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Abstract—Diabetes mellitus often leads to a serious eye disease
called diabetic retinopathy, which is one major cause of blindness
among adults. Since this blindness can be prevented if the diabetic
retinopathy is detected at an early stage and appropriate medical
treatment is provided, routine screening tests with fundus images
are very important. However, as the number of diabetic patients
increases, the routine screening tests are becoming big burdens
for ophthalmologists. To reduce these burdens, in this paper, we
propose a diagnosis support method by using convex optimization.
The proposed method decomposes a green channel fundus image
into a basic image composed of non-disease parts, a positive image
including exudates, and a negative image including hemorrhages.
Numerical experiments show the effectiveness of our method.

I. INTRODUCTION

Diabetic retinopathy is a serious eye disease accompanied
with diabetes mellitus and a major cause of blindness among
working-aged people [1], [2]. Almost all patients with type 1
diabetes and more than 60% of patients with type 2 diabetes
get the retinopathy during the first two decades of the disease.
On the other hand, it is said that 90% of the blindness caused
by the diabetic retinopathy can be prevented if the retinopathy
is detected at an early stage and appropriate medical treatment
is provided. Therefore, diabetic patients must undergo screen-
ing tests regularly to check the onset of the retinopathy.

Fundus photography is the most commonly-used screening
for diabetic retinopathy diagnosis. A fundus image of a typical
diabetic patient, where the retinopathy has begun to progress, is
shown in Fig. 1. In every fundus image, there always exists one
optic disc (OD), which is also called the blind spot since there
are no photoreceptors in this part. OD represents the beginning
of the optic nerve and is shown as a bright circle in the fundus
image. Blood vessels (BVs) come into the retina from OD and
spread in various directions as capillaries to supply retinal cells
with oxygen and nutrition. OD and BVs are non-disease parts
included in every fundus image. On the other hand, exudates
(EXs) and hemorrhages (HEs) are disease parts included only if
the retinopathy develops. Hard EXs are lipid leakages from BV
and visible signs of the diabetic retinopathy at an early stage.
At the next stage of the retinopathy, soft EXs, which are more
blurred compared with hard ones, appear as died and dilated
ganglion cell axons. Dot HEs and blot HEs occur from dama-
ged capillaries at an early stage. At the next stage, blood flow
is locally stopped, i.e., the ischemia happens, and HEs become
larger. When the retinopathy further progresses, abnormal new
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Fig. 1. Typical fundus image. The optic disc, blood vessels, and the macula
including the fovea appear in every image as non-disease parts. Hard and soft
exudates and hemorrhages appear as disease parts if the retinopathy develops.

BVs are created and then vitreous HEs are caused. Based on the
above knowledge, ophthalmologists judge from fundus images
whether the diabetic retinopathy develops, progresses, or not.

However, with increasing number of diabetic patients, espe-
cially of type 2, the regular screening tests are becoming heavy
burdens for the ophthalmologists. To reduce the burdens, many
diagnosis support methods have been proposed [3]–[29]. Most
of them automatically detect OD, BV, EX, and HE parts from a
fundus image through image processing techniques [3]–[13] or
machine learning techniques [14]–[27]. These methods return
good results for previous datasets, but for a recently released
one “Indian diabetic retinopathy image dataset (IDRiD) [30],”
their performances seriously degrade. This is because for every
fundus image in the previous datasets, the contrast is very high
and disease parts are not so large, while in IDRiD, the contrast
is low and disease parts of some fundus images are very large.

In this paper, we propose a novel diagnosis support method,
which is quite different from all the existing methods [3]–[29].
The propose method decomposes the green channel image of
a fundus image into a basic image composed of normal areas,
a positive image including OD & EX, and a negative image
including BV & HE. The proposed decomposition is expressed
as a convex optimization problem, whose constraint is the ap-
proximation accuracy for the green channel image, and whose
cost function is the sum of convex regularization terms for the
basic, positive and negative images. This problem is solved by



(a) Original color image (b) Red channel image

(c) Green channel image (d) Blue channel image

Fig. 2. Original fundus image and three color channel images. Note that red channel, green channel, and blue channel images are rescaled into [0, 1]I×J .

the primal-dual splitting algorithm [31] introduced in the next
section. Experiments using IDRiD demonstrate the effective-
ness of the proposed method and its potential for future work.

