is very useful to
visualize the trend of bivariate observations since it shows the
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region where the observations appear most frequently for a
user-specified coverage probability. However, the number of
existing works on the modal interval regression is relatively
small [33]–[41] compared to the other regressions [1]–[22],
[29]–[32], and spline regression models are not yet used.

To flexibly express the smooth modal intervals of vari-
ous shapes, this paper proposes a modal interval regression
method using spline regression models similar to [42]. The
proposed modal interval regression consists of two steps. In
the first step, we divide bivariate observations into some bins
for one random variable, then we detect the local empirical
modal interval for the other random variable as the lower and
upper quantiles in each bin. In the second step, we estimate
the lower and upper curves of the conditional modal interval
by the simultaneous spline quantile regression that guaran-
tees the non-crossing property for the two curves. Thanks to
the simultaneous quantile regression, we can obtain more re-
liable results compared to a straightforward least squares ap-
proach using the local empirical modal intervals. In addition,
the second step is formulated as a convex optimization prob-
lem on the coefficient vectors of the lower and upper spline
functions and can be solved by several algorithms [43]–[49].

Numerical experiments, including settings of the bins,
the smoothing parameter and weights in the cost function,
show the effectiveness of the proposed method, compared to
the straightforward least squares method and kernel density
estimation methods, in terms of accuracy and visual shape for
various synthetic data. Experiments for real-world meteoro-
logical data also show that the proposed method well visual-
izes the region where observations appear most frequently.

2. Basics of Regression Analysis

Let R and N be the sets of all real numbers and nonnegative
integers, respectively. For any nonnegative integer or infinity
𝜌 ∈ N∪ {∞} and any open interval† (𝑎, 𝑏) ⊆ R (s.t. 𝑎 < 𝑏),
𝐶𝜌 (𝑎, 𝑏) denotes the set of all 𝜌-times continuously differ-
entiable functions on (𝑎, 𝑏), and cl(𝑎, 𝑏) denotes the closure
of (𝑎, 𝑏). For any 𝑑 ∈ N, P𝑑 (⊊ 𝐶∞ (−∞,∞)) stands for the
set of all univariate real polynomials of degree 𝑑 at most,
i.e., P𝑑 := {𝑢 : R ∋ 𝑥 ↦→ ∑𝑑

𝑘=0 𝑐𝑘𝑥
𝑘 ∈ R | 𝑐𝑘 ∈ R}. We write

vectors and matrices by boldface small and capital letters,
respectively, and random variables by normal capital letters.

2.1 Least Squares: Mean Regression

Suppose that we have finite observations (𝑥𝑛, 𝑦𝑛) ∈ R2 (𝑛 =

1, 2, . . . , 𝑁) of a pair of real-valued random variables (𝑋,𝑌 )
whose joint probability density function 𝑓𝑋,𝑌 (𝑥, 𝑦) is contin-
uous and satisfies

∬
Ω
𝑓𝑋,𝑌 (𝑥, 𝑦) d𝑥d𝑦 = 1 and 𝑓𝑋,𝑌 (𝑥, 𝑦) > 0

for all (𝑥, 𝑦) in a simply connected domainΩ ⊆ R2. We use a
rectangular domainΩ := (𝑥inf , 𝑥sup)×(𝑦inf , 𝑦sup) in this paper
for simplicity. The conditional probability density function
of 𝑌 given 𝑋 is defined by 𝑓𝑌 |𝑋 (𝑦 |𝑥) := 𝑓𝑋,𝑌 (𝑥, 𝑦)/ 𝑓𝑋 (𝑥) :=
𝑓𝑋,𝑌 (𝑥, 𝑦)/

∫ 𝑦sup
𝑦inf

𝑓𝑋,𝑌 (𝑥, 𝑦) d𝑦 > 0 for all (𝑥, 𝑦) ∈ Ω.

†Note that values of 𝑎 and 𝑏 can be −∞ and∞, respectively.

When we analyze continuous relations between the two
random variables 𝑋 and 𝑌 from the bivariate observations
{(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1, regression analysis [1]–[22] has been widely
used. In particular, the least squares regression

minimize
𝜽

𝑁∑︁
𝑛=1
|𝑦𝑛 − 𝑟𝜽 (𝑥𝑛) |2 (1)

is often used due to its low computational cost [1]–[7], where
the function 𝑟𝜽 (𝑥) is some regression model such as a low-
order polynomial and the vector 𝜽 denotes adjustable param-
eters to be optimized. For example, 𝜽 is the coefficient vector
if 𝑟𝜽 (𝑥) is a polynomial. We find the minimizer 𝜽∗ of (1), and
the function 𝑟𝜽∗ (𝑥) expresses one average relation between 𝑋

and 𝑌 . This is because, when 𝑁 approaches infinity, 𝑟𝜽∗ (𝑥)
converges†† to the conditional mean `𝑌 (𝑥) of𝑌 given 𝑋 = 𝑥:

𝑟𝜽∗ (𝑥)
𝑁→∞−−−−−→ `𝑌 (𝑥) := 𝐸 [𝑌 |𝑋 = 𝑥] =

∫ 𝑦sup

𝑦inf

𝑦 𝑓𝑌 |𝑋 (𝑦 |𝑥) d𝑦

under the assumption that 𝑟𝜽 (𝑥) can exactly express `𝑌 (𝑥) if
we choose the appropriate vector 𝜽 , i.e., 𝑟𝜽 (𝑥) = `𝑌 (𝑥) holds
for some 𝜽 (see, e.g., [1] for proof). Hence, the least squares
regression can be regarded as the mean regression.

2.2 Least Absolute Deviations: Median Regression

It is known that the square errors used in (1) are sensitive to
outliers, and hence the reliability of the least squares regres-
sion greatly decreases for observations from an asymmetric
long-tailed distribution. For data of such a non-Gaussian dis-
tribution, the least absolute deviations regression [8]–[12]

minimize
𝜽

𝑁∑︁
𝑛=1
|𝑦𝑛 − 𝑟𝜽 (𝑥𝑛) | (2)

is used instead. The absolute errors do not over-evaluate out-
liers differently from the square errors, and the minimizer 𝜽∗
of (2) is robust for long-tailed data even if 𝑁 is small. More-
over, when 𝑁 approaches infinity, the solution 𝑟𝜽∗ (𝑥) to (2)
converges to the conditional median 𝜚𝑌 (𝑥) of𝑌 given 𝑋 = 𝑥:

𝑟𝜽∗ (𝑥)
𝑁→∞−−−−−→ 𝜚𝑌 (𝑥) satisfying

∫ 𝜚𝑌 (𝑥 )

𝑦inf

𝑓𝑌 |𝑋 (𝑦 |𝑥) d𝑦 = 0.5

under the assumption that 𝑟𝜽 (𝑥) can exactly express 𝜚𝑌 (𝑥) if
we choose the appropriate 𝜽 (see [8]). The least absolute de-
viations regression can be regarded as the median regression.

2.3 Quantile Regression

By generalizing the fact that the least absolute deviations re-
gression is the same as the median regression, we can esti-
mate any quantile (percentile) as follows. Define the condi-
tional cumulative distribution function of 𝑌 given 𝑋 = 𝑥 by
††For readability, we have simply stated that 𝑟𝜽∗ (𝑥) converges to

`𝑌 (𝑥). In fact, the minimizer 𝜽∗ is also a random variable, and con-
vergence of a random variable sequence requires careful discussion.
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𝐹𝑌 |𝑥 (𝑦) :=
∫ 𝑦

𝑦inf

𝑓𝑌 |𝑋 (𝑡 |𝑥) d𝑡 for 𝑦 ∈ (𝑦inf , 𝑦sup).

Since 𝐹𝑌 |𝑥 (𝑦) is a strictly increasing function because of the
positivity of 𝑓𝑌 |𝑋 (𝑦 |𝑥), its inverse function 𝐹−1

𝑌 |𝑥 (𝑝) is well-
defined for 𝑝 ∈ (0, 1). This inverse function 𝐹−1

𝑌 |𝑥 (𝑝) equals
the conditional quantile function of 𝑌 given 𝑋 = 𝑥 [3], [50]:

𝑄𝑌 |𝑥 (𝑝) := 𝐹−1
𝑌 |𝑥 (𝑝) for 𝑝 ∈ (0, 1).

The value of 𝑞𝑝,𝑌 (𝑥) := 𝑄𝑌 |𝑥 (𝑝) for 𝑥 ∈ (𝑥inf , 𝑥sup) is called
the 𝑝th conditional quantile of 𝑌 given 𝑋 = 𝑥. Note that the
𝑝th quantile 𝑞𝑝,𝑌 (𝑥) is also called the 100𝑝th percentile (or
centile), e.g., in [51]–[53]. If 𝑝 = 0.5, the conditional quan-
tile 𝑞𝑝,𝑌 (𝑥) is equivalent to the conditional median 𝜚𝑌 (𝑥).

To generalize the median regression to the quantile re-
gression, we extend the (symmetric) absolute value function
to an asymmetric absolute value function defined by

J𝑝 (𝑡) :=
{
𝑝𝑡 if 𝑡 ≥ 0,
−(1 − 𝑝)𝑡 if 𝑡 < 0,

with 𝑝 ∈ (0, 1). The function J𝑝 (𝑡) is symmetric only when
𝑝 = 0.5, and J0.5 (𝑡) = 1

2 |𝑡 | holds. The quantile regression is
formulated as the following optimization problem [13]–[16]

minimize
𝜽

𝑁∑︁
𝑛=1
J𝑝 (𝑦𝑛 − 𝑟𝜽 (𝑥𝑛)). (3)

By finding the minimizer 𝜽∗ of (3) for some fixed 𝑝 ∈ (0, 1),
we obtain an estimate of 𝑞𝑝,𝑌 (𝑥) as 𝑟𝜽∗ (𝑥). Indeed, when 𝑁

approaches infinity, the solution 𝑟𝜽∗ (𝑥) to (3) converges to
the 𝑝th conditional quantile 𝑞𝑝,𝑌 (𝑥) of 𝑌 given 𝑋 = 𝑥:

𝑟𝜽∗ (𝑥)
𝑁→∞−−−−−→ 𝑞𝑝,𝑌 (𝑥) satisfying 𝐹𝑌 |𝑥

(
𝑞𝑝,𝑌 (𝑥)

)
= 𝑝

under the assumption that 𝑟𝜽 (𝑥) can exactly express 𝑞𝑝,𝑌 (𝑥)
if we choose the appropriate 𝜽 (see [15]). This is because the
optimal solution 𝑟𝜽∗ (𝑥) to (3) yields lower-side errors 𝜖−𝑛 =

𝑦𝑛 − 𝑟𝜽 (𝑥𝑛) < 0 and upper-side errors 𝜖+𝑛 = 𝑦𝑛 − 𝑟𝜽 (𝑥𝑛) > 0
at a ratio of 𝑝 : 1 − 𝑝. Therefore, we can easily estimate any
quantile curve 𝑞𝑝,𝑌 (𝑥) by just changing the value of 𝑝 in (3).

2.4 Modal Regression

Both mean regression in Sect. 2.1 and median regression in
Sect. 2.2 implicitly suppose that the bivariate observations
{(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 frequently appear around the conditional mean
and median, respectively. If this implicit assumption holds,
the solution 𝑟𝜽∗ (𝑥) to (1) or (2) can adequately represent the
trend of the bivariate observations. However, otherwise, both
regression results are not so appropriate to describe contin-
uous relations between a pair of random variables (𝑋,𝑌 ).

To directly estimate the curve where the bivariate obser-
vations appear most frequently, the modal regression [17]–
[22] is used. The goal of the modal regression is to estimate

𝑚𝑌 (𝑥) := argmax
𝑦∈cl(𝑦inf ,𝑦sup )

𝑓𝑌 |𝑋 (𝑦 |𝑥), (4)

and 𝑚𝑌 (𝑥) is called the conditional mode of 𝑌 given 𝑋 = 𝑥.
Some papers [54]–[57] define the mode by a local maximum,
and thus a function is called unimodal if it has only one local
maximum and multimodal if it has multiple local maxima.
Meanwhile, as in [17]–[22], this paper defines the mode by
the global maximum of 𝑓𝑌 |𝑋 (𝑦 |𝑥), while supposing that the
maximizer exists uniquely in (4) for any 𝑥 ∈ (𝑥inf , 𝑥sup).

The modal regression can be formulated as

minimize
𝜽

1
𝜎

𝑁∑︁
𝑛=1

(
K(0) − K

(
𝑦𝑛 − 𝑟𝜽 (𝑥𝑛)

𝜎

))
, (5)

whereK : R→ [0, 1] is a nonnegative symmetric unimodal
kernel s.t.

∫ ∞
−∞K(𝑡) d𝑡 = 1 and K(𝑡) = K(−𝑡) ≤ K(0) for

all 𝑡 ∈ R, and 𝜎 > 0 is the bandwidth parameter. As such a
kernel function, we often use the Gaussian kernel

K(𝑡) = 1
√

2𝜋
𝑒
− 𝑡

2

2 . (6)

Since the cost function in (5) evaluates regression errors for
outliers as small values, the minimizer 𝜽∗ of (5) is more ro-
bust for long-tailed data than that of (3). When 𝑁 approaches
infinity and 𝜎 > 0 approaches zero, the solution 𝑟𝜽∗ (𝑥) to (5)
converges to the conditional mode 𝑚𝑌 (𝑥) of 𝑌 given 𝑋 = 𝑥:

𝑟𝜽∗ (𝑥)
𝑁→∞, 𝜎→+0−−−−−−−−−−−→ 𝑚𝑌 (𝑥) = argmax

𝑦∈cl(𝑦inf ,𝑦sup )
𝑓𝑌 |𝑋 (𝑦 |𝑥)

under the assumption that 𝑟𝜽 (𝑥) can exactly express 𝑚𝑌 (𝑥) if
we choose the appropriate 𝜽 (see [19]). This is because the
function 1

𝜎𝑁

∑𝑁
𝑛=1K(

𝑦𝑛−𝑟𝜽 (𝑥𝑛 )
𝜎

) converges to the modal re-
gression risk

∫ 𝑥sup
𝑥inf

𝑓𝑌 |𝑋 (𝑟𝜽 (𝑥) |𝑥) 𝑓𝑋 (𝑥) d𝑥 whose maximizer
is also the conditional mode 𝑚𝑌 (𝑥) of 𝑌 given 𝑋 = 𝑥.

