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ABSTRACT
Splines are piecewise polynomials and widely used for interpolation
and smoothing of observed data, due to their flexibility and optimal-
ity in the sense of certain variational problems for one-dimensional
(1D) data. However, spline interpolation and smoothing are applica-
ble only to the estimation of continuous functions, and not suitable
for that of piecewise smooth functions. In this paper, we propose a
novel spline smoothing technique for the estimation of 1D piecewise
smooth functions. We newly define the set of breaking splines, which
are permitted to have several discontinuous knots. Then, we estimate
a piecewise smooth function as a breaking spline minimizing the sum
of the data fidelity term, the roughness penalty term, and the number
of the discontinuous knots. Numerical experiments show the effec-
tiveness of the breaking splines compared to the conventional splines
and the state-of-the-art total generalized variation (TGV) denoising.

Index Terms— Spline, piecewise smooth function, function es-
timation, edge-preserving smoothing, convex relaxation.

1. INTRODUCTION

Let fj : (ζj−1, ζj)→ R (j = 1, 2, . . . ,m) be ρ-times continuously
differentiable functions, i.e., fj ∈Cρ(ζj−1, ζj), where ρ∈N∪{∞}
and −∞ ≤ ζ0 < ζ1 < · · · < ζm ≤ ∞. Define a piecewise smooth
function f : (ζ0, ζm)→ R by

f(x) := fj(x) for x ∈ (ζj−1, ζj). (1)

As the function values of f at ζj (j = 1, 2, . . . ,m − 1), although
several cases such as limx→ζj−0 fj(x), limx→ζj+0 fj+1(x), and

lim
x→ζj−0

y→ζj+0
1
2
(fj(x) + fj+1(y)) can be considered, we do not take

care about them in this paper. Alternatively, we suppose the piece-
wise function f is strictly discontinuous at ζj (j = 1, 2, . . . ,m−1),
i.e., limx→ζj−0 fj(x) 6= limx→ζj+0 fj+1(x) holds, and we also
suppose limx→ζj−0 |f (l)

j (x)|<∞ and limx→ζj+0 |f (l)
j+1(x)|<∞

hold for l = 0, 1, . . . , ρ. We observe finite noisy samples of f by

zi := f(xi) + εi (i = 1, 2, . . . , n), (2)

where εi ∈ R is additive white Gaussian noise, and sampling points
xi satisfy x1 > ζ0, xn < ζm, ∀i xi+1− xi = h > 0, ∀i∀j xi 6= ζj
and ∀j ∃i xi ∈ (ζj−1, ζj). In this paper, we address an estimation
problem of the piecewise smooth function f in (1) from its noisy
samples in (2). Such a problem appears in wide areas from science
to engineering [1]–[10]. In [11], the authors assume that all pieces fj
can be expressed as fj(x) =

∑K
k=1 c

〈j〉
k φk(x) with the use of known

common basis functions {φk}Kk=1. On the other hand, in this paper,
we assume that such basis functions are unknown or do not exist.
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A spline is a function that is piecewise-defined by polynomials,
and can possess certain-times continuous differentiability, including
at locations where the polynomial pieces connect. Splines have been
widely used for interpolation and smoothing of data in many signal
and image processing areas [12] such as super-resolution [13], [14],
computer aided design [15], [16], and regression analysis [17], [18].
The most commonly used splines are cubic splines, i.e., univariate
spline functions which are expressed, on sub-intervals, as polynomi-
als of degree 3 at most. This is because cubic splines are the unique
solutions of the following variational problems on one-dimensional
(1D) interpolation and smoothing [19]–[22].

Problem 1 (A Variational Problem on 1D Interpolation) Find g∗ ∈
C2(−∞,∞) minimizing∫ ∞

−∞
|g′′(x)|2 dx (3)

subject to
g(xi) = zi for all i = 1, 2, . . . , n.

Problem 2 (A Variational Problem on 1D Smoothing) Find g∗ ∈
C2(−∞,∞) minimizing

n∑
i=1

|g(xi)− zi|2 + λ

∫ ∞
−∞
|g′′(x)|2 dx, (4)

where the smoothing parameter λ > 0 controls the trade-off between
the data fidelity and the smoothness. Note that Problem 2 is a gener-
alization of Problem 1 because the solution of Problem 2 approaches
that of Problem 1 as λ approaches +0.

Problem 1 is called spline interpolation, and it is especially ef-
fective if noise-free data are available [13]–[16]. Problem 2 is called
spline smoothing, and it is often used for the designs of continuous
models from noisy data [17], [18]. However, spline interpolation and
spline smoothing consider only the estimation of continuous func-
tions, and not suitable for that of piecewise smooth functions, having
discontinuous points ζj , due to the Gibbs phenomenon in spline in-
terpolation or over-smoothing of edges in spline smoothing.