II. PRIMAL-DUAL SPLITTING ALGORITHM

Let R, R≥0, and R≤0 be the sets of all real numbers, non-
negative real numbers, and non-positive real numbers, respec-
tively. We write a matrix by a capital letter such as X ∈ RI×J ,
and its (i, j)-entry by a small letter with indices i and j such as
xi,j ∈ R. In any finite-dimensional real Hilbert space, ‖·‖2,W
and ‖·‖1,W denote weighted `2 and `1 norms, respectively.

Let us consider the following convex optimization problem:

minimize
x

f(x) + g(x) + h(L(x)), (1)

where x ∈ X is a vector in a finite-dimensional Hilbert space
X , L : X →Z is a linear mapping to another finite-dimensional
Hilbert space Z , f : X → R is a differentiable convex func-
tion, and g : X → R ∪ {∞} and h : Z → R ∪ {∞} are proper
lower semicontinuous convex functions.1 The problem in (1)
can be solved by the primal-dual splitting algorithm [31] which
iteratively computes, from any initial point (x(0), ξ(0))∈X×Z ,⌊

x(t+1) = proxγ1g
(
x(t) − γ1(∇f(x(t)) + L∗(ξ(t)))

)
ξ(t+1) = proxγ2h∗

(
ξ(t) + γ2L(2x(t+1) − x(t))

) (2)

1A function f : X → R ∪ {∞} is called proper, lower semicontinuous,
and convex if dom(f) := {x ∈ X | f(x) < ∞} 6= ∅, lev≤α(f) :=
{x ∈ X | f(x) ≤ α} is closed for all α ∈ R, and f(λx + (1 − λ)y) ≤
λf(x) + (1− λ)f(y) for all x,y ∈ X and all λ ∈ (0, 1), respectively.

for t ≥ 0, where γ1 > 0, γ2 > 0, L∗ : Z → X is the adjoint
operator of L, and proxγ1g : X → X and proxγ2h∗ : Z → Z
are the proximity operators2 of γ1g and γ2h

∗. Note that γ1
and γ2 have to satisfy 1

γ1
−γ2‖L‖2op > κ

2 , where ‖L‖op is the
operator norm of L, and κ ≥ 0 is a Lipschitz constant of ∇f .

On the square of a weighted `2 norm, its proximity operator
can be computed for each component by

proxγ‖·‖22,W (y) =
( yi

1 + 2γwi

)
i
, (3)

where wi is a weight for the ith component yi. On a weighted
`1 norm, its proximity operator can be computed by

proxγ‖·‖1,W (y) =
(
max(|yi| − γwi, 0) sgn(yi)

)
i
, (4)

where sgn(y) = 1 if y ≥ 0 and sgn(y) = −1 otherwise.

III. FUNDUS IMAGE DECOMPOSITION VIA OPTIMIZATION

A. Image Decomposition for Diabetic Retinopathy Diagnosis

Original fundus photographs are color images as shown in
Fig. 2(a). Figures 2(b), 2(c), and 2(d) show red channel, green
channel, and blue channel images of Fig. 2(a), respectively.
From Fig. 2(b), we can see that the red channel image is too
bright and some components are saturated. From Fig. 2(d), we

2For a proper lower semicontinous convex function f : X → R∪{∞} and
any γ > 0, the proximity operator is defined by proxγf : X → X : y 7→
argminx∈X γf(x)+

1
2
‖x−y‖22. In addition, the proximity operator of the

conjugate function f∗ can be given by proxγf∗ (y) = y− γprox 1
γ
f (

1
γ
y).