Although the minimizer 𝜽∗ itself is robust for outliers,
actually it is difficult to find the minimizer 𝜽∗ due to the non-
convexity of the cost function in (5). In particular, when 𝜎 is
close to zero, the gradient vanishes for most of observations,
and hence we tend to get stuck in a poor local minimum [58].
As a result, since careful setting of 𝜎 and an appropriate ini-
tial value of 𝜽 are needed, the modal regression is more diffi-
cult to use than the mean, median, and quantile regressions.

2.5 Spline Regression Model

In regression analysis, the most commonly used regression
model is a polynomial 𝑟𝜽 (𝑥) =

∑𝑑
𝑘=0 𝑐𝑘𝑥

𝑘 , and its degree is
usually set to 𝑑 = 1 or 𝑑 = 2 [1], [8], [13], [17], where each
coefficient 𝑐𝑘 ∈ R of the polynomial is an adjustable parame-
ter, i.e., 𝜽 = (𝑐0, 𝑐1, . . . , 𝑐𝑑)T ∈ R𝑑+1. However, such a sim-
ple regression model often cannot express the true functions
`𝑌 (𝑥), 𝜚𝑌 (𝑥), 𝑞𝑝,𝑌 (𝑥), and 𝑚𝑌 (𝑥) with sufficient accuracy.

To express curves of various shapes flexibly, spline func-
tions are widely exploited as generalizations of polynomials
[7], [9], [15], [22]. The spline function is a piecewise polyno-
mial and possesses certain-times continuous differentiabil-
ity, including at locations called knots where the polynomial
pieces connect. In this paper, the knots are denoted by b 𝑗 s.t.
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−∞ =: b−1 < b0 < b1 < · · · < b𝑏 < b𝑏+1 := ∞, and sub-
intervals divided by the knots are defined as 𝐼0 := (−∞, b0],
𝐼 𝑗 := [b 𝑗−1, b 𝑗 ] ( 𝑗 = 1, 2, . . . , 𝑏), and 𝐼𝑏+1 := [b𝑏,∞). For a
partition ⊔ := {𝐼 𝑗 }𝑏+1𝑗=0 and 𝜌, 𝑑 ∈ N s.t. 0 ≤ 𝜌 ≤ 𝑑, define

S𝜌

𝑑
(⊔) := {𝑠 ∈ 𝐶𝜌 (−∞,∞) | 𝑠 = 𝑢 𝑗 ∈ P𝑑 on 𝐼 𝑗 ∈ ⊔}

as the set of all univariate spline functions of degree 𝑑 at most
and smoothness 𝜌 on⊔. The optimality of the spline function
for estimation of a smooth curve is shown below [23]–[28].

Fact 1 (Spline smoothing): Suppose that bivariate observa-
tions {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 satisfy 𝑥1 < 𝑥2 < · · · < 𝑥𝑁 . There is the
optimal solution 𝑔∗ ∈ 𝐶2 (−∞,∞) to the following problem

minimize
𝑔∈𝐶2 (−∞,∞)

𝑁∑︁
𝑛=1

𝑤𝑛D(𝑦𝑛 − 𝑔(𝑥𝑛)) + _
∫
R
|𝑔′′ (𝑥) |2 d𝑥, (7)

and it is a so-called natural cubic spline function 𝑔∗ ∈ S2
3 (⊔)

s.t. b 𝑗 := 𝑥 𝑗+1 ( 𝑗 = 0, 1, . . . , 𝑁−1 =: 𝑏) [23], where 𝑔′′ (𝑥) is
the second derivative of 𝑔(𝑥), D : R → R is a data fidelity
term such as the square error with a wight 𝑤𝑛 > 0, and the
smoothing parameter _ > 0 controls the trade-off between
the data fidelity and the smoothness of the solution. Note that
this solution is well-known when D is the square error, but
for any D including nonconvex and asymmetric errors, the
optimal solution is always a natural cubic spline function as
long as the roughness penalty of the second term is added.

In general, the extrapolation results on 𝐼0 and 𝐼𝑏+1 are
seldom used. In what follows, for ⊔𝑏 := {𝐼 𝑗 }𝑏𝑗=1, we define

S𝜌

𝑑
(⊔𝑏) := {𝑠 ∈ 𝐶𝜌 (b0, b𝑏) | 𝑠 = 𝑢 𝑗 ∈ P𝑑 on 𝐼 𝑗 ∈ ⊔𝑏}

as the set of all univariate spline functions of degree 𝑑 at most
and smoothness 𝜌 on ⊔𝑏, where the domain of interest is re-
stricted fromR = (−∞,∞) to 𝐼 := (b0, b𝑏) (⊇ (𝑥min, 𝑥max) :=
(min {𝑥𝑛},max {𝑥𝑛})). Although a spline regression model
𝑟𝜽 = 𝑠 ∈ S𝜌

𝑑
(⊔𝑏) is really flexible by setting ℎ 𝑗 := b 𝑗 − b 𝑗−1

( 𝑗 = 1, 2, . . . , 𝑏) to small values, overfitting will arise when
the number 𝑁 of observations is not enough. Therefore, by
assuming that the energy of the curvature of the target `𝑌 (𝑥),
𝜚𝑌 (𝑥), 𝑞𝑝,𝑌 (𝑥), or 𝑚𝑌 (𝑥) is small and adding the roughness
penalty in (7) as regularization for 𝑟𝜽 (𝑥) = 𝑠(𝑥), we solve

minimize
𝑠∈S𝜌

𝑑
(⊔𝑏 )

𝑁∑︁
𝑛=1

𝑤𝑛D(𝑦𝑛 − 𝑠(𝑥𝑛)) + _
∫
𝐼

|𝑠′′ (𝑥) |2 d𝑥, (8)

where 2 ≤ 𝜌 ≤ 𝑑,† 𝑤𝑛 > 0, and D : R→ [0,∞) is the data
fidelity term in (1), (2), (3), or (5). In [15], each weight 𝑤𝑛 at
𝑥𝑛 is set to a value similar to 𝑓𝑋 (𝑥𝑛). Note that when 𝜌 = 𝑑,
𝑤𝑛 is a constant for all 𝑛, and _ > 0 approaches zero in (8),
the optimal solution 𝑠∗ (𝑥) to (8) becomes the optimal poly-
nomial of degree 𝑑 in (1), (2), (3), or (5), depending onD. In
addition, for two sets of spline functions of different degrees
and the same 𝜌 on⊔𝑏, 𝑑1 < 𝑑2 ⇒ S𝜌

𝑑1
(⊔𝑏) ⊊ S𝜌

𝑑2
(⊔𝑏) holds

†In most papers, the degree of a spline function is set to 𝑑 ≤ 5.

and the optimal solution to (8) does not get worse when the
degree 𝑑 increases. Actually, if each ℎ 𝑗 is sufficiently small,
𝑑 = 𝜌 +1 is enough in many cases and setting 𝑑 ≥ 𝜌 +2 only
gives almost the same result with a longer computation time.

3. Spline Modal Interval Regression

3.1 Modal Interval

In addition to the mean, median, and modal regressions, it is
important to analyze the spread of a distribution. If bivariate
observations {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 are given from a certain Gaussian
process,†† the conditional variance of 𝑌 given 𝑋 = 𝑥

𝑣𝑌 (𝑥) := 𝑉 [𝑌 |𝑋 = 𝑥] =
∫ 𝑦sup

𝑦inf

|𝑦 − `𝑌 (𝑥) |2 𝑓𝑌 |𝑋 (𝑦 |𝑥) d𝑦

can be estimated [29]–[32]. For non-Gaussian distributions,
especially asymmetric 𝑓𝑌 |𝑋 (𝑦 |𝑥), information of the condi-
tional variance or the conditional standard deviation

√︁
𝑣𝑌 (𝑥)

is not so beneficial. Instead of the conditional standard de-
viation, the conditional interquartile range of 𝑌 given 𝑋 = 𝑥

IQR𝑌 (𝑥) :=
[
𝑞0.25,𝑌 (𝑥), 𝑞0.75,𝑌 (𝑥)

]
is often used to describe the spread of the distribution. For
various distributions, IQR𝑌 (𝑥) can be estimated by perform-
ing the quantile regression in (3) for 𝑝 = 0.25 and 𝑝 = 0.75.

As with the discussion about the modal regression in
Sect. 2.4, the conditional modal interval of 𝑌 given 𝑋 = 𝑥 is
more informative than IQR𝑌 (𝑥) since it directly shows the
region where bivariate observations appear most frequently.
The modal interval is mainly defined in two ways as follows.

Definition 1 (Width-based modal interval): For every 𝜏 ∈
(0, 𝑦sup−𝑦inf

2 ), the width-based modal interval is defined by

MI[𝜏 ]
𝑌
(𝑥) :=

[
𝑚
[𝜏 ]
𝑌
(𝑥) − 𝜏, 𝑚 [𝜏 ]

𝑌
(𝑥) + 𝜏

]
:= argmax
[𝑦mid−𝜏,𝑦mid+𝜏 ]⊆cl(𝑦inf ,𝑦sup )

∫ 𝑦mid+𝜏

𝑦mid−𝜏
𝑓𝑌 |𝑋 (𝑦 |𝑥) d𝑦. (9)

Definition 2 (Probability-based modal interval): For every
𝛼 ∈ (0, 1), the probability-based modal interval is defined by

MI𝛼,𝑌 (𝑥) :=
[
𝑚low

𝛼,𝑌 (𝑥), 𝑚
up
𝛼,𝑌
(𝑥)

]
:= argmin
[𝑦low ,𝑦up ]⊆cl(𝑦inf ,𝑦sup )

𝑦up − 𝑦low s.t.
∫ 𝑦up

𝑦low

𝑓𝑌 |𝑋 (𝑦 |𝑥) d𝑦 = 𝛼.

(10)

We suppose that the maximizer in (9) and the minimizer in
(10) exist uniquely for any 𝑥 ∈ (𝑥inf , 𝑥sup). Note that there are
several names for the modal interval in Definition 2 such as
the shorth, the shortest prediction interval, the minimum vol-
ume region, and the highest density interval [33]–[41]. When
𝜏 approaches zero in Definition 1, the middle point 𝑚 [𝜏 ]

𝑌
(𝑥)

of MI[𝜏 ]
𝑌
(𝑥) converges to the conditional mode 𝑚𝑌 (𝑥) of 𝑌

††In this situation, 𝑥inf = 𝑦inf = −∞ and 𝑥sup = 𝑦sup = ∞ hold.
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given 𝑋 = 𝑥 in (4). Similarly when𝛼 approaches zero in Def-
inition 2, both lower point 𝑚low

𝛼,𝑌
(𝑥) and upper point 𝑚up

𝛼,𝑌
(𝑥)

of MI𝛼,𝑌 (𝑥) converge to the conditional mode 𝑚𝑌 (𝑥).
A regression problem of the modal interval MI[𝜏 ]

𝑌
(𝑥) in

Definition 1 is reduced to that of its middle point 𝑚 [𝜏 ]
𝑌
(𝑥).

Moreover, if we set the bandwidth parameter 𝜎 according to
the given interval width 2𝜏,𝑚 [𝜏 ]

𝑌
(𝑥) can be estimated by solv-

ing the same optimization problem as in (5). As a result, this
regression problem is usually discussed in a similar frame-
work to the modal regression in Sect. 2.4 [59]–[61]. How-
ever, the modal interval MI[𝜏 ]

𝑌
(𝑥) in Definition 1 cannot ex-

press the change of the spread of the conditional probability
density function 𝑓𝑌 |𝑋 (𝑦 |𝑥) as the value of 𝑥 changes, since
the interval width in (9) is fixed to 2𝜏 for all 𝑥 ∈ (𝑥inf , 𝑥sup).

The modal interval MI𝛼,𝑌 (𝑥) in Definition 2 is more in-
formative than MI[𝜏 ]

𝑌
(𝑥) in Definition 1 since the change of

the spread of 𝑓𝑌 |𝑋 (𝑦 |𝑥) is expressed as the change of the in-
terval width𝑚up

𝛼,𝑌
(𝑥)−𝑚low

𝛼,𝑌
(𝑥). Meanwhile, we have to esti-

mate both lower point𝑚low
𝛼,𝑌
(𝑥) and upper point𝑚up

𝛼,𝑌
(𝑥), and

thus a regression problem of the modal interval MI𝛼,𝑌 (𝑥) in
Definition 2 is more difficult than that of MI[𝜏 ]

𝑌
(𝑥) in Defi-

nition 1, i.e., the optimization problem with a fixed 𝜎 in (5)
cannot be directly applied to the regression of MI𝛼,𝑌 (𝑥).

To the best of the authors’ knowledge, the number of ex-
isting papers on regression of MI𝛼,𝑌 (𝑥) is relatively small,
and the existing papers are mainly either simple line charts
[33]–[35], kernel density estimation methods [36], [37], local
linear regression methods [38], [39], or random forest meth-
ods [40], [41]. These existing methods are still insufficient to
flexibly express the true smooth curves𝑚low

𝛼,𝑌
(𝑥) and𝑚up

𝛼,𝑌
(𝑥)

especially when 𝑁 is not so large. In the next section, we pro-
pose a regression method of MI𝛼,𝑌 (𝑥), where we reconstruct
both 𝑚low

𝛼,𝑌
(𝑥) and 𝑚

up
𝛼,𝑌
(𝑥) as smooth spline functions.

