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1 Introduction

The short-time Fourier transform (STFT) or the
discrete Gabor transform (DGT) has been widely
utilized for signal analysis and processing [1], [2].
STFT/DGT localizes frequency components of a
signal at each time with a window function whose
energy is concentrated in the time-frequency do-
main. In particular, the Slepian window can mini-
mize the sidelobe energy [3] in signal analysis.

In STFT/DGT domain signal processing, the re-
sult of STFT/DGT is modified and then converted
to a time domain signal by the inverse STFT/DGT.
According to the frame theory [4], the window is
desired to be tight, for processing that is robust to
noise and has few artifacts. In this paper, we pro-
pose to design tight windows minimizing the side-
lobe energy. It is expressed as the maximization of
Rayleigh quotients on oblique manifolds. We ap-
ply the Riemannian Newton’s method [5] to obtain
the optimal tight windows by several iterations.

2 STFT/DGT and Tight Windows

Let x := (2[0], z[1],...,z[L — 1])T € C" and
w := (w[0],w[1],...,w[K—1]))T € RX be asig-
nal and a window (s.t K < L), respectively. Let
a and M be integers satisfying % =: N € Nand
0 <a< K <M < L. In this paper, we define
STFT/DGT of « and its inversion as
( K-1

X[m,n| = Zx[l + anjw(l]e”
1=0
4] Mt |
z[l] = Z ’y[l—an]ZX[m,n]eQﬂlnv?l,
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wherem =0,1,.... M—-1,n=0,1,...,N—1,
i € C denotes the imaginary unit, |-] and [-] are
the floor and ceiling functions, the signal z[-] and
the coefficients X [m, -] are treated periodically as
z[l + L] := z[l] and X|[m, —n] := X[m, N — n],
and 7 := (y[0],7[1],...,v[K —1])T € R¥ is the
canonical dual window. Using a diagonal matrix
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the canonical dual window is given as v = S, w.

If a window w is self-dual, i.e., v = %'w holds
for some A > 0, w is called a tight window. When
using a tight window, the forward transform from
x[l] to X [m,n] is robust to noise, and the inverse
transform from modified coefficients X [m, n] to a
processed signal z[{] is unlikely to create artifacts,
according to the frame theory [4]. A tight window
wy can be given from w by the metric projection:

= VA Sww. (1)
3 Tight Minimum-Sidelobe Windows

Define the dlscrete time Fourier transform of w
by B(f) = Yo wll] e 27 for f € [~1,1),
and set p € (0, 1) as a proportion of the mainlobe
of w(f). In [3], to minimize the sidelobe energy,
the spectral concentration problem is considered:

.. fp 2’/\ Pdf TQp'w
maximize ——— — |, (@)
weRM\(0} 17 | ( (Hldr\ lwl3
where Q,, := (psinc(p(I-1'))) = (%) €
REXK is a positive-definite symmetric matrix and
its first principal eigenvector ws p is the solution
and called the Slepian window. ws 5, is symmetric
and positive, i.e., ws p[l] = ws p[K — 1 —1] > 0.

In this paper, we solve the spectral concentra-
tion problem in (2) under the tightness constraint

J-1 \
l 2= =
;Iw[ +an]|” = 47

where we assume £

use A = % w1thout loss of generality. The set of

all w satisfying the condition in (3) is an oblique
manifold M that is the direct product of spheres
[5]. Since ||w||% = 1 forallw € M, the proposed
window w4, is a solution to the problem below

1=0,1,...,a—1),(3)

=: J € N for simplicity and

maximize w w. 4
axirmi TQ, 4

We solve the problem in (4) by the Riemannian
Newton’s method [5], where the cost function is
redefined as h(w) := LwTQ,w. We iterate

w D) = Py (w® — H;}i)gwm) %)
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from w(® € M, where Py : w — ﬁS;l/Qw is
the metric projection onto M also used in (1), and
gw € RE and H,, € RE*K are the Riemannian
gradient and Hessian of h(w) at w € M given by

Juw = (Qp —a diag(hl(w)){igl)w,
H,=Q,—a diag(hl(w)){ial —aWWTQ,.

Here hy(w) := ZL(K ll/alj)/aJ [l+an]q[l+an]is

defined with Q,w = (q[O], q[1], ..., q[K — 1])T,
and W := (diag(w [l])z 0 ! diag(w [l—i—a])l 0r e
diag(w[l+a(J—1)]){=, )T € RE*is given from
w (see [6] for details). An equivalent algorithm is
used for the multivariate eigenvalue problem [7].

4 Numerical Experiments

We show windows designed for K = 512 a=
128 and p € {%, %, ooy Y Forp = K, the ini-
tial value w(?) of the proposed algorithm was set

to the tight window v/ Sﬂ,‘ls’/ p2 ws ;, given from the
Slepian window ws ;. Then, for p = % (n > 2),
the proposed window w4, for p = % was used
as the initial value. The iteration in (5) was termi-
nated when ||g,, ) ||2 < 1071° was satisfied.

The value of ||g,, ||2 at each iteration is shown
in Fig. 1, where each line corresponds to one of
the mainlobe-width parameters p (see Table 1 for
each color), and the stopping criterion § = 1015
is indicated by the horizontal line. Table 1 shows
the numbers of iterations required for the termina-
tion. The proposed algorithm could compute the
solution very fast for p < 13 while required more
iterations for p > > 4, but 1t was still fast except for
p= }?. This 1nstab111ty is because the eigenvalues
of @, are closer to each other as p increases [3].

Fig. 2 shows shapes and spectra of the obtained
windows. The Slepian window wgs ), (top row) be-
comes narrower as p increases, which implies the
increase of the distance from the set M. Hence,
its canonical tight window VA Swl/ 2w3,p (middle
row) is more different from ws ), for larger p, and
the energy-concentration property is broken as in
the middle right figure. In contrast, the proposed
window w A4, (bottom row) can narrow the main-
lobe as ws ;, while satisfying the tightness in (3).

5 Conclusion

In this paper, we proposed a class of tight win-
dows minimizing the sidelobe energy. Those win-
dows are characterized as solutions to the spectral
concentration problems on oblique manifolds. We
exactly applied the Riemannian Newton’s method
for computing the solutions fast. Improvement of
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Fig. 1. Values of ||g,, ) ||2. Since the numbers of iterations
required for convergence were largely different for some p
(see Table 1), the figure was split into two parts: results for
pP= 4, 2,..., 2 (left)and forp = 32,32 ... 29 (right).
The color represents p, e.g., = is dark blue and 22 is yellow.

Table 1. Numbers of iterations required for convergence.

P 3 P 3 P 3 P 3
1/K | 2 6/K | 4 5 10
2/K | 4 T/K | 4 4 17
3/K | 3 8/K |5 6 26
4/K | 3 9/K |6 26 266
5/K | 4| 10/K | 7 8 43
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Fig. 2. Comparison of the existing and proposed windows
(K =512,a=128andp = -, =,..., 2). From top to
bottom, the Slepian window, its canonical tight window, and
the proposed tight window are shown. The color represents p
asin Fig. 1. Alllines are peak-normalized, and the frequency
axis is normalized so that the Nyquist frequency equals 10°.

the numerical stability for large p and applications
of the proposed tight windows to STFT/DGT do-
main signal processing are left as future work.
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