(a) Contrast-enhanced green channel image Y (b) Basic image B composed of only non-disease areas

(c) Positive image P including OD and EX parts (d) Negative image N including BV and HE parts

Fig. 3. Proposed fundus image decomposition for IDRiD 25. Note that P is rescaled into [0, 1]285×429 and N is reversed and rescaled into [0, 1]285×429.

can see that the blue channel image is too dark and hence large
noise is included. Therefore, as with some methods [4]–[12],
we extract the green channel image in Fig. 2(c) from the color
image, and use it only for diabetic retinopathy diagnosis.

Although the green channel image appropriately preserves
the characteristics of the original color image, its contrast is
very different depending on the photographic environment and
sometimes not so good as shown in Fig. 2(c). Hence, first, we
create a contrast-enhanced green channel image Y ∈ [0, 1]I×J

by contrast limited adaptive histogram equalization (CLAHE)
[32], and we try to detect OD, BV, EX, and HE parts from Y .
By staring at the contrast-enhanced image Y , we can find that
OD and EX parts are very bright compared with neighboring
pixels. Similarly, BV and HE parts are darker than neighboring
pixels. Based on this viewpoint, we propose to decompose Y
into a basic image B ∈ RI×J as shown in Fig. 3(b), a positive
image P ∈ RI×J≥0 in Fig. 3(c), and a negative image N ∈ RI×J≤0
in Fig. 3(d) by solving a convex optimization problem

minimize
B,P,N

Φ(B) + Ψ(P ) + Ω(N)

s.t. −εni,j ≤ bi,j+pi,j+ni,j−yi,j ≤ εpi,j , pi,j ≥ 0 and ni,j ≤ 0.
(5)

Here εpi,j ≥ 0 and εni,j ≥ 0 are acceptable errors, of positive
and negative directions, from yi,j . Three functions Φ, Ψ, and Ω
are convex regularization terms for the images B, P , and N .

In this paper, we assume that image and OD masks can be
obtained by some preprocessing as shown in Fig. 4. The image
mask in Fig. 4(a) can be simply obtained by binarization of the

green channel image in Fig. 2(c) with a fixed threshold. On the
other hand, the OD mask in Fig. 4(b) cannot be obtained by
simple thresholding, but relatively easily obtained by machine
learning methods [14]–[16] since there exists only one OD in
every fundus image, and every shape is similar to each other.

By using the above two masks, we define Φ, Ψ, and Ω. The
basic image B is smooth, and this property can be evaluated by

Φ(B) := ‖D2(B)‖22,Wb
=

I−2∑
i=1

J∑
j=1

wbvv
i,j |bi+2,j−2bi+1,j+bi,j |2

+

I−1∑
i=1

J−1∑
j=1

wbvh
i,j |bi+1,j+1 − bi+1,j − bi,j+1 + bi,j |2

+

I∑
i=1

J−2∑
j=1

wbhh
i,j |bi,j+2 − 2bi,j+1 + bi,j |2,

where D2 : RI×J → R(I−2)×J ×R(I−1)×(J−1)×RI×(J−2) is
the twice difference operator, weights wbvv

i,j , wbvh
i,j and wbhh

i,j are
positive for differences inside the image mask, and are zeros
for the other differences. The positive image P is sparse except
for OD part that is constant. This property can be evaluated by

Ψ(P ) := ‖P‖1,Wp1
+ ‖D1(P )‖22,Wp2

=

I∑
i=1

J∑
j=1

wp
i,j |pi,j |

+

I−1∑
i=1

J∑
j=1

wpv

i,j |pi+1,j − pi,j |2 +

I∑
i=1

J−1∑
j=1

wph

i,j |pi,j+1 − pi,j |2,

where D1 : RI×J → R(I−1)×J × R(I−1)×J is the first differ-



(a) Image mask (b) OD mask

Fig. 4. Image mask and OD mask for Y in Fig. 3(a). We assume that these masks are obtained by some preprocessing.