3.2 Proposed Modal Interval Regression Method

To express the 100𝛼% conditional modal intervals MI𝛼,𝑌 (𝑥)
of various shapes flexibly, we propose to estimate both lower
curve 𝑚low

𝛼,𝑌
(𝑥) and upper curve 𝑚

up
𝛼,𝑌
(𝑥) as smooth spline

functions. Differently from estimation of 𝑚 [𝜏 ]
𝑌
(𝑥), it is very

difficult to directly estimate𝑚low
𝛼,𝑌
(𝑥) and𝑚up

𝛼,𝑌
(𝑥) by extend-

ing the nonconvex optimization problem in (5). Instead, by
expressing the modal interval locally with quantiles, we pro-
pose a two-step regression method based on spline quantile
regression that avoids complicated nonconvex optimization
problems as in (5). The proposed modal interval regression
consists of the following local empirical modal interval de-
tection step and simultaneous spline quantile regression step.

1: Divide bivariate observations {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 into 𝑏 bins
according to the values of 𝑥𝑛. For 𝑗 = 1, 2, . . . , 𝑏, detect
the local 100𝛼% empirical modal interval [�̂�⟨ 𝑗 ⟩low, �̂�

⟨ 𝑗 ⟩
up ] of

𝑌 in the 𝑗 th bin. Then, express the lower point �̂�⟨ 𝑗 ⟩low as the
local 𝑝⟨ 𝑗 ⟩lowth empirical quantile of𝑌 and the upper point
�̂�
⟨ 𝑗 ⟩
up as the local 𝑝⟨ 𝑗 ⟩up th empirical quantile of 𝑌 .

2: Let
¯
𝑠(𝑥) and 𝑠(𝑥) be spline regression models for the

lower curve 𝑚low
𝛼,𝑌
(𝑥) and the upper curve 𝑚

up
𝛼,𝑌
(𝑥), re-

spectively. Find
¯
𝑠∗ (𝑥) and 𝑠∗ (𝑥) simultaneously, which

minimize a weighted sum of the asymmetric absolute er-
rors with 𝑝

⟨ 𝑗 ⟩
low and 𝑝

⟨ 𝑗 ⟩
up and the roughness penalty terms

under the non-crossing constraint s.t. ∀𝑥
¯
𝑠(𝑥) ≤ 𝑠(𝑥).

For simplicity, in what follows, the bins in the first step
construct a partition ⊔𝑏 := {𝐼 𝑗 }𝑏𝑗=1 used in the definition of
spline functions

¯
𝑠(𝑥) and 𝑠(𝑥), i.e., each bin corresponds to

each subinterval 𝐼 𝑗 := [b 𝑗−1, b 𝑗 ]. Moreover, we suppose that
b0 ≤ 𝑥min < 𝑥max ≤ b𝑏 and ∀𝑛 𝑥𝑛 ≠ b 𝑗 ( 𝑗 = 1, 2, . . . , 𝑏 − 1)
so that the division of the observations {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 into the
bins can be uniquely determined. Define B 𝑗 := {𝑛 | 𝑥𝑛 ∈ 𝐼 𝑗 }
( 𝑗 = 1, 2, . . . , 𝑏) as the set of the indices for the observations
in the 𝑗 th bin. The number of elements of B 𝑗 is denoted by
𝑁 𝑗 s.t.

∑𝑏
𝑗=1 𝑁 𝑗 = 𝑁 , where each 𝑁 𝑗 should not be too small.

In the first step, after the division of {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 into
𝑏 bins, we detect the local 100𝛼% empirical modal interval
in each bin as follows. We suppose that the values of 𝑦𝑛 are
different for all 𝑛 ∈ B 𝑗 for simplicity, and sort {𝑦𝑛}𝑛∈B 𝑗

as
𝑦
⟨ 𝑗 ⟩
1 < 𝑦

⟨ 𝑗 ⟩
2 < · · · < 𝑦

⟨ 𝑗 ⟩
𝑁 𝑗

. The empirical cumulative distri-
bution function of 𝑌 in the 𝑗 th bin is defined by

�̂�𝑌 | b 𝑗−1≤𝑥≤ b 𝑗
(𝑦) :=



0 if 𝑦inf < 𝑦 < 𝑦
⟨ 𝑗 ⟩
1 ,

𝑛

𝑁 𝑗

if 𝑦⟨ 𝑗 ⟩𝑛 ≤ 𝑦 < 𝑦
⟨ 𝑗 ⟩
𝑛+1

(𝑛 = 1, 2, . . . , 𝑁 𝑗 − 1),

1 if 𝑦⟨ 𝑗 ⟩
𝑁 𝑗
≤ 𝑦 < 𝑦sup.

(11)

From (11), we see that as the index 𝑛 of 𝑦⟨ 𝑗 ⟩𝑛 increases by 1,
the value of �̂�𝑌 | b 𝑗−1≤𝑥≤ b 𝑗

(𝑦) increases by 1
𝑁 𝑗

. Hence, to in-
crease the the value of �̂�𝑌 | b 𝑗−1≤𝑥≤ b 𝑗

(𝑦) by 𝛼, we only have to
increase the index 𝑛 of 𝑦⟨ 𝑗 ⟩𝑛 by ⌈𝛼𝑁 𝑗⌉, where ⌈·⌉ denotes the
ceiling function. By finding the following optimal index

𝑛∗𝑗 := argmin
𝑛

𝑦
⟨ 𝑗 ⟩
𝑛+⌈𝛼𝑁 𝑗 ⌉ − 𝑦

⟨ 𝑗 ⟩
𝑛 , (12)

the 100𝛼% empirical modal interval of𝑌 in the 𝑗 th bin can be
defined as[

�̂�
⟨ 𝑗 ⟩
low, �̂�

⟨ 𝑗 ⟩
up

]
:=

[
𝑦
⟨ 𝑗 ⟩
𝑛∗
𝑗

, 𝑦
⟨ 𝑗 ⟩
𝑛∗
𝑗
+⌈𝛼𝑁 𝑗 ⌉

]
. (13)

As a modal interval regression method with [�̂�⟨ 𝑗 ⟩low, �̂�
⟨ 𝑗 ⟩
up ]

in (13), we can consider the following spline smoothing

minimize
¯
𝑠∈𝐶2 ( b0 , b𝑏 )

𝑏∑︁
𝑗=1

����̂�⟨ 𝑗 ⟩low − ¯
𝑠

(
b 𝑗−1+b 𝑗

2

)���2 + _ ∫
𝐼

|
¯
𝑠′′ (𝑥) |2 d𝑥 (14)

for estimation of𝑚low
𝛼,𝑌
(𝑥), where the solution

¯
𝑠∗ (𝑥) is a natu-

ral cubic spline function. A similar problem whose solution
𝑠∗ (𝑥) is a natural cubic spline function is considered for esti-
mation of𝑚up

𝛼,𝑌
(𝑥). However, the reliability of this method is

not so high when the number 𝑁 of observations is not large
since the values of �̂�⟨ 𝑗 ⟩low and �̂�

⟨ 𝑗 ⟩
up may greatly change depend-

ing on the bin width ℎ 𝑗 . In the worst case, the two regression
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results
¯
𝑠∗ (𝑥) and 𝑠∗ (𝑥) cross each other, even though the true

curves𝑚low
𝛼,𝑌
(𝑥) and𝑚up

𝛼,𝑌
(𝑥) satisfy∀𝑥 𝑚low

𝛼,𝑌
(𝑥) < 𝑚

up
𝛼,𝑌
(𝑥).

To realize more reliable regression, we propose to rep-
resent �̂�⟨ 𝑗 ⟩low and �̂�

⟨ 𝑗 ⟩
up in (13) as the 𝑝

⟨ 𝑗 ⟩
lowth and 𝑝

⟨ 𝑗 ⟩
up th empirical

quantiles of𝑌 and use 𝑝⟨ 𝑗 ⟩low and 𝑝
⟨ 𝑗 ⟩
up in the second step, where

𝑝
⟨ 𝑗 ⟩
low :=

𝑛∗
𝑗

𝑁 𝑗

and 𝑝
⟨ 𝑗 ⟩
up :=

𝑛∗
𝑗
+ ⌈𝛼𝑁 𝑗⌉
𝑁 𝑗

. (15)

To summarize, the first step of the proposed method ends by
computing (12) and (15) after sorting {𝑦𝑛}𝑛∈B 𝑗

for each 𝑗 .
In the second step, we simultaneously estimate𝑚low

𝛼,𝑌
(𝑥)

and 𝑚
up
𝛼,𝑌
(𝑥) with spline quantile regression similar to [42].

Specifically, we solve the following optimization problem

minimize
¯
𝑠,𝑠∈S𝜌

𝑑
(⊔𝑏 )

𝑏∑︁
𝑗=1

∑︁
𝑛∈B 𝑗

𝑤𝑛J�̂�⟨ 𝑗⟩low
(𝑦𝑛 − ¯

𝑠(𝑥𝑛)) + _
∫
𝐼

|
¯
𝑠′′ (𝑥) |2 d𝑥

+
𝑏∑︁
𝑗=1

∑︁
𝑛∈B 𝑗

𝑤𝑛J�̂�⟨ 𝑗⟩up
(𝑦𝑛 − 𝑠(𝑥𝑛)) + _

∫
𝐼

|𝑠′′ (𝑥) |2 d𝑥

subject to ∀𝑥
¯
𝑠(𝑥) + 𝛿 ≤ 𝑠(𝑥), (𝑦inf ≤ ¯

𝑠(𝑥) and 𝑠(𝑥) ≤ 𝑦sup),
(16)

where 𝛿 ≥ 0 is the lower bound of 𝑠(𝑥) −
¯
𝑠(𝑥), which can

be set to any nonnegative value, and the optional constraints
∀𝑥 𝑦inf ≤ ¯

𝑠(𝑥) and/or ∀𝑥 𝑠(𝑥) ≤ 𝑦sup can be enforced if 𝑦inf
and/or 𝑦sup are† known finite values. There is a possibility
that the non-crossing property ∀𝑥

¯
𝑠∗ (𝑥) + 𝛿 ≤ 𝑠∗ (𝑥) will be

automatically satisfied even if we find the optimal solutions

¯
𝑠∗ (𝑥) and 𝑠∗ (𝑥) separately without the constraint, but it can-
not be confirmed before finding both solutions. Meanwhile,
the optimization problem in (16) always guarantees the non-
crossing property by finding

¯
𝑠∗ (𝑥) and 𝑠∗ (𝑥) simultaneously.

The optimization problem in (16) can be understood as
follows. At each 𝑥 ∈ (𝑥inf , 𝑥sup), the lower and upper points
𝑚low

𝛼,𝑌
(𝑥) and 𝑚

up
𝛼,𝑌
(𝑥) in (10) can be locally expressed as the

𝑝low (𝑥)th and 𝑝up (𝑥)th quantiles of 𝑌 , respectively, where

𝑝low (𝑥) := 𝐹𝑌 |𝑥
(
𝑚low

𝛼,𝑌 (𝑥)
)

and 𝑝up (𝑥) := 𝐹𝑌 |𝑥
(
𝑚

up
𝛼,𝑌
(𝑥)

)
.

(17)

If 𝑝low (𝑥) in (17) is given, for estimation of the lower curve
𝑚low

𝛼,𝑌
(𝑥), we can consider the following problem based on (3)

minimize
𝜽

𝑁∑︁
𝑛=1
J𝑝low (𝑥𝑛 ) (𝑦𝑛 − 𝑟𝜽 (𝑥𝑛)) (18)

with a regression model 𝑟𝜽 (𝑥). Indeed, when 𝑁 approaches
infinity, the solution 𝑟𝜽∗ (𝑥) to (18) converges to 𝑚low

𝛼,𝑌
(𝑥):

𝑟𝜽∗ (𝑥)
𝑁→∞−−−−−→ 𝑚low

𝛼,𝑌 (𝑥) satisfying 𝐹𝑌 |𝑥
(
𝑚low

𝛼,𝑌 (𝑥)
)
= 𝑝low (𝑥)

under the assumption that 𝑟𝜽 (𝑥) can exactly express 𝑚low
𝛼,𝑌
(𝑥)

†If 𝑦inf = −∞ and/or 𝑦sup = ∞, these options are not needed.

if we choose the appropriate 𝜽 . A similar optimization prob-
lem can be considered for estimation of𝑚up

𝛼,𝑌
(𝑥)with 𝑝up (𝑥).

However, the ideal problem in (18) cannot be used because
𝑝low (𝑥) is usually unknown as well as 𝐹𝑌 |𝑥 (𝑦) and 𝑚low

𝛼,𝑌
(𝑥).

Therefore, in the first step of the proposed method, we esti-
mate 𝑝low (𝑥) and 𝑝up (𝑥) in (17) as 𝑝

⟨ 𝑗 ⟩
low and 𝑝

⟨ 𝑗 ⟩
up in (15) for

each bin. Then, in the second step, we estimate 𝑚low
𝛼,𝑌
(𝑥) and

𝑚
up
𝛼,𝑌
(𝑥) simultaneously in (16) as flexible spline regression

models
¯
𝑠(𝑥) and 𝑠(𝑥) satisfying the non-crossing property,

where the roughness penalties are added for
¯
𝑠(𝑥) and 𝑠(𝑥) to

avoid overfitting and reduce the influence of splitting by bins.
Although the values of 𝑝⟨ 𝑗 ⟩low and 𝑝

⟨ 𝑗 ⟩
up in (15) change de-

pending on the bin width ℎ 𝑗 as well as �̂�⟨ 𝑗 ⟩low and �̂�
⟨ 𝑗 ⟩
up , it can be

considered that 𝑝⟨ 𝑗 ⟩low and 𝑝
⟨ 𝑗 ⟩
up are more robust to the bin width

than �̂�
⟨ 𝑗 ⟩
low and �̂�

⟨ 𝑗 ⟩
up . The reason is 𝑝low (𝑥) and 𝑝low (𝑥) slowly

change along the 𝑥-axis in most cases, regardless of how fast
𝑚low

𝛼,𝑌
(𝑥) and 𝑚

up
𝛼,𝑌
(𝑥) change. In fact, in [58], [62], by im-

plicitly assuming 𝑝mode (𝑥) := 𝐹𝑌 |𝑥 (𝑚𝑌 (𝑥)) (𝑥 ∈ (𝑥inf , 𝑥sup))
slowly changes along the 𝑥-axis, a modal regression method
based on linear quantile regression is proposed. As a result,
we obtain more reliable results than (14) by the simultaneous
quantile regression using all data {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 and the func-
tionsJ

�̂�
⟨ 𝑗⟩
low
(𝑡) andJ

�̂�
⟨ 𝑗⟩
up
(𝑡) under the non-crossing constraint.

