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ABSTRACT
We propose a high-accuracy CT image reconstruction from low-dose
X-ray projection data. A state-of-the-art method exploits dictionary
learning for image patches. This method generates an overcomplete
dictionary from patches of standard-dose CT images and reconstructs
low-dose CT images by minimizing the sum of date fidelity and reg-
ularization terms based on sparse representations with the dictionary.
However, this method does not take characteristics of each patch into
account, such as texture and edges. In this paper, we propose to divide
all patches into several classes, and use an individual dictionary with
an individual regularization parameter for each class. Moreover, for
fast computation, we introduce the orthogonality for each dictionary.
Since clustering collects similar patches, accuracy degradation by the
orthogonality hardly occurs. Simulation shows the proposed method
outperforms the state-of-the-art one in terms of accuracy and speed.

Index Terms— Low-dose CT, image reconstruction, sparse rep-
resentation, fast dictionary learning, clustering.

1. INTRODUCTION

X-ray computed tomography (CT) is widely used for diagnosis and
detection of various diseases because it scans the inside of the human
body noninvasively in a few seconds. However the induction of can-
cerous and genetic diseases by the X-ray radiation is concerned [1].
Hence, it is desired to suppress the X-ray dose to as low as possible.
If we apply the standard reconstruction method, filtered back projec-
tion (FBP), to low-dose projection data, then large noise and unnatu-
ral artifacts appear in the reconstructed image. As a result, we would
fail to detect diseased tissues from the reconstructed image [2].

On the basis of the compressed sensing theory [3], we exploit the
sparsity to reconstruct a high-quality image from the low-dose pro-
jection data. In the image processing field, the patch-based dictionary
learning is used to acquire sparse representations of target signals [1],
[2], [4]–[8]. A dictionary is generated as a matrix from training im-
ages, and a target signal is supposed to be expressed by a linear com-
bination of a few column vectors of the dictionary. In [1], Xu et al.
combined the patch-based dictionary learning with statistical itera-
tive reconstruction (SIR) [9] from the low-dose projection data. Al-
though this method can remove streak artifacts well, detailed struc-
tures of the target are lost by over-smoothing. In order to reconstruct
the detailed structures while suppressing noise and the artifacts, it is
necessary to express each image patch of the target more sparsely.

To obtain more sparse representations, in this paper, we propose
to extend the reconstruction method of Xu et al. [1] to a multiclass
version. In the proposed method, all patches of training images are
divided into some classes, and a dictionary is created for each class.
Then, patches of the target image are also classified and expressed
sparsely by using the dictionary for each class. In this case, it is as-
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sumed that the approximation errors, for the patches, of the sparse
representations differ depending on the class. Therefore, we propose
to use a different regularization parameter for each class. Moreover,
for fast reconstruction, we replace the overcomplete dictionaries with
orthogonal matrices. In general, if the number of column vectors of
a dictionary is reduced, then the accuracy of each sparse representa-
tion degrades, which leads to low-quality reconstructed images. On
the other hand, in the proposed method, since a dictionary has only
to deal with similar patches due to clustering, the representation ac-
curacy hardly degrades. Simulation using real CT images shows that
the proposed method achieves high accuracy and fast computation.

2. SIGNAL MODEL AND DICTIONARY-BASED SIR

In CT, nonnegative attenuation coefficients µ ∈ RJ+ are observed by

l = Rµ+ ξ, (1)

whereR ∈ RI×J+ is a Radon transform matrix based on X-ray paths,
l ∈ RI is the projection data, and ξ ∈ RI is the observation error.
There are two approaches for reducing the X-ray dose: (i) lowering
the X-ray intensity and (ii) reducing the number of projections. In the
first approach, however, the noise level ‖ξ‖2 becomes large. In the
second approach, the number I of row vectors ofR decreases, which
results in rank(R) < J . As a result, in either case, the standard re-
construction method, FBP based on the Fourier slice theorem, gener-
ates large noise and unnatural artifacts in the reconstructed images.

Sauer et al. proposed a method that reconstructs µ by maximum
a posteriori (MAP) estimation [9]. This method is called SIR since
it reconstructs µ by iteratively minimizing a statistical cost function

‖Rµ− l ‖22,w + λΨ(µ) :=

I∑
i=1

wi(r
T
i µ− li)2 + λΨ(µ). (2)

The weight for the ith projection rTi µ can be statistically defined as
wi := b/ exp(li) from the X-ray intensity b > 0 and the observed
data li, Ψ : RJ → R is a regularization term based on a prior infor-
mation on µ, and λ > 0 is a regularization parameter which controls
the balance between the data fidelity and the regularization.