ence operator, a weight wp
i,j is zero in the inside of the OD

mask and positive in the other areas, weights wpv

i,j and wph

i,j

are positive for differences inside the OD mask, and are zeros
for the other differences. The negative image N is also sparse,
and this property can be evaluated by

Ω(N) := ‖N‖1,Wn
=

I∑
i=1

J∑
j=1

wn
i,j |ni,j |,

where a weight wn
i,j is always positive and we set the smallest

value in the inside of the OD mask because BV is not so dark
in this area. Moreover, in the other areas, we recommend to
satisfy wn

i,j ≤ w
p
i,j . This is because, in the outside of the OD

mask, the positive image P is usually more sparse than the
negative image N since N always includes BV parts, i.e., non-
disease parts, while P only includes EX, i.e., disease parts.

B. Optimization Algorithm

We solve the optimization problem in (5) by the primal-dual
splitting algorithm. In (1), by defining f(B,P,N) := 0,

g(B,P,N) :=

{
0 if (B,P,N) satisfies all the constraints,
∞ otherwise,

L(B,P,N) := (D2(B), P,D1(P ), N) =: (Z1, Z2, Z3, Z4) and

h(L(B,P,N)) :=‖Z1‖22,Wb
+‖Z2‖1,Wp1

+‖Z3‖22,Wp2
+‖Z4‖1,Wn,

we construct an optimization problem equivalent to the prob-
lem in (5). Then, since x = (B,P,N), ξ = (Z1, Z2, Z3, Z4),
L∗(Z1,Z2,Z3,Z4) =D∗2(Z1)+Z2+D∗1(Z3)+Z4, and proxγ2h∗

is computed from (3), (4) and Footnote 2, we can apply the
algorithm in (2) if proxγ1g , i.e., the projection onto the con-
straint set, is computable. We newly elucidated this projection
and it can be computed as follows (see Appendix for proof).

For simplicity, define B̂ := B(t)−γ1D∗2(Z
(t)
1 ), P̂ := P (t)−

γ1(Z
(t)
2 +D∗1(Z

(t)
3 )) and N̂ := N (t)−γ1Z(t)

4 . Hence we have
(B(t+1), P (t+1), N (t+1)) = proxγ1g(B̂, P̂ , N̂), and it is com-
putable for each (b

(t+1)
i,j , p

(t+1)
i,j , n

(t+1)
i,j ). At first, we compute

p̃i,j :=

{
p̂i,j if p̂i,j ≥ 0,
0 otherwise,

and ñi,j :=

{
n̂i,j if n̂i,j ≤ 0,
0 otherwise.

If −εni,j ≤ b̂i,j+ p̃i,j+ñi,j−yi,j ≤ εpi,j , we have b(t+1)
i,j = b̂i,j ,

p
(t+1)
i,j = p̃i,j , and n(t+1)

i,j = ñi,j . Otherwise, we define qi,j :=

yi,j+εpi,j if b̂i,j+ p̃i,j+ñi,j−yi,j > εpi,j , and qi,j := yi,j−εni,j
if b̂i,j+ p̃i,j+ ñi,j−yi,j < −εni,j . Then (b

(t+1)
i,j , p

(t+1)
i,j , n

(t+1)
i,j )

is given by the following conditional branch:
(i) if 2n̂i,j − p̂i,j < b̂i,j − qi,j < 2p̂i,j − n̂i,j