In the next section, we express the optimization problem on
spline functions

¯
𝑠(𝑥) and 𝑠(𝑥) in (16) as a convex optimiza-

tion problem on the coefficient vectors of
¯
𝑠(𝑥) and 𝑠(𝑥).

3.3 Convex Optimization Problem on Coefficients

We express each spline function 𝑠 ∈ S𝜌

𝑑
(⊔𝑏) in the following

interval normalization form

𝑠(𝑥) = 𝑢 𝑗 (𝑥) = 𝑐
⟨ 𝑗 ⟩
0 +

𝑑∑︁
𝑘=1

𝑐
⟨ 𝑗 ⟩
𝑘

( 𝑥 − b 𝑗−1

ℎ 𝑗

) 𝑘
for 𝑥 ∈ 𝐼 𝑗 , (19)

where 𝑐
⟨ 𝑗 ⟩
𝑘
∈ R (𝑘 = 0, 1, . . . , 𝑑) is the 𝑘th coefficient of the

𝑗 th polynomial piece 𝑢 𝑗 ∈ P𝑑 ( 𝑗 = 1, 2, . . . , 𝑏). Define 𝒄 :=
(𝑐⟨1⟩0 , 𝑐

⟨1⟩
1 , . . . , 𝑐

⟨1⟩
𝑑
, 𝑐
⟨2⟩
0 , 𝑐

⟨2⟩
1 , . . . , 𝑐

⟨2⟩
𝑑
, . . . , 𝑐

⟨𝑏⟩
𝑑
)T ∈ R𝑏 (𝑑+1)

as the coefficient vector of the spline function 𝑠(𝑥). Since the
spline function 𝑠(𝑥) is 𝜌-times continuously differentiable on
𝐼 = (b0, b𝑏), i.e., 𝑠 ∈ 𝐶𝜌 (b0, b𝑏), every pair of coefficients
of adjacent polynomial pieces 𝑢 𝑗 ∈ P𝑑 and 𝑢 𝑗+1 ∈ P𝑑 ( 𝑗 =
1, 2, . . . , 𝑏 − 1) has to satisfy the following linear equation

1
ℎ𝑙
𝑗

𝑑∑︁
𝑘=𝑙

𝑘!
(𝑘 − 𝑙)! 𝑐

⟨ 𝑗 ⟩
𝑘
− 𝑙!

ℎ𝑙
𝑗+1

𝑐
⟨ 𝑗+1⟩
𝑙

= 0 (𝑙 = 0, 1, . . . , 𝜌)

⇔ 𝑢
(𝑙)
𝑗
(b 𝑗 ) = 𝑢

(𝑙)
𝑗+1 (b 𝑗 ) (𝑙 = 0, 1, . . . , 𝜌), (20)

where 𝑢 (𝑙)
𝑗
(𝑥) is the 𝑙th derivative of 𝑢 𝑗 (𝑥). From (20), there

exists a matrix 𝑯 ∈ R(𝑏−1) (𝜌+1)×𝑏 (𝑑+1) s.t. 𝑯𝒄 = 0 ⇔ 𝑠 ∈
S𝜌

𝑑
(⊔𝑏), where 0 denotes a zero vector of appropriate size.

First, we express the data fidelity term in (16) by using
the coefficient vector 𝒄. The value of 𝑠(𝑥𝑛) s.t. 𝑥𝑛 ∈ 𝐼 𝑗 can be
expressed as 𝒂T

𝑛𝒄 with a vector 𝒂𝑛 ∈ R𝑏 (𝑑+1) defined by
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𝒂𝑛 :=
(

0, 0, . . . , 0︸      ︷︷      ︸
( 𝑗−1) (𝑑+1)

, 1, 𝑥𝑛−b 𝑗−1
ℎ 𝑗

, . . . ,
(𝑥𝑛−b 𝑗−1 )𝑑

ℎ𝑑
𝑗

, 0, 0, . . . , 0︸      ︷︷      ︸
(𝑏− 𝑗 ) (𝑑+1)

)T
.

As a result, we have J𝑝 (𝑦𝑛 − 𝑠(𝑥𝑛)) = J𝑝 (𝑦𝑛 − 𝒂T
𝑛𝒄).

Second, we express the roughness penalty term in (16)
with the coefficient vector 𝒄. The roughness penalty over the
interval 𝐼 is decomposed into those over the subintervals 𝐼 𝑗 :∫

𝐼

|𝑠′′ (𝑥) |2 d𝑥 =

𝑏∑︁
𝑗=1

∫
𝐼 𝑗

|𝑢′′𝑗 (𝑥) |2 d𝑥. (21)

From (19), each penalty over 𝐼 𝑗 is written by a quadratic form∫
𝐼 𝑗

|𝑢′′𝑗 (𝑥) |2 d𝑥 =

𝑑∑︁
𝑘=2

𝑑∑︁
𝑙=2

𝑘 (𝑘 − 1)𝑙 (𝑙 − 1)
ℎ3
𝑗
(𝑘 + 𝑙 − 3)

𝑐
⟨ 𝑗 ⟩
𝑘

𝑐
⟨ 𝑗 ⟩
𝑙

. (22)

From (21) and (22), there is a symmetric positive semidefi-
nite matrix 𝑸 ∈ R𝑏 (𝑑+1)×𝑏 (𝑑+1) s.t.

∫
𝐼
|𝑠′′ (𝑥) |2 d𝑥 = 𝒄T𝑸𝒄.

Third, we express the non-crossing constraint and the
two optional domain constraints in (16) with the coefficient
vector 𝒄. In fact, it is very difficult to give a useful necessary
and sufficient condition for each shape constraint. Instead,
we derive a useful sufficient condition for each shape con-
straint in a manner similar to [42]. In [42], the second author
of the current paper derived sufficient conditions for several
shape (non-decreasing, non-increasing, convex and concave)
constraints by extending the sufficient condition in [63]–[65]
for the nonnegativity of the spline function 𝑠(𝑥) over 𝐼 𝑗 :

𝑙∑︁
𝑘=0

(𝑑 − 𝑘)!
(𝑙 − 𝑘)!(𝑑 − 𝑙)! 𝑐

⟨ 𝑗 ⟩
𝑘
≥ 0 (𝑙 = 0, 1, . . . , 𝑑)

⇒ 𝑠(𝑥) ≥ 0 for all 𝑥 ∈ 𝐼 𝑗 . (23)

From (23), we can express a sufficient condition for the non-
negativity over 𝐼, with a certain matrix 𝑮 ∈ R𝑏 (𝑑+1)×𝑏 (𝑑+1) ,
as a linear inequality 𝑮𝒄 ≥ 0⇒ 𝑠(𝑥) ≥ 0 for all 𝑥 ∈ 𝐼.

Let
¯
𝑐
⟨ 𝑗 ⟩
𝑘
∈ R and 𝑐

⟨ 𝑗 ⟩
𝑘
∈ R be coefficients of

¯
𝑠(𝑥) and

𝑠(𝑥), respectively. The non-crossing constraint is expressed
as ∀𝑥 𝑠(𝑥) −

¯
𝑠(𝑥) − 𝛿 ≥ 0, which is also seen as the non-

negativity of a spline function 𝑠(𝑥) −
¯
𝑠(𝑥) − 𝛿. Coefficients

of the 𝑗 th polynomial piece of 𝑠(𝑥) −
¯
𝑠(𝑥) − 𝛿 are given by

(𝑐⟨ 𝑗 ⟩0 −
¯
𝑐
⟨ 𝑗 ⟩
0 − 𝛿, 𝑐

⟨ 𝑗 ⟩
1 −

¯
𝑐
⟨ 𝑗 ⟩
1 , 𝑐

⟨ 𝑗 ⟩
2 −

¯
𝑐
⟨ 𝑗 ⟩
2 , . . . , 𝑐

⟨ 𝑗 ⟩
𝑑
−

¯
𝑐
⟨ 𝑗 ⟩
𝑑
)T.

Thus, from (23), we have the following sufficient condition

𝑙∑︁
𝑘=0

(𝑑 − 𝑘)!
(
𝑐
⟨ 𝑗 ⟩
𝑘
−

¯
𝑐
⟨ 𝑗 ⟩
𝑘

)
(𝑙 − 𝑘)!(𝑑 − 𝑙)! ≥ 𝛿

𝑑!
𝑙!(𝑑 − 𝑙)! (𝑙 = 0, 1, . . . , 𝑑)

⇒ 𝑠(𝑥) ≥
¯
𝑠(𝑥) + 𝛿 for all 𝑥 ∈ 𝐼 𝑗 . (24)

The optional constraints are also seen as the nonnegativity
of spline functions

¯
𝑠(𝑥) − 𝑦inf and −𝑠(𝑥) + 𝑦sup, and we have

𝑙∑︁
𝑘=0

(𝑑 − 𝑘)!
(𝑙 − 𝑘)!(𝑑 − 𝑙)! ¯

𝑐
⟨ 𝑗 ⟩
𝑘
≥ 𝑦inf

𝑑!
𝑙!(𝑑 − 𝑙)! (𝑙 = 0, 1, . . . , 𝑑)

⇒
¯
𝑠(𝑥) ≥ 𝑦inf for all 𝑥 ∈ 𝐼 𝑗 (25)

and
𝑙∑︁

𝑘=0

(𝑑 − 𝑘)!
(𝑙 − 𝑘)!(𝑑 − 𝑙)! 𝑐

⟨ 𝑗 ⟩
𝑘
≤ 𝑦sup

𝑑!
𝑙!(𝑑 − 𝑙)! (𝑙 = 0, 1, . . . , 𝑑)

⇒ 𝑠(𝑥) ≤ 𝑦sup for all 𝑥 ∈ 𝐼 𝑗 . (26)

By defining
¯
�̄� := (

¯
𝒄T, �̄�T)T ∈ R2𝑏 (𝑑+1) from both coefficient

vectors
¯
𝒄, �̄� ∈ R𝑏 (𝑑+1) of

¯
𝑠, 𝑠 ∈ S𝜌

𝑑
(⊔𝑏), the sufficient condi-

tions in (24), (25) and (26) are expressed as 𝑮 ( �̄� −
¯
𝒄) ≥ 𝛿𝜻 ,

𝑮
¯
𝒄 ≥ 𝑦inf 𝜻 and 𝑮�̄� ≤ 𝑦sup 𝜻 with some vector 𝜻 ∈ R𝑏 (𝑑+1) .

To summarize, the problem in (16) is expressed as the
following finite-dimensional convex optimization problem

minimize
¯
�̄�∈R2𝑏 (𝑑+1)

𝑏∑︁
𝑗=1

∑︁
𝑛∈B 𝑗

𝑤𝑛J�̂�⟨ 𝑗⟩low

(
𝑦𝑛 − 𝒂T

𝑛 ¯
𝒄
)
+ _

¯
𝒄T𝑸

¯
𝒄

+
𝑏∑︁
𝑗=1

∑︁
𝑛∈B 𝑗

𝑤𝑛J�̂�⟨ 𝑗⟩up

(
𝑦𝑛 − 𝒂T

𝑛 �̄�
)
+ _�̄�T𝑸�̄�

subject to 𝑯
¯
𝒄 = 0, 𝑯�̄� = 0, and 𝑮 ( �̄� −

¯
𝒄) ≥ 𝛿𝜻 ,

(and optionally 𝑮
¯
𝒄 ≥ 𝑦inf 𝜻 and/or 𝑮�̄� ≤ 𝑦sup 𝜻). (27)

In the next section, for the convex optimization problem in
(27), we give two solvers with different formulations based
on the quadratic programming [43], [44] and the alternating
direction method of multipliers (ADMM) [45]–[49].