Xu et al. combined (2) and the patch-based dictionary learning
[1]. In this method, a CT image µ is decomposed into small images
Hsµ ∈ RP (s = 1, 2, . . . , S), called patches, of size

√
P ×

√
P ,

where Hs ∈ {0, 1}P×J is the sth patch extraction matrix and S is
the number of the patches. Then, µ is reconstructed by using an as-
sumption that each patch can be expressed by a linear combination
of a few column vectors of an appropriate dictionary D ∈ RP×K ,
where K is the number of column vectors dk ∈ RP s.t. ‖dk‖2 = 1
(k = 1, 2, . . . ,K). By defining cs ∈ RK as sparse representations
(coefficients) for Hsµ, this method solves the following problem

minimize
µ,(D),C

‖Rµ− l‖22,w+λ

S∑
s=1

(‖Hsµ−Dcs‖22 +νs‖cs‖0), (3)



where C := (c1, c2, . . . , cS) ∈ RK×S and νs > 0 is a Lagrangian
multiplier for each patch. On (3), there are two cases where (i) D
is fixed to a matrix pre-learned from training images, and (ii) D is
adaptively updated by using the estimated target image µ. The for-
mer and the latter are called global dictionary-based SIR (GDSIR)
and adaptive dictionary-based SIR (ADSIR), respectively.

Since it is difficult to directly solve the optimization problem in
(3), the sparse coefficient C (& the dictionary D) and the CT image
µ are alternately updated from the initial image µ0 obtained by the
FBP. The matrix C (and D) is updated by solving the problem

minimize
(D),C

S∑
s=1

(‖Hsµm−1 −Dcs‖22 + νs‖cs‖0), (4)

where µ is fixed to the estimated value µm−1. In GDSIR, only C is
updated by orthogonal matching pursuit (OMP) [10]. In ADSIR, af-
ter updating D by an online learning algorithm in [11], C is updated
by OMP. Hence ADSIR requires a lot of computational time com-
pared to GDSIR. The image µ is updated by solving the problem

minimize
µ∈RJ

+

‖Rµ− l‖22,w + λ

S∑
s=1

‖Hsµ−Dcs‖22 (5)

with fixedC (andD). For the problem in (5), GDSIR and ADSIR use
the majorization-minimization (MM) [12] to avoid the computation
of a large inverse matrix. Specifically, µ is updated from the previ-
ous one µm−1 as in (6), where W := diag(w), 0 & 1 are respec-
tively vectors whose all components are 0 & 1, � is the component-
wise division, and max returns a larger value in each component [13].

3. SIR WITH MULTICLASS DICTIONARY LEARNING

Recently, in the high-speed MRI and low-dose CT fields, image re-
constructions with multiclass dictionary learning have been proposed
for higher compression ratio, noise reduction, and artifact suppres-
sion [2], [7], [8]. In these methods, image patches are classified into
multiple classes by using geometric directions or pixel values. Then,
since dictionaries are generated for each class, the accuracy of sparse
representations for the patches is improved, which leads to good re-
construction results. The methods in [7], [8] are proposed for high-
speed MRI and hence cannot be directly applied to low-dose CT. The
method in [2] uses the ‖µ−µ0‖22 as the data fidelity term, and hence
the reconstruction results depend largely on µ0 obtained by the FBP.

On the other hand, since GDSIR uses ‖Rµ − l‖22,w as the data
fidelity term, the reconstruction results are robust against the initial
imageµ0. Therefore, in this paper, we propose to extend GDSIR to a
multiclass version in order to reconstruct higher-quality CT images.

3.1. Multiclass GDSIR

Let Q be the number of classes and q = 1, 2, . . . , Q be the index of
the class. A dictionaryDq ∈ RP×Kq for the qth class is generated in
advance from standard-dose images, whereKq is the number of col-
umn vectors ofDq . PatchesHsµ of a target image are classified, and
we define Sq s.t.

⋃Q
q=1Sq = {1, 2, . . . , S} and Sq∩Sq′ =∅ (q 6= q′)

as a patch index set for the qth class. We reconstruct µ by solving

minimize
µ,C

‖Rµ− l‖22,w+

Q∑
q=1

λq
∑
s∈Sq

(‖Hsµ−Dqcs‖22+νs‖cs‖0)

(7)

which is a multiclass version of (3). Note that here we use a different
regularization parameter λq > 0 for each class. By fixing the sets Sq ,
the problem in (7) can be solved by a similar update to that of GDSIR.

Moreover, to reduce the computational time, we propose to in-
troduce orthogonal dictionaries D̂q ∈ RP×P s.t. D̂T

q D̂q = E to (7),
whereE is the identity matrix of order P . In general, if an overcom-
plete dictionary is replaced with an orthogonal matrix, then calcula-
tion speed increases but the accuracy of each sparse representation
degrades. On the other hand, in the proposed method, since similar
patches are collected by clustering, the degradation of the represen-
tation accuracy hardly occurs even if we use orthogonal dictionaries.