b
(t+1)
i,j = b̂i,j +

qi,j−b̂i,j−p̂i,j−n̂i,j
3

p
(t+1)
i,j = p̂i,j +

qi,j−b̂i,j−p̂i,j−n̂i,j
3

n
(t+1)
i,j = n̂i,j +

qi,j−b̂i,j−p̂i,j−n̂i,j
3

(ii) if b̂i,j − qi,j < p̂i,j ≤ 2n̂i,j − b̂i,j + qi,j
b
(t+1)
i,j = b̂i,j +

qi,j−b̂i,j−p̂i,j
2

p
(t+1)
i,j = p̂i,j +

qi,j−b̂i,j−p̂i,j
2

n
(t+1)
i,j = 0

(iii) if 2p̂i,j − b̂i,j + qi,j ≤ n̂i,j < b̂i,j − qi,j
b
(t+1)
i,j = b̂i,j +

qi,j−b̂i,j−n̂i,j
2

p
(t+1)
i,j = 0

n
(t+1)
i,j = n̂i,j +

qi,j−b̂i,j−n̂i,j
2

(iv) if p̂i,j ≤ b̂i,j − qi,j ≤ n̂i,j
b
(t+1)
i,j = qi,j

p
(t+1)
i,j = 0

n
(t+1)
i,j = 0

where note that we do not use (p̃i,j , ñi,j) but (p̂i,j , n̂i,j).
Next, as the second line in (2), we compute

Z
(t+1)
1 = proxγ2‖·‖2∗2,Wb

(
Z

(t)
1 + γ2D2(2B(t+1) −B(t))

)
Z

(t+1)
2 = proxγ2‖·‖∗1,Wp1

(
Z

(t)
2 + γ2(2P (t+1) − P (t))

)
Z

(t+1)
3 = proxγ2‖·‖2∗2,Wp2

(
Z

(t)
3 + γ2D1(2P (t+1) − P (t))

)
Z

(t+1)
4 = proxγ2‖·‖∗1,Wn

(
Z

(t)
4 + γ2(2N (t+1) −N (t))

)
by using (3), (4) and Footnote 2. By repeating the updates of
(B,P,N) and (Z1, Z2, Z3, Z4), we solve the problem in (5).



(a) Contrast-enhanced green channel image Y (b) Basic image B

(c) Positive image P (d) Negative image N

Fig. 5. Proposed fundus image decomposition for IDRiD 31. Note that P is rescaled into [0, 1]285×429 and N is reversed and rescaled into [0, 1]285×429.

IV. NUMERICAL EXPERIMENTS

A. Experimental Results

We verify the effectiveness of the proposed method by using
Indian diabetic retinopathy image dataset3 [30], which includes
fundus images of typical diabetic retinopathy patients. Among
all 81 images, we pick up IDRiD 25, IDRiD 31 and IDRiD 66
since the existing strategies do not work well for these images
due to low contrast and wide disease areas. As preprocessing,
each image mask is created from the normalized green channel
image by binarization with a fixed threshold 20

255 , and each OD
mask is created by hand. CLAHE is done in MATLAB with
ClipLimit = 0.02 and Distribution = rayleigh. In the proposed
problem in (5), we set εpi,j = 0 for all (i, j), εni,j = 5

255 in the
inside of the image mask, and εni,j = 0 in the outside. Nonzero
weights are set to wbvv

i,j = wbvh
i,j = wbhh

i,j = 25, wp
i,j = 0.001,

wpv

i,j = wph

i,j = 0.025, wn
i,j = 0.000125 in the inside of the OD

mask, and wn
i,j = 0.0005 in the other areas. The parameter of

the primal-dual splitting algorithm is (γ1, γ2) = (0.15, 0.15).
Figures 3, 5, and 6 show the proposed decomposition results

for IDRiD 25, IDRiD 31, and IDRiD 66, respectively, where
(a) is the contrast-enhanced image Y , (b) is the basic image B,
(c) is the positive image P , and (d) is the negative image N .
Since the above parameters in (5) are adjusted so that we can
obtain good results for IDRiD 25, Figs. 3(c) and 3(d) capture

3URL: https://ieee-dataport.org/open-access/indian-
diabetic-retinopathy-image-dataset-idrid

OD & EX parts and BV & HE parts, respectively. Moreover,
from Figs. 5(c), 5(d), 6(c), and 6(d), the proposed method can
basically extract OD & EX parts and BV & HE parts as P and
N for IDRiD 31 and IDRiD 66. However, in Fig. 5(c), P also
captures some non-disease parts, desired to be included in B,
especially around BV parts. Similarly, in Fig. 6(d), N captures
some non-disease parts especially around EX parts.