3.4 Optimization Algorithms

First of all, in addition to 𝒚 := (𝑦1, 𝑦2, . . . , 𝑦𝑁 )T ∈ R𝑁 and
𝑨 := (𝒂1, 𝒂2, . . . , 𝒂𝑁 )T ∈ R𝑁×𝑏 (𝑑+1) , we define

¯
�̄� := ©«

−𝑮 𝑮
𝑮 𝑶
𝑶 −𝑮

ª®¬ and
¯
�̄� := ©«

𝛿𝜻
𝑦inf 𝜻
−𝑦sup 𝜻

ª®¬ ,

where 𝑶 denotes a zero matrix of appropriate size, and the
definitions of

¯
�̄� and

¯
�̄� changes depending on whether the

optional constrains are used or not. Furthermore, we define
the upper-side error vector

¯
𝝐+ := (

¯
𝜖+1 , ¯

𝜖+2 , . . . , ¯
𝜖+
𝑁
)T ∈ R𝑁 and

the lower-side error vector
¯
𝝐− := (

¯
𝜖−1 , ¯

𝜖−2 , . . . , ¯
𝜖−
𝑁
)T ∈ R𝑁 for

¯
𝑠(𝑥), where

¯
𝜖+𝑛 ≥ 0 and

¯
𝜖−𝑛 ≤ 0 for all 𝑛. Similarly, we define

the upper-side and lower-side error vectors for 𝑠(𝑥) as 𝝐+ :=
(𝜖 +1 , 𝜖

+
2 , . . . , 𝜖

+
𝑁
)T ∈ R𝑁 and 𝝐− := (𝜖 −1 , 𝜖 −2 , . . . , 𝜖 −

𝑁
)T ∈ R𝑁 ,

where 𝜖 +𝑛 ≥ 0 and 𝜖 −𝑛 ≤ 0. Then, the proposed problem in
(27) is expressed as a quadratic programming problem

minimize
¯
�̄�,

¯
𝝐+ ,¯

𝝐− ,𝝐+ ,𝝐−

𝑏∑︁
𝑗=1

∑︁
𝑛∈B 𝑗

𝑤𝑛

(
𝑝
⟨ 𝑗 ⟩
low ¯

𝜖+𝑛 −
(
1 − 𝑝

⟨ 𝑗 ⟩
low

)
¯
𝜖−𝑛

)
+ _

¯
𝒄T𝑸

¯
𝒄

+
𝑏∑︁
𝑗=1

∑︁
𝑛∈B 𝑗

𝑤𝑛

(
𝑝
⟨ 𝑗 ⟩
up 𝜖 +𝑛 −

(
1 − 𝑝

⟨ 𝑗 ⟩
up

)
𝜖 −𝑛

)
+ _�̄�T𝑸�̄�

subject to 𝑯
¯
𝒄 = 0, 𝑯�̄� = 0,

¯
�̄�

¯
�̄� ≥

¯
�̄� ,

¯
𝝐+ ≥ 0,

¯
𝝐− ≤ 0,

𝝐+ ≥ 0, 𝝐− ≤ 0, 𝒚 − 𝑨
¯
𝒄 =

¯
𝝐+ + ¯

𝝐− , and 𝒚 − 𝑨�̄� = 𝝐+ + 𝝐− .
(28)
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The problem in (28) is solved by a quadratic programming
solver, e.g., by one of interior-point methods [43], [44].

Next, we explain an ADMM formulation for the prob-
lem in (27). We define three block-diagonal matrices

¯
�̄� :=

(
𝑨 𝑶
𝑶 𝑨

)
,

¯
�̄� :=

(
𝑯 𝑶
𝑶 𝑯

)
, and

¯
�̄� :=

(
𝑸 𝑶
𝑶 𝑸

)
.

Moreover, we add two auxiliary vectors 𝒛1 ∈ R2𝑁 and 𝒛2 ∈
R3𝑏 (𝑑+1) . Then, we have the following ADMM formulation

minimize
¯
�̄�,𝒛1 ,𝒛2

_
¯
�̄�T

¯
�̄�

¯
�̄� + ]=0 ( ¯

�̄�
¯
�̄�) +

¯
J̄𝒘

¯
�̄�,𝒚 (𝒛1) + ]≥

¯
�̄� (𝒛2)

subject to 𝒛1 =
¯
�̄�

¯
�̄� and 𝒛2 =

¯
�̄�

¯
�̄�. (29)

Here the two indicator functions are defined as ]=0 ( ¯
�̄�

¯
�̄�) := 0

if
¯
�̄�

¯
�̄� = 0, and ]=0 ( ¯

�̄�
¯
�̄�) := ∞ otherwise, and ]≥

¯
�̄� (𝒛2) := 0 if

𝒛2 ≥
¯
�̄� , and ]≥

¯
�̄� (𝒛2) := ∞ otherwise. The proximable convex

function
¯
J̄𝒘

¯
�̄�,𝒚 : R2𝑁 → [0,∞) is defined by

¯
J̄𝒘

¯
�̄�,𝒚 (𝒛) :=

𝑏∑︁
𝑗=1

∑︁
𝑛∈B 𝑗

𝑤𝑛

(
J
�̂�
⟨ 𝑗⟩
low
(𝑦𝑛 − 𝑧𝑛) + J�̂�⟨ 𝑗⟩up

(𝑦𝑛 − 𝑧𝑁+𝑛)
)

for every 𝒛 = (𝑧1, 𝑧2, . . . , 𝑧𝑁 , 𝑧𝑁+1, 𝑧𝑁+2, . . . , 𝑧2𝑁 )T ∈ R2𝑁 ,
where its proximity operator prox

¯
J̄𝒘

¯
�̄�,𝒚

: R2𝑁 → R2𝑁 can be
computed for each component with the following equation

prox𝑤J𝑝 (𝑦−·) (𝑧) =


𝑧 + 𝑝𝑤 if 𝑦 − 𝑧 ≥ 𝑝𝑤,
𝑧 − (1 − 𝑝)𝑤 if 𝑦 − 𝑧 ≤ −(1 − 𝑝)𝑤,
𝑦 otherwise.

The proximity operator prox ]≥
¯
�̄�

: R3𝑏 (𝑑+1) → R3𝑏 (𝑑+1) of the
indicator function can also be computed for each component
as the projection operator

prox ]≥Z (𝑧) = projection≥Z (𝑧) =
{
𝑧 if 𝑧 ≥ Z ,
Z if 𝑧 < Z .

By defining a matrix 𝚪 with the ADMM parameter 𝛾 > 0 as

𝚪 := 2𝛾_
¯
�̄� +

¯
�̄�T

¯
�̄� +

¯
�̄�T

¯
�̄�,

we can summarize the ADMM-based spline modal interval
regression as Algorithm 1, where 𝑖 is the index for iterations,
and we input the number of the iterations as an integer Iter.

Note that whether we solve the problem in (28) or (29),
we will obtain almost the same regression results

¯
𝑠∗ (𝑥) and

𝑠∗ (𝑥) since the original proposed problem in (16) is convex.
Comparing the problems in (28) and (29), the dimensions of
the primal variables (

¯
�̄�,

¯
𝝐+, ¯

𝝐− , 𝝐+, 𝝐−) in (28) and (
¯
�̄�, 𝒛1, 𝒛2)

in (29) are 2𝑏(𝑑 + 1) + 4𝑁 and 5𝑏(𝑑 + 1) + 2𝑁 , respectively.
In addition, in the interior-point method for (28), the dimen-
sion of the dual variables containing slack variables [66] to
be updated is (2(𝑏 − 1) (𝜌 + 1) + 2𝑁) + 2(3𝑏(𝑑 + 1) + 4𝑁) =
2𝑏(3𝑑+𝜌+4)+10𝑁−2(𝜌+1), while in Algorithm 1 for (29),
the dimension of the dual variables† (𝒗1, 𝒗2) is 3𝑏(𝑑+1)+2𝑁 .
†The vector 𝜼 ∈ R2𝑏 (𝑑+1) in Algorithm 1 is not a dual variable

but an intermediate variable to write the equation in line 8 shortly.

Algorithm 1 Spline Modal Interval Regression with ADMM
Input: data { (𝑥𝑛 , 𝑦𝑛 ) }𝑁𝑛=1, probability 𝛼 ∈ (0, 1) , partition (bins) ⊔𝑏 =

{𝐼 𝑗 }𝑏𝑗=1, degree 𝑑, smoothness 𝜌 (2 ≤ 𝜌 ≤ 𝑑), positive weights 𝒘 =

(𝑤𝑛 )𝑁𝑛=1, smoothing parameter _ > 0, number of updates Iter, ADMM
parameter 𝛾 > 0, lower bound gap 𝛿 ≥ 0, and options 𝑦inf and/or 𝑦sup.

Output: coefficients of lower and upper spline functions
¯
𝑠 (𝑥 ) and 𝑠 (𝑥 ) .

1: Divide the data { (𝑥𝑛 , 𝑦𝑛 ) }𝑁𝑛=1 into 𝑏 bins according to values of 𝑥𝑛.
2: Sort values of 𝑦𝑛 (𝑛 ∈ B 𝑗 ) as 𝑦⟨ 𝑗⟩1 < 𝑦

⟨ 𝑗⟩
2 < · · · < 𝑦

⟨ 𝑗⟩
𝑁 𝑗

for each 𝑗.

3: Find the optimal index 𝑛∗
𝑗

in (12) and compute �̂�
⟨ 𝑗⟩
low and �̂�

⟨ 𝑗⟩
up in (15).

4: Construct
¯
�̄�,

¯
�̄�,

¯
�̄� ,

¯
�̄�, 𝚪, and

¯
�̄� .

5: Set 𝒛1, 𝒗1 ∈ R2𝑁 and 𝒛2, 𝒗2 ∈ R3𝑏 (𝑑+1) to any initial values.
6: for 𝑖 = 1, 2, . . . , Iter do
7: 𝜼 ←

¯
�̄�T (𝒛1 − 𝒗1

)
+

¯
�̄�T (𝒛2 − 𝒗2

)
8:

¯
�̄� ← 𝚪−1 (𝜼 −

¯
�̄�T (

¯
�̄�𝚪−1

¯
�̄�T )−1

¯
�̄�𝚪−1𝜼

)
9: 𝒛1 ← prox

¯
J̄𝛾𝒘

¯
�̄�,𝒚

(
¯
�̄�

¯
�̄� + 𝒗1

)
10: 𝒛2 ← projection≥

¯
�̄�

(
¯
�̄�

¯
�̄� + 𝒗2

)
11: 𝒗1 ← 𝒗1 + ¯

�̄�
¯
�̄� − 𝒛1

12: 𝒗2 ← 𝒗2 + ¯
�̄�

¯
�̄� − 𝒛2

13: end for
14: Return the optimal solution

¯
�̄� = (

¯
𝒄T, �̄�T )T.

Therefore, if 𝑏(𝑑 + 1) ≪ 𝑁 , it is expected that the problem
in (29) requires less memory than the problem in (28). Actu-
ally, sophisticated quadratic programming packages such as
[66], that can adaptively reduce the dimension of variables,
have been developed in many programming languages. We
can try those packages first, and if there are problems like
memory shortage, then use the iterations in Algorithm 1.

4. Numerical Experiments

In this section, we conduct numerical experiments to show
the effectiveness of the proposed modal interval regression
compared to the straightforward least squares method in (14)
and two kernel density estimation methods introduced below.

4.1 Existing Methods Based on Kernel Density Estimation

Based on the methods [36], [37] originally used for analysis
of time series data, we introduce two different kernel density
estimation (KDE) methods that estimate the modal interval.
One KDE method sorts {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 as {(𝑥 ⟨all⟩

𝑛 , 𝑦
⟨all⟩
𝑛 )}𝑁

𝑛=1
s.t. 𝑦⟨all⟩

1 < 𝑦
⟨all⟩
2 < · · · < 𝑦

⟨all⟩
𝑁

and reconstructs the condi-
tional cumulative distribution function of 𝑌 given 𝑋 = 𝑥 by

�̂�
(KDE)
𝑌 |𝑥 (𝑦) :=



0 if 𝑦inf < 𝑦 < 𝑦
⟨all⟩
1 ,∑𝑛

𝑙=1K
( 𝑥−𝑥⟨all⟩

𝑙

𝜎

)∑𝑁
𝑙=1K

( 𝑥−𝑥𝑙
𝜎

) if 𝑦⟨all⟩
𝑛 ≤ 𝑦 < 𝑦

⟨all⟩
𝑛+1

(𝑛 = 1, 2, . . . , 𝑁 − 1),

1 if 𝑦⟨all⟩
𝑁
≤ 𝑦 < 𝑦sup,

(30)

whereK : R→ [0, 1] is a nonnegative symmetric unimodal
kernel satisfying the same conditions as in (5), and 𝜎 > 0 is
its bandwidth.Then, in a manner similar to (12) and (13), the
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100𝛼% conditional modal interval MI𝛼,𝑌 (𝑥) is estimated as

argmin
[𝑦⟨all⟩

𝑛1 ,𝑦
⟨all⟩
𝑛2 ]

𝑦
⟨all⟩
𝑛2 −𝑦

⟨all⟩
𝑛1 s.t. �̂� (KDE)

𝑌 |𝑥 (𝑦⟨all⟩
𝑛2 ) − �̂�

(KDE)
𝑌 |𝑥 (𝑦⟨all⟩

𝑛1 ) ≥𝛼

(31)

for given 𝑋 = 𝑥. Since �̂�
(KDE)
𝑌 |𝑥 (𝑦) in (30) is piecewise con-

stant, the estimated modal interval by (31) is not continuous,
i.e., both lower and upper points change like step functions.
Algorithm 2 shows an implementation of this method.

On the other hand, another KDE method reconstructs
the conditional probability density function of 𝑌 given 𝑋 by

𝑓
(KDE)
𝑌 |𝑋 (𝑦 |𝑥) :=

1
𝜎𝑌

𝑁∑︁
𝑛=1

K
( 𝑥−𝑥𝑛

𝜎𝑋

)∑𝑁
𝑙=1K

( 𝑥−𝑥𝑙
𝜎𝑋

) K (
𝑦 − 𝑦𝑛
𝜎𝑌

)
, (32)

where 𝜎𝑋 > 0 and 𝜎𝑌 > 0 denote the bandwidths in the 𝑥

and 𝑦 directions [67], respectively. Then, based on (10), the
100𝛼% conditional modal interval MI𝛼,𝑌 (𝑥) is estimated as

argmin
[𝑦low ,𝑦up ]⊆cl(𝑦inf ,𝑦sup )

𝑦up − 𝑦low s.t.
∫ 𝑦up

𝑦low

𝑓
(KDE)
𝑌 |𝑋 (𝑦 |𝑥) d𝑦 ≥ 𝛼

(33)

for given 𝑋 = 𝑥. If we use the Gaussian kernel defined in (6)
as K(𝑡) in (32), the integral in (33) can be calculated by∫ 𝑦up

𝑦low

𝑓
(KDE)
𝑌 |𝑋 (𝑦 |𝑥) d𝑦 =

𝑁∑︁
𝑛=1

K
( 𝑥−𝑥𝑛

𝜎𝑋

)∑𝑁
𝑙=1K

( 𝑥−𝑥𝑙
𝜎𝑋

) ∫ 𝑦up−𝑦𝑛
𝜎𝑌

𝑦low−𝑦𝑛
𝜎𝑌

K(𝑡) d𝑡

=
1
2

𝑁∑︁
𝑛=1

K
( 𝑥−𝑥𝑛

𝜎𝑋

)∑𝑁
𝑙=1K

( 𝑥−𝑥𝑙
𝜎𝑋

) (erf
(
𝑦up − 𝑦𝑛√

2𝜎𝑌

)
− erf

(
𝑦low − 𝑦𝑛√

2𝜎𝑌

))
,

(34)

where erf (𝑦) := 2√
𝜋

∫ 𝑦

0 𝑒−𝑡
2 d𝑡 is the error function, but even

in this case, it is difficult to exactly solve the problem in (33).
To find an approximate solution, we prepare candidates for
𝑦low and 𝑦up as 𝑦cand,𝑖 := 𝑦cand,0 + 𝑖Δ𝑦 ∈ cl(𝑦inf , 𝑦sup) (s.t. 𝑖 ∈
N and Δ𝑦 > 0) and compute

∫ 𝑦cand,𝑖2
𝑦cand,𝑖1

𝑓
(KDE)
𝑌 |𝑋 (𝑦 |𝑥) d𝑦 by (34).