3.2. The Proposed Reconstruction Algorithm

The proposed algorithm reconstructs µ from the initial estimate µ0

by alternately executing the sparse coefficient update step and the
image update stepM times after executing the preparation one time.

Preparation: First, patches are extracted from training images and
classified into Q classes by K-means algorithm in the same manner
as [8]. To also classify patches of the target images later, we store the
clustering centers. Then, an orthogonal dictionary D̂q is created for
each class as an approximate solution to the optimization problem

minimize
D̂q,Ctr

q

∑
s∈Str

q

(‖Hsµtr−D̂qctrs ‖22 +νs‖ctrs ‖0) s.t. D̂T
q D̂q = E,

(8)
where µtr is a standard-dose training image, ctrs is a sparse coeffi-
cient vector for the sth training patchHsµtr, Str

q is a patch index set
for the training patches of class q. For solving the problem in (8),
we alternately update D̂q and Ctr

q according to [5]. By fixing Ctr
q in

(8), D̂q is updated as.

D̂∗q = argmin
D̂q

‖Φtr
q − D̂qCtr

q ‖2F s.t. D̂T
q D̂q = E, (9)

where Φtr
q ∈ RP×|S

tr
q | is the matrix whose column vectors are the

training patches of class q, i.e., Hsµtr (s ∈ Str
q ), and ‖·‖F denotes

the Frobenius norm. The problem in (9) is known as the orthogonal
Procrustes problem [3], and hence the solution is given by.

D̂∗q = UV T (10)

with the use of the singular value decomposition Φtr
q C

trT
q = UΣV T.

Then, by fixing D̂q in (8), Ctr
q is updated as

Ctr∗
q = argmin

Ctr
q

∑
s∈Str

q

(‖Hsµtr − D̂qctrs ‖22 + νs‖ctrs ‖0). (11)

From the property of D̂T
q D̂q = E, the solution to (11) is quickly

computed for each column vector ctr∗s (s ∈ Str
q ) by

ctr∗s = Hardνs(D̂T
q Hsµ

tr) (12)

with the use of the hard thresholding operator

Hardν(c)[i] =

{
c [i] if |c [i]| ≥

√
ν,

0 if |c [i]| <
√
ν,

where [i] denotes the ith component of a vector. By repeating (10)

µm = max

{
0, µm−1 −

[
RTW (Rµm−1 − l) + λ

S∑
s=1

HT
s (Hsµ

m−1 −Dcs)

]
�

[(
RTWR+ λ

S∑
s=1

HT
s Hs

)
1

]}
(6)



and (12) until a convergence condition is satisfied, D̂q is generated.
To solve (7) with the multiclass orthogonal dictionaries D̂q , first,

the initial estimate µ0 is obtained by applying the FBP to the low-
dose projection data l. Then, by using the stored clustering centers in
the preparation, the initial patchesHsµ0 are classified intoQ classes
by the nearest neighbor method, and hereafter the patch index sets Sq
are fixed. We reconstruct a target CT imageµ by repeating the sparse
coefficient update and image update steps for m = 1, 2, . . . ,M .

Sparse Coefficient Update Step: At the mth update of C, in the
same manner as (12), each column vector cs is updated by

cs = Hardνs(D̂T
q(s)Hsµ

m−1), (13)

where µ is fixed to the estimated value µm−1 and q(s) denotes the
class of the sth patch. Differently from the problem in (4), since we
use the orthogonal dictionaries, we can quickly compute the exact
closed form solution as shown in (13) without using OMP.

Image Update Step: At the mth update of µ, we solve the problem

minimize
µ∈RJ

+

‖Rµ− l‖22,w +

Q∑
q=1

λq
∑
s∈Sq

‖Hsµ− D̂qcs‖22 (14)

with fixed C. For the problem in (14), by using the same MM tech-
nique as [13], µ is updated from the previous one µm−1 as in (15).

3.3. Importance of the Regularization Parameters λq

In multiclass dictionary learning, the number of patches is different
for each class. In addition, there is a possibility that the ratio of the
number of patches in each class is quite different between the train-
ing image and the target image. As a result, the approximation errors
of the sparse representations by dictionaries differ depending on the
class. In order to obtain better reconstruction results, it is desirable
to set Lagrangian multipliers νs (and the numbers of column vectors
Kq if overcomplete dictionaries are used) to different values for each
class. However, it becomes difficult to achieve uniform representa-
tion accuracy among all classes as the number of classes increases.

For avoiding the above problem, in the proposed method, we also
extend the regularization parameter λ in (3) to the multiclass ones λq
in (7). This extension allows us to reconstruct high-quality images
by appropriate tuning of each λq even if we set νs to the same value
for all classes. Specifically, we only have to set λq to a large value
for a class where the representation accuracy is high, and set λq to a
small value for a class where the representation accuracy is low.