B. Discussion
Through the above experiments, we find that it is dangerous

to directly detect EX parts from P and BV & HE parts from N
because P and N may include some non-disease parts desired
to be in B. Instead of these direct detections, we recommend
to use B+P and B+N as shown in Fig. 7(a) and Fig. 7(b),
respectively, for each detection. For example, if we would like
to extract BV, we should apply some BV extraction method to
B +N . This is because, even if P and N include some non-
disease parts, B+N mainly includes BV, HE and non-disease
parts, and hence we can suppers an influence of EX parts.

We demonstrate the effectiveness of this strategy by a simple
example of BV extraction. We apply the method4 proposed in
[17] to the original image Y in Fig. 3(a) and the recommended
oneB+N in Fig. 7(b). Figures 8(a) and 8(b) show each results,
and from these figures, we can see that the results from B+N
is more accurate and the influence of EX parts is suppressed.

4URL: https://www.mathworks.com/matlabcentral/file
exchange/49172-trainable-cosfire-filters-for-curvili
near-structure-delineation-in-images



(a) Contrast-enhanced green channel image Y (b) Basic image B

(c) Positive image P (d) Negative image N

Fig. 6. Proposed fundus image decomposition for IDRiD 66. Note that P is rescaled into [0, 1]285×429 and N is reversed and rescaled into [0, 1]285×429.

V. CONCLUSION

In this paper, we proposed a novel image analysis strategy
for fundus photographs of diabetic retinopathy. The proposed
method decomposes the contrast-enhanced green channel im-
age into a basic image composed of only non-disease areas, a
positive image including OD & EX, and a negative image in-
cluding BV & HE. The proposed decomposition is formulated
as an optimization problem, and it can be solved by the primal-
dual splitting algorithm. Experiments using fundus images of
typical patients showed the effectivity of the proposed strategy.

APPENDIX
PROJECTION ONTO THE CONSTRAINT SET IN (5)

In Section III-B, the function g is defined by

g(B,P,N) :=

{
0 if (B,P,N) satisfies all the constraints,
∞ otherwise,

i.e., g is the indicator function of the constraint set. For B̂ ∈
RI×J , P̂ ∈ RI×J , N̂ ∈ RI×J (where P̂ does not need to be
positive and N̂ does not need to be negative) and γ > 0, define

(B∗, P ∗, N∗) := proxγg(B̂, P̂ , N̂).

Then proxγg is the projection onto the constraint set for any γ,
and its computation is reduced to the entry-wise problem

minimize
b,p,n

1

2
(b− b̂)2 +

1

2
(p− p̂)2 +

1

2
(n− n̂)2

s.t. −εn ≤ b+ p+ n− y ≤ εp, p ≥ 0 and n ≤ 0,
(6)

where the optimal solution (b∗, p∗, n∗) of the problem in (6)
corresponds to some entry of (B∗, P ∗, N∗).

First of all, from the projection only onto the intersection
of the positive and negative constraints, we have

p̃ :=

{
p̂ if p̂ ≥ 0,
0 otherwise,

and ñ :=

{
n̂ if n̂ ≤ 0,
0 otherwise.

If −εn ≤ b̂ + p̃ + ñ − y ≤ εp, then (̂b, p̃, ñ) satisfies all the
constrains in (6), and we have (b∗, p∗, n∗) = (̂b, p̃, ñ) because
(p̃, ñ) is given by the projection onto the part of the constraints.

Otherwise, we further modify (̂b, p̃, ñ) to satisfy the remain-
ing constraint −εn ≤ b+ p+n− y ≤ εp. If b̂+ p̃+ ñ− y > εp,
we only have to decrease the values of (̂b, p̃, ñ) in order to
satisfy b+ p+n− y = εp because this strategy can minimize
the cost function in (6) under all the constraints. Similarly, if
b̂ + p̃ + ñ − y <−εn, we only increase the values of (̂b, p̃, ñ)
to satisfy b+p+n−y = −εn. Hence, by defining q := y+ εp

if b̂+ p̃+ ñ− y > εp, and q := y− εn if b̂+ p̃+ ñ− y < −εn,
(b∗, p∗, n∗) becomes the solution of the following problem

minimize
b,p,n

1

2
(b− b̂)2 +

1

2
(p− p̂)2 +

1

2
(n− n̂)2

s.t. p ≥ 0, n ≤ 0 and b+ p+ n = q.
(7)