Theoretically the estimated modal interval by (33) is contin-
uous since 𝑓

(KDE)
𝑌 |𝑋 (𝑦 |𝑥) in (32) is continuous with respect to

𝑥 and 𝑦, but in fact the discretization of the value of 𝑦 into
𝑦cand,𝑖 is performed. If Δ𝑦 is small, this discretization effect
will be smaller, while the computation time will be longer.
Algorithm 3 shows an implementation of this method.

4.2 Experiments for Synthetic Data

To validate the accuracy of each method for various bivariate
data, we generate 100 datasets for each of six different distri-
butions and estimate their 50% conditional modal intervals
MI0.5,𝑌 (𝑥) by the proposed method in (16), the least squares
method in (14), and the two KDE methods in (31) and (33).

4.2.1 Simulated Distributions

Distribution 1 (Normal 𝑌 with uniform 𝑋): In the first dis-
tribution, we use a normal (Gaussian) distribution

Algorithm 2 KDE-Based Modal Interval Estimation in (31)
Input: data { (𝑥𝑛 , 𝑦𝑛 ) }𝑁𝑛=1, probability 𝛼 ∈ (0, 1) , and bandwidth 𝜎.
Output: lower and upper points 𝑦low and 𝑦up of MI𝛼,𝑌 (𝑥 ) for some 𝑥.
1: Sort the data as { (𝑥⟨all⟩

𝑛 , 𝑦
⟨all⟩
𝑛 ) }𝑁

𝑛=1 s.t. 𝑦⟨all⟩
1 < 𝑦

⟨all⟩
2 < · · · < 𝑦

⟨all⟩
𝑁

.

2: 𝑤𝑛 ← K
( 𝑥−𝑥⟨all⟩

𝑛
𝜎

)
(𝑛 = 1, 2, . . . , 𝑁 )

3: 𝑤total ←
∑𝑁

𝑛=1 𝑤𝑛, 𝑤accum ← 0
4: for 𝑛 = 1, 2, . . . , 𝑁 do
5: 𝑤accum ← 𝑤accum + 𝑤𝑛

6: 𝐹𝑛 ← 𝑤accum/𝑤total
7: end for
8: 𝐿MI ← 𝑦

⟨all⟩
𝑁
− 𝑦
⟨all⟩
1 , 𝑦low ← 𝑦

⟨all⟩
1 , 𝑦up ← 𝑦

⟨all⟩
𝑁

, 𝑛2 ← 2, 𝑛1 ← 1
9: while 𝐹𝑛1 ≤ 1 − 𝛼 do

10: while 𝐹𝑛2 − 𝐹𝑛1 < 𝛼 do
11: 𝑛2 ← 𝑛2 + 1
12: end while
13: if 𝐿MI > 𝑦

⟨all⟩
𝑛2 − 𝑦

⟨all⟩
𝑛1 then

14: 𝐿MI ← 𝑦
⟨all⟩
𝑛2 − 𝑦

⟨all⟩
𝑛1 , 𝑦low ← 𝑦

⟨all⟩
𝑛1 , 𝑦up ← 𝑦

⟨all⟩
𝑛2

15: end if
16: 𝑛2 ← 𝑛1 + 2, 𝑛1 ← 𝑛1 + 1
17: end while
18: Return the lower and upper points 𝑦low and 𝑦up.

Algorithm 3 KDE-Based Modal Interval Estimation in (33)
Input: data { (𝑥𝑛 , 𝑦𝑛 ) }𝑁𝑛=1, probability 𝛼 ∈ (0, 1) , bandwidths 𝜎𝑋 and

𝜎𝑌 , and candidates {𝑦cand,𝑖 }𝐼max
𝑖=0 (𝑦cand,𝑖 = 𝑦cand,0 + 𝑖Δ𝑦 and Δ𝑦 > 0).

Output: lower and upper points 𝑦low and 𝑦up of MI𝛼,𝑌 (𝑥 ) for some 𝑥.
1: 𝑤𝑛 ← K

( 𝑥−𝑥𝑛
𝜎𝑋

)
(𝑛 = 1, 2, . . . , 𝑁 )

2: 𝑤total ←
∑𝑁

𝑛=1 𝑤𝑛

3: 𝐹𝑖 ← 1
2𝑤total

∑𝑁
𝑛=1 𝑤𝑛

(
1 + erf

(
𝑦cand,𝑖−𝑦𝑛√

2𝜎𝑌

))
(𝑖 = 0, 1, . . . , 𝐼max)

4: 𝐿MI ← 𝐼maxΔ𝑦, 𝑦low ← 𝑦cand,0, 𝑦up ← 𝑦cand,𝐼max , 𝑖2 ← 1, 𝑖1 ← 0
5: while 𝐹𝑖1 ≤ 1 − 𝛼 and 𝑖1 ≤ 𝐼max − 1 do
6: while 𝐹𝑖2 − 𝐹𝑖1 < 𝛼 and 𝑖2 ≤ 𝐼max do
7: 𝑖2 ← 𝑖2 + 1
8: end while
9: if 𝑖2 ≤ 𝐼max and 𝐿MI > (𝑖2 − 𝑖1 )Δ𝑦 then

10: 𝐿MI ← (𝑖2 − 𝑖1 )Δ𝑦, 𝑦low ← 𝑦cand,𝑖1 , 𝑦up ← 𝑦cand,𝑖2
11: end if
12: 𝑖2 ← 𝑖1 + 2, 𝑖1 ← 𝑖1 + 1
13: end while
14: Return the lower and upper points 𝑦low and 𝑦up.

𝑓𝑌 |𝑋 (𝑦 |𝑥) :=
1√︁

2𝜋𝑣𝑌 (𝑥)
𝑒
− (𝑦−`𝑌 (𝑥 ) )

2

2𝑣𝑌 (𝑥 ) for 𝑦 ∈ R

as a symmetric conditional probability density function of 𝑌
given 𝑋 , where the marginal probability density of 𝑋 is a uni-
form distribution 𝑓𝑋 (𝑥) := 1

10 for 𝑥 ∈ (0, 10) and we define
`𝑌 (𝑥) := 5 − 2 sin 𝜋𝑥

5 and
√︁
𝑣𝑌 (𝑥) := 2 − 𝑥

10 for 𝑥 ∈ (0, 10).
Distribution 2 (Normal 𝑌 with normal 𝑋): The conditional
probability density function is the same as in Distribution 1,
but the marginal probability density is a normal distribution

𝑓𝑋 (𝑥) :=
1

√
2𝜋𝑣𝑋

𝑒
− (𝑥−`𝑋 )2

2𝑣𝑋 for 𝑥 ∈ R,

where we define `𝑋 := 5 and √𝑣𝑋 :=
√

6.

Distribution 3 (Lognormal 𝑌 with uniform 𝑋): In the third
distribution, we use a lognormal distribution
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𝑓𝑌 |𝑋 (𝑦 |𝑥) :=
1√︁

2𝜋�̂�𝑌 (𝑥)𝑦
𝑒
− (log𝑦− ˆ̀𝑌 (𝑥 ) )2

2�̂�𝑌 (𝑥 ) for 𝑦 ∈ (0,∞)

as an asymmetric conditional probability density function of
𝑌 given 𝑋 , where the marginal probability density of 𝑋 is the
same uniform distribution as in Distribution 1 and we define
ˆ̀𝑌 (𝑥) := 1 − sin 𝜋𝑥

5 and
√︁
�̂�𝑌 (𝑥) := 1 − 𝑥

20 for 𝑥 ∈ (0, 10).
Distribution 4 (Lognormal 𝑌 with normal 𝑋): The condi-
tional probability density function is the same as in Distri-
bution 3, while the marginal probability density is the same
normal distribution as in Distribution 2.

Distribution 5 (Another lognormal 𝑌 with uniform 𝑋): In
the fifth distribution, we also use a lognormal distribution as
the conditional probability density function but its parame-
ters ˆ̀𝑌 (𝑥) :=

√︁
𝑥

10 and
√︁
�̂�𝑌 (𝑥) := 1 for 𝑥 ∈ (0, 10) are differ-

ent from Distributions 3 and 4, while the marginal probability
density is the same uniform distribution as in Distribution 1.

Distribution 6 (Another lognormal 𝑌 with lognormal 𝑋):
The conditional probability density function is the same as
in Distribution 5, but the marginal probability density is a
lognormal distribution

𝑓𝑋 (𝑥) :=
1

√
2𝜋�̂�𝑋𝑥

𝑒
− (log𝑥− ˆ̀𝑋 )2

2�̂�𝑋 for 𝑥 ∈ (0,∞),

where we define ˆ̀𝑋 := 1 and
√
�̂�𝑋 := 0.5.

Figures 1(a), 2(a), and 3(a) show the true lower and up-
per curves 𝑚low

0.5,𝑌 (𝑥) and 𝑚
up
0.5,𝑌 (𝑥) of MI0.5,𝑌 (𝑥) for Distri-

butions 1 & 2, 3 & 4, and 5 & 6, respectively, by black lines.
The middle curve 𝑚mid

0.5,𝑌 (𝑥) := (𝑚low
0.5,𝑌 (𝑥) +𝑚

up
0.5,𝑌 (𝑥))/2 of

MI0.5,𝑌 (𝑥) is also shown by a black dashed line. For each dis-
tribution, we randomly generate 𝑁 = 1000 bivariate observa-
tions {(𝑥𝑛, 𝑦𝑛)}1000

𝑛=1 s.t. 𝑥𝑛 ∈ (0, 10). First, each 𝑥𝑛 is gener-
ated from the marginal probability density 𝑓𝑋 (𝑥). Note that
if 𝑥𝑛 ≤ 0 or 𝑥𝑛 ≥ 10 is generated, we reject it and generate
𝑥𝑛 again. Second, each 𝑦𝑛 is generated from the conditional
probability density 𝑓𝑌 |𝑋 (𝑦 |𝑥). Then, each method estimates
MI0.5,𝑌 (𝑥) from {(𝑥𝑛, 𝑦𝑛)}1000

𝑛=1 . We compare the estimated
results in terms of both visual features and average accuracy.

4.2.2 Parameter Settings

For the proposed method in (16), we set knots of spline func-
tions, i.e., bins in the first step, to b0 = 0 and b𝑏 = 10 with
the constant bin width ℎ 𝑗 =

10
𝑏

( 𝑗 = 1, 2, . . . , 𝑏), where we
prepare three different values 𝑏 = 5, 𝑏 = 10, and 𝑏 = 20 as
the number of the bins. We set the smoothness to 𝜌 = 2 that
is sufficient unless there is a special reason, e.g., the third or
higher derivatives of estimated curves are used in the analy-
sis. On the degree 𝑑, we found a difference between the opti-
mal solution for 𝑑 = 3 and that for 𝑑 ≥ 4 when 𝑏 = 5, but the
difference almost disappeared as 𝑏 increased to 10 and 20 in
our preliminary experiments. Hence, we set 𝑑 = 3 to keep
the computational complexity as low as possible. We set the
smoothing parameter to _ ∈ {0.01, 0.1, 1, 10, 100} and the

lower bound gap to 𝛿 = 0, and use the lower option 𝑦inf = 0
for datasets generated from Distributions 3, 4, 5 and 6. We
use two types of weights 𝑤𝑛 > 0. One is setting 𝑤𝑛 = 1 for
all 𝑛, which is equivalent to not using weights. The other is

𝑤𝑛 = 𝑓
(KDE)
𝑋

(𝑥𝑛) :=
1
𝜎𝑁

𝑁∑︁
𝑙=1
K

( 𝑥𝑛 − 𝑥𝑙
𝜎

)
(35)

as in [15], where K(𝑡) is the Gaussian kernel and its band-
width 𝜎 is automatically adjusted from {𝑥𝑛}1000

𝑛=1 by using the
program of the kernel density estimation in MATLAB [68].

For the least squares method in (14), we use the same
values 𝑏 = 5, 𝑏 = 10, and 𝑏 = 20 as the number of the bins,
and obtain the optimal natural cubic spline functions by the
program in MATLAB [69] with _ ∈ {0.01, 0.1, 1, 10, 100}.
For the two KDE methods in (31) and (33), we use the Gaus-
sian kernel in (6) as K(𝑡). In (31), we set the bandwidth to
𝜎 ∈ {0.1, 0.2, . . . , 2.9, 3}. In (33), we set the bandwidths to
𝜎𝑋 ∈ {0.1, 0.2, . . . , 2.9, 3} and𝜎𝑌 ∈ {0.05, 0.1, . . . , 0.95, 1}
with candidates 𝑦cand,𝑖 = 0.05𝑖 (𝑖 = 0, 1, . . . , 400), and use
the error function program in MATLAB to compute erf (𝑦).

