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1 Introduction
The short-time Fourier transform (STFT) or the

discrete Gabor transform (DGT) has been widely
utilized for signal analysis and processing [1], [2].
STFT/DGT localizes frequency components of a
signal at each time with a window function whose
energy is concentrated in the time-frequency do-
main. In particular, the Slepian window can mini-
mize the sidelobe energy [3] in signal analysis.

In STFT/DGT domain signal processing, the re-
sult of STFT/DGT is modified and then converted
to a time domain signal by the inverse STFT/DGT.
According to the frame theory [4], the window is
desired to be tight, for processing that is robust to
noise and has few artifacts. In this paper, we pro-
pose to design tight windows minimizing the side-
lobe energy. It is expressed as the maximization of
Rayleigh quotients on oblique manifolds. We ap-
ply the Riemannian Newton’s method [5] to obtain
the optimal tight windows by several iterations.

2 STFT/DGT and Tight Windows
Let x := (x[0], x[1], . . . , x[L− 1])T ∈ CL and

w := (w[0], w[1], . . . , w[K−1])T ∈ RK be a sig-
nal and a window (s.t K < L), respectively. Let
a and M be integers satisfying L

a =: N ∈ N and
0 < a < K ≤ M ≤ L. In this paper, we define
STFT/DGT of x and its inversion as
X[m,n] =

K−1∑
l=0

x[l + an]w[l] e−
2πim(l+an)

M ,

x[l] =

b l
ac∑

n=d l−K+1
a e

γ[l − an]
M−1∑
m=0

X[m,n] e
2πiml

M ,

where m = 0, 1, . . . ,M−1, n = 0, 1, . . . , N−1,
i ∈ C denotes the imaginary unit, b·c and d·e are
the floor and ceiling functions, the signal x[·] and
the coefficients X[m, ·] are treated periodically as
x[l+ L] := x[l] and X[m,−n] := X[m,N − n],
and γ := (γ[0], γ[1], . . . , γ[K−1])T ∈ RK is the
canonical dual window. Using a diagonal matrix

Sw := diag

(
M

bK−l−1
a c∑

n=−b l
ac

|w[l + an]|2
)K−1

l=0

,

the canonical dual window is given as γ = S−1
w w.

If a window w is self-dual, i.e., γ = 1
λw holds

for some λ > 0, w is called a tight window. When
using a tight window, the forward transform from
x[l] to X[m,n] is robust to noise, and the inverse
transform from modified coefficients X̃[m,n] to a
processed signal x̃[l] is unlikely to create artifacts,
according to the frame theory [4]. A tight window
wt can be given from w by the metric projection:

wt =
√
λS

−1/2
w w. (1)

3 Tight Minimum-Sidelobe Windows
Define the discrete-time Fourier transform of w

by ŵ(f) :=
∑K−1

l=0 w[l] e−2πifl for f ∈ [−1
2 ,

1
2),

and set p ∈ (0, 1) as a proportion of the mainlobe
of ŵ(f). In [3], to minimize the sidelobe energy,
the spectral concentration problem is considered:

maximize
w∈RK\{0}

∫ p/2
−p/2 |ŵ(f)|

2 df∫ 1/2
−1/2 |ŵ(f)|2 df

(
=

wTQpw

‖w‖22

)
, (2)

where Qp := (p sinc(p(l−l′))) = ( sin(πp(l−l′))
π(l−l′) ) ∈

RK×K is a positive-definite symmetric matrix and
its first principal eigenvector wS,p is the solution
and called the Slepian window. wS,p is symmetric
and positive, i.e., wS,p[l] = wS,p[K − l − 1] > 0.

In this paper, we solve the spectral concentra-
tion problem in (2) under the tightness constraint
J−1∑
n=0

|w[l+an]|2 = λ

M
(l = 0, 1, . . . , a− 1), (3)

where we assume K
a =: J ∈ N for simplicity and

use λ = M
a without loss of generality. The set of

all w satisfying the condition in (3) is an oblique
manifold M that is the direct product of spheres
[5]. Since ‖w‖22 = 1 for all w ∈ M, the proposed
window wM,p is a solution to the problem below

maximize
w∈M

wTQpw. (4)

We solve the problem in (4) by the Riemannian
Newton’s method [5], where the cost function is
redefined as h(w) := 1

2w
TQpw. We iterate

w(i+1) = PM
(
w(i) −H−1

w(i)gw(i)

)
(5)
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from w(0) ∈M, where PM :w 7→
√
λS

−1/2
w w is

the metric projection onto M also used in (1), and
gw ∈ RK and Hw ∈ RK×K are the Riemannian
gradient and Hessian of h(w) at w ∈ M given by{
gw =

(
Qp−a diag(hl(w))K−1

l=0

)
w,

Hw =Qp−a diag(hl(w))K−1
l=0 −aWWTQp.