To solve the problem in (7), we use the Lagrangian function

L(b, p, n, µ1, µ2, λ) :=
1

2
(b− b̂)2 +

1

2
(p− p̂)2 +

1

2
(n− n̂)2

− µ1p+ µ2n+ λ(q − b− p− n).



(a) B + P (Fig. 3(b) + Fig. 3(c)) (b) B +N (Fig. 3(b) + Fig. 3(d))

Fig. 7. Recommended images B+P and B+N for detection of EX, BV and HE parts in IDRiD 25. B, P , and N are shown in Figs. 3(b), 3(c), and 3(d).

(a) Results of BV extraction from Y in Fig. 3(a) (b) Results of BV extraction from B +N in Fig. 7(b)

Fig. 8. Comparison of the BV extraction results by [17] from the contrast-enhanced green channel image Y and the recommend image B+N for IDRiD 25.

Then (b∗, p∗, n∗) satisfies the Karush-Kuhn-Tucker conditions.
• stationarity  b∗− b̂

p∗− p̂
n∗− n̂

 =

 0

µ1

−µ2

+

λλ
λ

 (8)

• primal feasibility 
p∗≥ 0

n∗≤ 0

b∗+ p∗+ n∗= q

(9)

• dual feasibility {
µ1 ≥ 0

µ2 ≥ 0
(10)

• complementary slackness{
µ1p

∗= 0

µ2n
∗= 0

(11)

From (9) and (11), we have

p∗> 0⇒ µ1 = 0 and n∗< 0⇒ µ2 = 0 (12)

From (8) and (12), we have b∗ = b̂+ λ,

p∗= 0 or p∗= p̂+ λ > 0 and n∗= 0 or n∗= n̂+ λ < 0.
(13)

From (9) and (13), we have

λ = q−b̂−p̂−n̂
3 , λ = q−b̂−p̂

2 , λ = q−b̂−n̂
2 , or λ = q − b̂.

(i) When λ = q−b̂−p̂−n̂
3 , we have
b∗= b̂+ q−b̂−p̂−n̂

3

p∗= p̂+ q−b̂−p̂−n̂
3 > 0

n∗= n̂+ q−b̂−p̂−n̂
3 < 0

and we have 2n̂− p̂ < b̂−q < 2p̂− n̂ from the conditions
p∗ > 0 and n∗ < 0. In this case, the remaining condition
in (10) is satisfied because µ1 = µ2 = 0 from (12).

(ii) When λ = q−b̂−p̂
2 , we have

b∗= b̂+ q−b̂−p̂
2

p∗= p̂+ q−b̂−p̂
2 > 0

n∗= 0

and we have b̂− q < p̂ ≤ 2n̂− b̂+ q from the condition
p∗ > 0 and the dual feasibility µ2 = n̂+ λ ≥ 0 in (10).

(iii) When λ = q−b̂−n̂
2 , we have

b∗= b̂+ q−b̂−n̂
2

p∗= 0

n∗= n̂+ q−b̂−n̂
2 < 0



and we have 2p̂− b̂+ q ≤ n̂ < b̂− q from the condition
n∗ < 0 and the dual feasibility µ1 = −p̂−λ ≥ 0 in (10).
(iv) When λ = q − b̂, we have

b∗= q

p∗= 0

n∗= 0

and we have p̂ ≤ b̂ − q ≤ n̂ from the dual feasibility
µ1 = −p̂− λ ≥ 0 and µ2 = n̂+ λ ≥ 0 in (10).

From the above discussion, we can compute proxγg, i.e., the
projection onto the constraint set, as shown in Section III-B.
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