4.2.3 Comparison of Visual Features

At first, we compare the estimated results visually because
it is easier to understand the effectiveness and the charac-
teristics of the proposed method than to compare the esti-
mation accuracy numerically. Figures 1(b)–1(d), 2(b)–2(d),
and 3(b)–3(d) show typical results† of the conventional meth-
ods and the proposed method for Distributions 1, 3, and 6,
respectively, where bivariate observations {(𝑥𝑛, 𝑦𝑛)}1000

𝑛=1 are
shown by blue points except for Fig. 3(b), and blue/red cir-
cles in Fig. 3(b) depict the lower/upper points �̂�⟨ 𝑗 ⟩low and �̂�

⟨ 𝑗 ⟩
up

of the local 50% empirical modal interval of 𝑌 in each bin.
Figures 1(b), 1(c), and 1(d) show examples of results for

Distribution 1 by the KDE method in (31) with 𝜎 = 0.5, the
KDE method in (33) with 𝜎𝑋 = 𝜎𝑌 = 0.5, and the proposed
method in (16) with 𝑏 = 20, _ = 0.1 and 𝑤𝑛 = 𝑓

(KDE)
𝑋

(𝑥𝑛),
respectively. In each figure, the estimated interval contains
many bivariate observations and has a similar trend to the
true modal interval in Fig. 1(a). From Fig. 1(b), the result by
the KDE method in (31) has a stepped shape with very large
fluctuations, which looks very unnatural. From Fig. 1(c), the
result by the KDE method in (33) has a shape with smaller
fluctuations than that in Fig. 1(b), but it is slightly discontin-
uous due to the discretization of 𝑦low and 𝑦up into 𝑦cand,𝑖 in
(34). On the other hand, from Fig. 1(d), the result by the pro-
posed method has a smooth shape similar to the true one in
Fig. 1(a) and well reproduces the gradual shortening of the
interval width based on the decreasing property of

√︁
𝑣𝑌 (𝑥).

Figures 2(b), 2(c), and 2(d) show examples of results for
Distribution 3 by the KDE method in (31) with 𝜎 = 0.5, the
KDE method in (33) with 𝜎𝑋 = 0.6 and 𝜎𝑌 = 0.5, and the
proposed method with 𝑏 = 10, _ = 0.1 and𝑤𝑛 = 𝑓

(KDE)
𝑋

(𝑥𝑛),
†The bandwidths 𝜎, 𝜎𝑋 and 𝜎𝑌 in the KDE methods are set to

values when the best accuracy is achieved in Table 1 of Sect. 4.2.4.
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(a) True 50% conditional modal interval
MI0.5,𝑌 (𝑥 ) for Distributions 1 and 2.
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(b) Example of the estimated result by
the KDE method in (31) with 𝜎 = 0.5.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(c) Example of the estimated result by the KDE
method in (33) with 𝜎𝑋 = 𝜎𝑌 = 0.5.
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(d) Example of the estimated result by
the proposed method in (16) with

𝑏 = 20, _ = 0.1 and 𝑤𝑛 = 𝑓
(KDE)
𝑋

(𝑥𝑛 ) .
Fig. 1 Example of the estimated result by each
method from { (𝑥𝑛 , 𝑦𝑛 ) }1000

𝑛=1 of Distribution 1.
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(a) True 50% conditional modal interval
MI0.5,𝑌 (𝑥 ) for Distributions 3 and 4.
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(b) Example of the estimated result by
the KDE method in (31) with 𝜎 = 0.5.
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(c) Example of the estimated result by the KDE
method in (33) with 𝜎𝑋 = 0.6 and 𝜎𝑌 = 0.5.
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(d) Example of the estimated result by
the proposed method in (16) with

𝑏 = 10, _ = 0.1 and 𝑤𝑛 = 𝑓
(KDE)
𝑋

(𝑥𝑛 ) .
Fig. 2 Example of the estimated result by each
method from { (𝑥𝑛 , 𝑦𝑛 ) }1000

𝑛=1 of Distribution 3.
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(a) True 50% conditional modal interval
MI0.5,𝑌 (𝑥 ) for Distributions 5 and 6.
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(b) Example of the estimated result by the least
squares method in (14) with 𝑏 = 20 and _ = 1.
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(c) Example of the estimated result by the KDE
method in (33) with 𝜎𝑋 = 2 and 𝜎𝑌 = 0.1.
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(d) Example of the estimated result by
the proposed method in (16) with

𝑏 = 5, _ = 100 and 𝑤𝑛 = 𝑓
(KDE)
𝑋

(𝑥𝑛 ) .
Fig. 3 Example of the estimated result by each
method from { (𝑥𝑛 , 𝑦𝑛 ) }1000

𝑛=1 of Distribution 6.
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Table 1 Average RMSEs between the true modal intervals and the estimated intervals in 100 trials.
Method Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5 Distribution 6

KDE Method in (31) 0.8096 0.8800 0.8395 0.9604 0.2835 0.4539
(𝜎 = 0.5) (𝜎 = 0.6) (𝜎 = 0.5) (𝜎 = 0.5) (𝜎 = 1.8) (𝜎 = 2)

0.7034 0.7729 0.8704 0.9869 0.3222 0.4589
KDE Method in (33) (𝜎𝑋 = 0.5, (𝜎𝑋 = 0.5, (𝜎𝑋 = 0.6, (𝜎𝑋 = 0.5, (𝜎𝑋 = 1.5, (𝜎𝑋 = 2,

𝜎𝑌 = 0.5) 𝜎𝑌 = 0.6) 𝜎𝑌 = 0.5) 𝜎𝑌 = 0.5) 𝜎𝑌 = 0.05) 𝜎𝑌 = 0.1)
0.8095 1.0003 0.9319 1.1034 0.2448 0.9263

Least Squares Method in (14) (𝑏 = 5, (𝑏 = 5, (𝑏 = 5, (𝑏 = 5, (𝑏 = 5, (𝑏 = 5,
_ = 0.01) _ = 0.01) _ = 0.01) _ = 0.01) _ = 100) _ = 100)

0.6022 0.7162 0.6873 0.8279 0.2591 0.6827
Proposed Method with 𝑤𝑛 = 1 (𝑏 = 20, (𝑏 = 20, (𝑏 = 10, (𝑏 = 5, (𝑏 = 5, (𝑏 = 5,

_ = 1) _ = 1) _ = 1) _ = 1) _ = 100) _ = 100)
0.5980 0.7709 0.6924 0.9913 0.2499 0.5063

Proposed Method with 𝑤𝑛 = 𝑓
(KDE)
𝑋

(𝑥𝑛 ) (𝑏 = 20, (𝑏 = 20, (𝑏 = 10, (𝑏 = 5, (𝑏 = 5, (𝑏 = 5,
_ = 0.1) _ = 0.1) _ = 0.1) _ = 0.01) _ = 100) _ = 100)

respectively. Even though the conditional probability density
function 𝑓𝑌 |𝑋 (𝑦 |𝑥) is asymmetric differently from Distribu-
tion 1, each estimated result has a similar trend to the true
modal interval in Fig. 2(a). From Fig. 2(b), the result by the
KDE method in (31) has a unnatural stepped shape especially
for 𝑥 ≥ 7. From Fig. 2(c), the result by the KDE method in
(33) is closer to the modal interval in Fig. 2(a), but it is still
discontinuous. On the other hand, from Fig. 2(d), the result
by the proposed method has a smooth and accurate shape.

Figures 3(b), 3(c), and 3(d) show examples of results for
Distribution 6 by the least squares method in (14) with 𝑏 =

20 and _ = 1, the KDE method in (33) with 𝜎𝑋 = 2 and
𝜎𝑌 = 0.1, and the proposed method in (16) with 𝑏 = 5, _ =

100 and 𝑤𝑛 = 𝑓
(KDE)
𝑋

(𝑥𝑛), respectively. Since the marginal
probability density function 𝑓𝑋 (𝑥) is a lognormal distribu-
tion, the number of observations s.t. 𝑥𝑛 ≥ 6 is extremely
small differently from Distributions 1 and 3. As a result, in
Fig. 3(b), both lower and upper points �̂�

⟨ 𝑗 ⟩
low and �̂�

⟨ 𝑗 ⟩
up in the

13th to 20th bins are far from the true modal interval, and
the accuracy of the least squares method is poor for 𝑥 ≥ 6
because the lower and upper curves

¯
𝑠∗ (𝑥) and 𝑠∗ (𝑥) cross

each other. This shows that the least squares method in (14)
fails to construct the interval in some cases. From Figs. 3(c)
and 3(d), the result by the KDE method in (33) does not ex-
press the strictly increasing properties of the lower and up-
per curves𝑚low

0.5,𝑌 (𝑥) and𝑚up
0.5,𝑌 (𝑥) and the width𝑚up

0.5,𝑌 (𝑥)−
𝑚low

0.5,𝑌 (𝑥) of the true modal interval MI0.5,𝑌 (𝑥) in Fig. 3(a),
while the proposed method reconstructs a smooth modal in-
terval possessing these three strictly increasing properties.
From Figs. 1, 2, and 3, we see that, for various distributions,
the proposed method can reproduce a smooth modal interval
and express the characteristics of the spread of the distribu-
tion more accurately compared to the conventional methods.

4.2.4 Comparison of Estimation Accuracy

Next, we compare the average accuracy of each method in
100 datasets for each distribution. We evaluate the accuracy
of the proposed estimate

¯
𝑠∗ (𝑥) for the lower curve 𝑚low

0.5,𝑌 (𝑥)
by the root mean square error (RMSE) in the 100 trials and
51 sampling points 𝑥𝑖 = 0.2𝑖 (𝑖 = 0, 1, . . . , 50) as follows:

RMSElow :=

√√√
1

5100

100∑︁
trial=1

50∑︁
𝑖=0
|𝑚low

0.5,𝑌 (0.2𝑖) − ¯
𝑠∗trial (0.2𝑖) |2.

Similarly, RMSEup of 𝑠∗ (𝑥) for 𝑚up
0.5,𝑌 (𝑥) is computed, and

the total RMSE is given by RMSE := RMSElow + RMSEup.
We also compute the total RMSEs for the KDE methods in
(31) and (33), and the least squares method in (14). Table 1
shows the average RMSE in 100 trials for each method with
parameters when the best accuracy was achieved, where the
proposed method is divided into two cases, one with constant
weights and the other with the non-constant weights in (35).

From Table 1, for Distributions 1, 3, and 5, the proposed
method achieved higher estimation accuracy than the two
KDE methods in (31) and (33), and there was not much dif-
ference between the two types of weights in the proposed
method since the weights in (35) were nearly constant due
to the uniform marginal distribution of 𝑋 . In addition, each
bin B 𝑗 contained a similar number of observations, and thus
the least squares method in (14) could estimate the modal
interval with reasonable accuracy, especially with the high-
est accuracy for Distribution 5, without the lower and upper
curves crossing each other, differently from Fig. 3(b).

For Distributions 2 and 4, since the number of observa-
tions close to both ends of the 𝑥 direction was reduced due to
the normal marginal distribution of 𝑋 , the estimation accu-
racy of each method was lower than that for Distributions 1
and 3. In particular, the least squares method in (14) had the
lowest estimation accuracy. Both KDE methods in (31) and
(33) could relatively suppress the accuracy degradation from
Distribution 1 to Distribution 2, which is probably because
the kernels K(𝑡) in the 𝑥 and 𝑦 directions and the true con-
ditional and marginal probability densities are all Gaussian.
On the other hand, even though the proposed method with
the constant weights does not use shape information such as a
normal or lognormal distribution, it still achieved higher es-
timation accuracy. The use of the weights in (35) decreased
the accuracy, which implies that, rather than the weights have
some negative impact, there is less need to use weights since
the smoothness parameter _ has a greater impact than 𝑤𝑛.

For Distribution 6, the number of observations for 𝑥 ≥ 6
was very small due to the lognormal marginal distribution of
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Table 2 Average RMSEs of the least squares method and the proposed method for each 𝑏 and _.
Method 𝑏 _ Distribution 1 Distribution 2 Distribution 3 Distribution 4 Distribution 5 Distribution 6

0.01 0.8095 1.0003 0.9319 1.1034 0.3625 1.2282
0.1 0.8219 1.0302 0.9639 1.1827 0.3426 1.2021

5 1 1.1886 1.3706 1.4866 1.7028 0.2922 1.1092
10 1.7339 1.8277 2.1332 2.2420 0.2543 0.9868

100 1.8884 1.9562 2.3174 2.3875 0.2448 0.9263
0.01 2.8741 2.9159 2.2667 2.2925 0.9356 1.9102
0.1 2.8315 2.8690 2.1945 2.2158 0.8964 1.7543

Least Squares Method in (14) 10 1 2.8319 2.8623 2.2174 2.2529 0.8634 1.5949
10 3.0609 3.0811 2.5571 2.5965 0.8472 1.4809

100 3.2347 3.2489 2.7789 2.8240 0.8396 1.3979
0.01 3.0579 3.0966 2.3802 2.4266 1.0515 3.0172
0.1 3.0125 3.0476 2.2878 2.3168 0.9951 2.5975

20 1 2.9832 3.0146 2.2424 2.2670 0.9608 2.3089
10 3.0942 3.1194 2.4312 2.4699 0.9444 2.1130

100 3.3139 3.3257 2.7517 2.8110 0.9357 1.9565
0.01 0.7008 0.8743 0.7453 0.9114 0.4278 1.5139
0.1 0.6711 0.8177 0.6932 0.8491 0.4015 1.3507

5 1 0.6359 0.7933 0.7076 0.8279 0.3601 1.1722
10 0.7711 1.0874 1.1878 1.6589 0.3034 0.9366

100 1.6027 2.0099 2.1428 2.4998 0.2591 0.6827
0.01 0.8202 1.3248 0.9073 1.1206 0.5367 1.9843

Proposed Method 0.1 0.7683 0.9026 0.7937 0.9926 0.4841 1.5939

with 𝑤𝑛 = 1 10 1 0.6426 0.7719 0.6873 0.9076 0.4098 1.3379
10 0.7262 1.0218 1.1133 1.7103 0.3375 1.0405