4. NUMERICAL SIMULATION

In this section, we show the effectiveness of the proposed method in
(7) with overcomplete (Proposed 1) and orthogonal (Proposed 2) dic-
tionaries by numerical simulation based on actual CT images in [14].
We used a female head image f 1601 as a training image and used
female head images f 1610 & f 1615 and male head images m 1114
& m 1132 as target images. All image sizes were 256 × 256 (J =
65,536). We created attenuation coefficients µ from CT values with
the attenuation coefficient of water µwater = 0.2059 [cm−1]. In (1),
a Radon transform matrix was created on the basis of parallel pencil
beams to 367 X-ray detectors in 60 views θg = 3(g− 1) [deg] (g =
1, 2, . . . , 60 and I = 22,020), where we assumed that the width and

(a) Training image (f 1601). (b) Clustering centers and λq .

Fig. 1. Training image for dictionary leaning and clustering centers.

Table 1. PSNR [dB] and the calculation time [sec] for each method.
Method\No. f 1610 f 1615 m 1114 m 1132 calc. time

GDSIR 32.32 32.36 33.45 32.02 0.60/iter.
ADSIR 32.20 32.23 33.36 31.92 4.04/iter.

Proposed 1 36.08 36.50 36.82 35.00 0.67/iter.
Proposed 2 35.95 36.57 36.96 35.11 0.46/iter.

height of one pixel were 0.09 [cm] and X-ray intensity was b = 106.
In all methods (GDSIR, ADSIR, and Proposed 1 & 2), we recon-

structed images byM = 1,000 iterations and fixed parametersK =
256 (for overcomplete dictionaries) and νs = 0.2. For overcomplete
dictionaries, we used the program in [15] for fast implementation of
dictionary learning and OMP. We extracted S = 62,001 patches of
size 8×8 (P = 64) by shifting the areas pixel by pixel. Dictionaries
of GDSIR and Proposed 1 & 2 were learned from the training image
in Fig. 1(a). In Proposed 1 & 2, we divided the training patches into
Q = 7 classes, which could achieve the highest PSNR among Q ∈
{2, 3, . . . , 16}, and each clustering center was given as in Fig. 1(b).
We set the regularization parameters to λ = 60 in GDSIR & ADSIR
and λ1 = 600, λ2 = λ3 = 60, λ4 = λ5 = λ6 = λ7 = 0.6 in
Proposed 1 & 2. The simulation environment was MacBook Pro, OS
Mojave ver. 10.14, CPU 3.1 GHz Intel Core i5, and memory 8 GB
2133 MHz LPDDR3, where platform was MATLAB R2018a 64-bit.

Table 1 summarizes PSNR of the reconstructed images and the
calculation time per one iteration for each method. In Figs. 2 and 3,
(a), (b), (c), (d), (e), and (f) show the original image, the initial esti-
mate µ0 obtained by the FBP, the reconstructed images by GDSIR,
ADSIR, Proposed 1, and Proposed 2 for f 1615 & m 1132, respec-
tively. From Table 1, we found that Proposed 2 achieved both of high
reconstruction accuracy and fast computation. From Figs. 2 and 3, we
found that GDSIR & ADSIR lost detailed structures by over-smooth-
ing while Proposed 1 & 2 could reconstruct the detailed structures.

5. CONCLUSION

In this paper, we proposed a low-dose CT reconstruction using mul-
ticlass dictionary learning. Since the propose method performs clus-
tering for patches of a target only once, the computational cost hardly
increases from GDSIR. Moreover, by introducing multiclass regular-
ization parameters and orthogonal dictionaries, the proposed method
can achieve high accuracy and fast computation. Simulation showed
that the proposed method reconstructs detailed structures of targets.

µm = max

{
0, µm−1−

[
RTW (Rµm−1− l) +

Q∑
q=1

λq
∑
s∈Sq

HT
s (Hsµ

m−1− D̂qcs)

]
�

[(
RTWR+

Q∑
q=1

λq
∑
s∈Sq

HT
s Hs

)
1

]}
(15)



(a) Original image (f 1615). (b) Initial estimate by the FBP. (c) GDSIR [32.26 / 0.859].

(d) ADSIR [32.23 / 0.855]. (e) Proposed 1 [36.50 /0.979]. (f) Proposed 2 [36.57 / 0.978].

Fig. 2. Reconstruction results of f 1615 from its low-dose projection data by each method [PSNR / SSIM].

(a) Original image (m 1132) (b) Initial estimate by the FBP. (c) GDSIR [32.02 / 0.843].

(d) ADSIR [31.92 / 0.840]. (e) Proposed 1 [35.00 /0.969]. (f) Proposed 2 [35.11 /0.969].

Fig. 3. Reconstruction results of m 1132 from its low-dose projection data by each method [PSNR / SSIM].
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