Here hl(w) :=
∑⌊(K−l−1)/a⌋

n=−⌊l/a⌋ w[l+an]q[l+an] is
defined with Qpw =: (q[0], q[1], . . . , q[K−1])T,
andW := (diag(w[l])a−1

l=0 , diag(w[l+a])a−1
l=0 , . . . ,

diag(w[l+a(J−1)])a−1
l=0 )

T ∈RK×a is given from
w (see [6] for details). An equivalent algorithm is
used for the multivariate eigenvalue problem [7].

4 Numerical Experiments
We show windows designed for K = 512, a =

128 and p ∈ { 1
K , 2

K , . . . , 20K }. For p = 1
K , the ini-

tial value w(0) of the proposed algorithm was set
to the tight window

√
λS

−1/2
wS,p wS,p given from the

Slepian window wS,p. Then, for p = n
K (n ≥ 2),

the proposed window wM,p for p = n−1
K was used

as the initial value. The iteration in (5) was termi-
nated when ‖gw(i)‖2 ≤ 10−15 was satisfied.

The value of ‖gw(i)‖2 at each iteration is shown
in Fig. 1, where each line corresponds to one of
the mainlobe-width parameters p (see Table 1 for
each color), and the stopping criterion δ = 10−15

is indicated by the horizontal line. Table 1 shows
the numbers of iterations required for the termina-
tion. The proposed algorithm could compute the
solution very fast for p ≤ 13

K while required more
iterations for p ≥ 14

K , but it was still fast except for
p = 19

K . This instability is because the eigenvalues
of Qp are closer to each other as p increases [3].

Fig. 2 shows shapes and spectra of the obtained
windows. The Slepian window wS,p (top row) be-
comes narrower as p increases, which implies the
increase of the distance from the set M. Hence,
its canonical tight window

√
λS

−1/2
wS,p wS,p (middle

row) is more different from wS,p for larger p, and
the energy-concentration property is broken as in
the middle right figure. In contrast, the proposed
window wM,p (bottom row) can narrow the main-
lobe as wS,p while satisfying the tightness in (3).

5 Conclusion
In this paper, we proposed a class of tight win-

dows minimizing the sidelobe energy. Those win-
dows are characterized as solutions to the spectral
concentration problems on oblique manifolds. We
exactly applied the Riemannian Newton’s method
for computing the solutions fast. Improvement of

N
or

m
 o

f 
R

ie
m

an
ni

an
 g

ra
di

en
t

0 2 4 6 8 10
Iteration

10-15

10-10

10-5

100

0 10 20 30 40 50
Iteration

10-15

10-10

10-5

100

Fig. 1. Values of ∥gw(i)∥2. Since the numbers of iterations
required for convergence were largely different for some p
(see Table 1), the figure was split into two parts: results for
p = 1

K
, 2
K
, . . . , 13

K
(left) and for p = 14

K
, 15
K
, . . . , 20

K
(right).

The color represents p, e.g., 1
K

is dark blue and 20
K

is yellow.

Table 1. Numbers of iterations required for convergence.
p i

1/K 2
2/K 4
3/K 3
4/K 3
5/K 4

p i
6/K 4
7/K 4
8/K 5
9/K 6
10/K 7

p i
11/K 5
12/K 4
13/K 6
14/K 26
15/K 8

p i
16/K 10
17/K 17
18/K 26
19/K 266
20/K 43

Fig. 2. Comparison of the existing and proposed windows
(K = 512, a = 128 and p = 1

K
, 2
K
, . . . , 20

K
). From top to

bottom, the Slepian window, its canonical tight window, and
the proposed tight window are shown. The color represents p
as in Fig. 1. All lines are peak-normalized, and the frequency
axis is normalized so that the Nyquist frequency equals 100.

the numerical stability for large p and applications
of the proposed tight windows to STFT/DGT do-
main signal processing are left as future work.
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