100 1.5700 1.9705 2.0811 2.4959 0.3012 0.7651
0.01 0.9258 1.0316 1.1012 1.3804 0.7185 2.7599
0.1 0.7490 0.8549 0.9044 1.1629 0.6101 2.2405

20 1 0.6022 0.7162 0.7510 1.0639 0.5216 1.8002
10 0.6898 0.9649 1.1028 1.8712 0.4588 1.4732

100 1.5430 1.9264 2.0272 2.5617 0.4290 1.0762
0.01 0.6708 0.8937 0.6965 0.9913 0.3991 1.1359
0.1 0.6466 0.8898 0.7162 1.1237 0.3613 0.9291

5 1 0.8454 1.5960 1.2652 2.5365 0.3071 0.7041
10 1.7000 2.6361 2.1933 3.0928 0.2641 0.5074

100 1.9630 2.8681 2.3961 3.2037 0.2499 0.5063
0.01 0.7680 0.8759 0.7937 0.9995 0.4822 1.3668

Proposed Method 0.1 0.6350 0.8305 0.6924 1.2501 0.4076 1.0566

with 𝑤𝑛 = 𝑓
(KDE)
𝑋

(𝑥𝑛 )
10 1 0.8045 1.5063 1.2067 2.6068 0.3421 0.7996

10 1.6675 2.6280 2.1473 3.1361 0.3064 0.5686
100 1.9392 2.8719 2.3627 3.2372 0.3011 0.5410
0.01 0.7411 0.8358 0.8989 1.1690 0.6055 1.8140
0.1 0.5980 0.7709 0.7524 1.5490 0.5176 1.4403

20 1 0.7647 1.4552 1.2189 2.8786 0.4599 1.0904
10 1.6429 2.5632 2.1214 3.2071 0.4354 0.7400

100 2.0152 2.8163 2.3310 3.2759 0.4287 0.6588

𝑋 . As a result, the estimation accuracy of each method de-
creased relatively largely from Distribution 5. In this case,
the two KDE methods in (31) and (33) achieved higher esti-
mation accuracy than the proposed method, though the KDE
methods cannot fully reproduce the increasing properties of
the true interval as shown in Fig. 3(c). The accuracy of the
proposed method with the weights in (35) was close to that
of the KDE methods, while the use of the constant weights
decreased the accuracy. This implies that when the marginal
probability density of 𝑋 is a long-tailed distribution, it is
better to use weights and set them to small values in regions
where the number of observations is extremely small.

We also verify the influence of parameter settings on the
proposed method. Table 2 summarizes the average RMSEs

of the least squares method in (14) and the proposed method
with the constant or non-constant weights for each 𝑏 and _.
From Table 2, on the least squares method, the estimation ac-
curacy was higher when 𝑏 = 5 than when 𝑏 = 10 and 𝑏 = 20
for all the distributions. This is because the accuracy of the
estimated lower and upper points in (13) decreased as the
number 𝑏 of the bins increased. When 𝑏 is small, the least
squares method can only roughly capture the modal interval,
and thus it cannot achieve high accuracy unless the shape of
the true modal interval is simple as in Fig. 3(a). On the other
hand, on the proposed method, there was at least one distri-
bution which was best for each 𝑏. When the value of _ was
fixed, changing the value of 𝑏 had a relatively small impact
on the accuracy. Thus, compared to the least squares method,
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Table 3 Average computation times in 100 trials to estimate the modal interval at 51 sampling points.
Proposed Method

Distribution Quadratic Programming in (28) ADMM in (29) KDE method in (31) KDE method in (33)
𝑏 = 5 𝑏 = 10 𝑏 = 20 𝑏 = 5 𝑏 = 10 𝑏 = 20

Distribution 1 0.4 sec 0.5 sec 0.8 sec 0.2 sec 0.3 sec 0.5 sec 1.4 sec 4.6 sec
Distribution 2 0.4 sec 0.5 sec 0.8 sec 0.2 sec 0.3 sec 0.5 sec 1.4 sec 4.7 sec
Distribution 3 0.4 sec 0.5 sec 0.8 sec 0.2 sec 0.3 sec 0.5 sec 1.4 sec 4.5 sec
Distribution 4 0.4 sec 0.5 sec 0.8 sec 0.2 sec 0.3 sec 0.5 sec 1.4 sec 4.5 sec
Distribution 5 0.4 sec 0.5 sec 0.8 sec 0.2 sec 0.3 sec 0.5 sec 1.4 sec 4.5 sec
Distribution 6 0.4 sec 0.5 sec 0.9 sec 0.2 sec 0.3 sec 0.7 sec 1.4 sec 4.5 sec

the proposed method in (16) is relatively robust for the value
of 𝑏. In the proposed method, if 𝑏 is large, the flexibility of
spline functions is increased, while overfitting tends to occur
in regions where the number of observations is small. Since
the modal interval for Distributions 1 and 2 in Fig. 1(a) and
that for Distributions 3 and 4 in Fig. 2(a) are smooth but vary
to some extent, high accuracy tended to be achieved when
𝑏 = 10 or 𝑏 = 20 and the smoothing parameter _ was not too
large. Meanwhile, both lower and upper curves of the modal
interval for Distributions 5 and 6 in Fig. 3(a) are similar to
straight lines in shape. Therefore, the highest accuracy was
achieved when 𝑏 = 5 with the largest smoothing parameter
_ = 100. In particular, for Distribution 6, using the weights
in (35) implicitly increased the value of _ in regions where
the number of observations is small, and higher estimation
accuracy was achieved than using the constant weights. To
summarize the above discussion, for various distributions,
the proposed method can estimate the modal interval as well
as or more accurately than the least squares method and the
KDE methods, with the robustness for the number of bins.

Differently from the least squares method, the proposed
method could achieve good estimation accuracy for all the
cases of 𝑏 = 5, 10, 20 by tuning the smoothing parameter _.
However, automatic tuning of _ from bivariate observations
is a difficult problem in practical applications, as with tuning
of the bandwidths in the KDE methods. Since the proposed
method can visualize the modal interval quickly as explained
in the next section, we can attempt several parameter values
and then select a good result by visual judgment as follows.
To keep the computational complexity as low as possible, we
use 𝜌 = 2 and 𝑑 = 3. We set 𝛿 and the options 𝑦inf and 𝑦sup
according to requirements. We set 𝑤𝑛 as in (35) if the distri-
bution of 𝑥𝑛 is long-tailed, and use 𝑤𝑛 = 1 otherwise. We set
𝑏 so that the number of observations in each bin B 𝑗 is not
too small. Then, we only need to adjust the smoothing pa-
rameter _ while looking at estimated modal intervals by the
proposed method. If overfitting occurs, i.e., lower and upper
curves rapidly fluctuate, then we increase _. If underfitting
occurs, i.e., both curves are almost linear and the estimated
interval contains only a few observations, then we decrease
_. After several attempts, we select one visually good result.

4.2.5 Comparison of Computation Time

Finally, we compare the computation times of the proposed
method with the two KDE methods on MATLAB R2022a

64-bit (macOS Monterey, SoC Apple M1 Pro, and memory
16 GB). We implement the proposed method by both quad-
ratic programming in (28) using a package [66] and ADMM
in (29) using Algorithm 1 with 𝛾 = 1 and Iter = 1000. We
implement the two KDE methods as in Algorithm 2 and Al-
gorithm 3. Table 3 shows the average computation times in
100 trials of each distribution to estimate the modal interval
MI0.5,𝑌 (𝑥) at 51 sampling points 𝑥𝑖 = 0.2𝑖 (𝑖 = 0, 1, . . . , 50).

From Table 3, we see that whether using the quadratic
programming or ADMM, the proposed method estimated the
modal interval quickly, i.e., in less than 1 second per dataset.
The computation time became longer when 𝑏 increased, and
ADMM was a little faster than the quadratic programming
using the sophisticated package [66]. Note that both results
were almost the same due to the convexity of the problem in
(16), and ADMM’s computation time can be further reduced
if a recently proposed overrelaxation technique [49] is used.

On the other hand, both KDE methods required longer
computation time than the proposed method. This is because
the KDE methods have to find the modal interval by (31) or
(33) as many times as the number of the sampling points 𝑥𝑖 ,
while the proposed method solves the problem in (16) only
once independently of the number of the sampling points 𝑥𝑖 .
The KDE method in (33) took more than three times longer
to estimate the modal interval than the KDE method in (31)
since the cumulative distribution in line 3 of Algorithm 3
takes longer to compute than that in line 6 of Algorithm 2.

4.3 Experiments on Real-World Data

We apply the above methods to estimate the 50% conditional
modal interval MI0.5,𝑌 (𝑥) of real-world meteorological data
provided by China Meteorological Data Service Centre [70],
where we analyze hourly data observed at 18 surface mete-
orological stations in Beĳing, China, from August 1 to 7,
2021, and select temperature 𝑋 [◦C] and water vapor pres-
sure𝑌 [hPa] as a pair of random variable (𝑋,𝑌 ). The number
of observations is 𝑁 = 2706, i.e., we have {(𝑥𝑛, 𝑦𝑛)}2706

𝑛=1 .
Since we cannot know the true modal interval for real-

world data, we investigate the effectiveness of each method
from features of the estimated results in Fig. 4. We set knots
of spline functions to b0 = 18 and b10 = 33 with the constant
bin width ℎ 𝑗 = 1.5 ( 𝑗 = 1, 2, . . . , 10 =: 𝑏), and the smooth-
ness and degree to 𝜌 = 2 and 𝑑 = 3 for the proposed method
in (16). Figures 4(a), 4(b) ,4(c), 4(d), 4(e), and 4(f) show the
results by the simple line chart, the least squares method in
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(a) Simple line chart.
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(b) Least squares method in (14) with _ = 0.01.
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(c) KDE method in (31) with 𝜎 = 1.5.
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(d) KDE method in (33) with 𝜎𝑋 = 𝜎𝑌 = 0.5.
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(e) KDE method in (33) with 𝜎𝑋 = 𝜎𝑌 = 1.5.
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(f) Proposed method in (16) with _ = 1.
Fig. 4 Estimated modal intervals for real-world temperature and water vapor pressure data in [70].

(14) with_ = 0.01, the KDE method in (31) with𝜎 = 1.5, the
KDE method in (33) with 𝜎𝑋 = 𝜎𝑌 = 0.5, the KDE method
in (33) with𝜎𝑋 = 𝜎𝑌 = 1.5, and the proposed method in (16)
with _ = 1 and 𝑤𝑛 = 𝑓

(KDE)
𝑋

(𝑥𝑛), respectively. In these fig-
ures, the red line denotes the saturated vapor pressure [71]

𝑦sup (𝑥) := 6.112 𝑒
17.67𝑥
𝑥+243.5 , (36)

which means the maximum possible value of the water vapor
pressure 𝑌 given temperature 𝑋 = 𝑥. In Figs. 4(a) and 4(b),
blue/red circles depict the lower/upper points �̂�

⟨ 𝑗 ⟩
low and �̂�

⟨ 𝑗 ⟩
up

of the local 50% empirical modal interval of 𝑌 in each bin,
and in Figs. 4(c)–4(f), blue points depict the bivariate obser-
vation {(𝑥𝑛, 𝑦𝑛)}2706

𝑛=1 . All the estimated 50% modal intervals
have similar trends and contain many bivariate observations.

From Figs. 4(a) and 4(b), the results by the simple line
chart and the least squares method in (14) with small _ can
capture the trend of the modal interval, but the fluctuations of
the lower and upper curves obscure the characteristics of the
modal interval. From Fig. 4(c), the result by the KDE method
in (31) not only has a unnatural stepped shape especially for
𝑥 ≥ 31, but also overshoots the saturated vapor pressure in
(36) for 𝑥 ≤ 21, which means that the estimation is inaccu-
rate. From Figs. 4(d) and 4(e), the result by the KDE method
in (33) with relatively small 𝜎𝑋 and 𝜎𝑌 also has a unnatural
stepped shape especially around 𝑥 = 25 and 𝑥 = 31, while
that with relatively large 𝜎𝑋 and 𝜎𝑌 has a shape with smaller
fluctuations but clearly overshoots the saturated vapor pres-
sure for 𝑥 ≤ 21. On the other hand, from Fig. 4(f), the result
by the proposed method with the appropriate parameters has
a natural smooth shape without overshooting the saturated

vapor pressure. Moreover, we can see that the result by the
proposed method noticeably expresses the increasing prop-
erties of the lower and upper curves of the the modal interval
and its width for 𝑥 ≤ 29 and the decreasing property of the
lower and upper curves for 𝑥 ≥ 30. Therefore, we find that
the proposed method also performs well for real-world data
and provides good visualization of the shape features of the
region where bivariate observations appear most frequently.

5. Conclusion

In this paper, for analysis and visualization of bivariate data,
we proposed a two-step modal interval regression method us-
ing flexible spline regression models. In the local empirical
modal interval detection step, after dividing bivariate obser-
vations into bins for one random variable, we expressed the
empirical modal interval for the other random variable as the
lower and upper quantiles in each bin. In the simultaneous
spline quantile regression step, both lower and upper curves
of the conditional modal interval were simultaneously esti-
mated as spline functions having the non-crossing property.
By using the asymmetric absolute errors based on the quan-
tile regression, this step can be formulated as a convex opti-
mization problem on the concatenated coefficient vector of
the lower and upper spline functions and solved very quickly
with the quadratic programming or ADMM. Extensive nu-
merical experiments for synthetic data generated from vari-
ous distributions demonstrated the effectiveness of the pro-
posed method visually and numerically, in comparison with
the straightforward least squares method and the two kernel
density estimation methods. The numerical experiments also
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showed that the proposed method is robust for the number of
bins and requires less computation time than the two kernel
density estimation methods. Furthermore, we also applied
the proposed method to real-world meteorological data and
confirmed that the proposed method can construct a smooth
modal interval that noticeably expresses the characteristics
of the region where observations appear most frequently.
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