For the estimation of piecewise smooth functions, a discrete ap-
proach is often adopted [23]–[31]. In such an approach, we estimate
only the finite function values f(xi) (i = 1, 2, . . . , n) by suppress-
ing the noise εi while preserving the edges. A famous method is the
total variation (TV) denoising [23], [24]. TV is defined as the abso-
lute sum of discrete gradients, and TV denoising estimates f(xi) by
minimizing the sum of the data fidelity term and TV. Although TV
denoising has been widely used in image processing and computer
vision areas, it is well-known that the staircasing effect, which is the
undesirable appearance of small edges, accompanies the use of TV.
This is because TV denoising constructs piecewise constant signals,
i.e., implicitly assumes all fj are constant functions s.t. fj(x) = c〈j〉.



To overcome the limitation of TV, the total generalized variation
(TGV) was proposed as a high order generalization of TV [25], [26].
The kth order TGV of a vector is defined by decomposing the vector
into k vectors corresponding to the computation from the first to kth
discrete gradient magnitudes (see Section 4 for more detail). In par-
ticular, the second order TGV has been used for the regularization in
various areas [27]–[31]. The kth order TGV denoising reconstructs
piecewise polynomials of degree k, e.g., the second order and third
order TGV denoising return piecewise linear and quadratic signals,
respectively [25]. As a result, TGV denoising implicitly assumes all
fj are polynomials of degree k at most. Moreover, since the number
of parameters increases as the order becomes higher, the fourth and
higher order TGV denoising have been hardly used in applications.

In this paper, we propose edge-preserving spline smoothing for
the estimation of piecewise smooth functions. In Section 2, we newly
define breaking splines that are splines permitted to have several dis-
continuous knots. The proposed piecewise smooth function estima-
tion is explained in Section 3. By assuming the sampling interval h
is short enough compared with the length of each interval (ζj−1, ζj),
we can consider that discontinuous knots of an appropriate breaking
spline sparsely exist. We estimate f in (1) by a breaking spline mini-
mizing the sum of the data fidelity, the roughness penalty, and a con-
vex relaxation of the number of the discontinuous knots. In Section 4,
numerical experiments show that the proposed method can carry out
edge detection and smoothing for other than edges at the same time.

2. PRELIMINARIES

2.1. Notation

Let R and N be the sets of all real numbers and non-negative integers,
respectively. For any ρ ∈ N∪{∞} and any open interval (a, b)⊂ R,
Cρ(a, b) stands for the set of all ρ-times continuously differentiable
real-valued functions on (a, b). For any d∈N, Pd (⊂C∞(−∞,∞))
stands for the set of all univariate real polynomials of degree d at
most, i.e., Pd := {p : R → R : x 7→

∑d
k=0 ckx

k | ck ∈ R}. A
boldface small letter expresses a vector, and a boldface capital letter
expresses a matrix. For any vector x := (x1, x2, . . . , xn)T ∈ Rn,
the `2 and `1 norms of x are denoted by ‖x‖2 :=

√∑n
i=1 x

2
i and

‖x‖1 :=
∑n
i=1 |xi|, respectively.

2.2. Breaking Spline: Spline Having Discontinuous Knots

Let tn := {Ii := (ξi−1, ξi)}ni=1 be a set of n sub-intervals Ii on an
open interval I := (ξ0, ξn), where knots satisfy ξi− ξi−1 = hi > 0
(i = 1, 2, . . . , n). Fortn and any ρ, d ∈ N s.t. 0 ≤ ρ < d, we define

BSρd(tn) :=

s : (ξ0, ξn)→ R

∣∣∣∣∣∣∣∣∣∣
s = pi ∈ Pd on Ii,

s = 1
2
(pi + pi+1) at ξi,

and s ∈ C0(ξi−1, ξi+1)

⇒ s ∈ Cρ(ξi−1, ξi+1)

 (5)

as the set of all breaking splines, which are splines permitted to have
discontinuous knots ξi, of degree d and smoothness ρ on tn. In this
paper, we express a breaking spline s ∈ BSρd(tn) in the following
interval normalization form:

s(x) := pi(x) :=

d∑
k=0

c
〈i〉
k

(x− ξi−1

hi

)k
for x ∈ (ξi−1, ξi), (6)

where c〈i〉k ∈ R (k = 0, 1, . . . , d) are coefficients of each polynomial
pi ∈ Pd. Note that the set BSρd(tn) is not closed and not convex be-
cause of the condition s ∈ C0(ξi−1, ξi+1)⇒ s ∈ Cρ(ξi−1, ξi+1).

2.2.1. Quadratic Form of the Roughness Penalty Term

By restricting the domain of interest to I = (ξ0, ξn) and the function
space to BSρd(tn), the roughness penalty term used in (3) and (4) is
expressed as ∫

I

|s′′(x)|2 dx =

n∑
i=1

∫
Ii

|s′′(x)|2 dx. (7)

By using the expression in (6), the roughness penalty on Ii can be
expressed as the following quadratic form:∫

Ii

|s′′(x)|2 dx

=

d∑
k=2

d∑
l=2

k(k − 1)l(l − 1)c
〈i〉
k c
〈i〉
l

h4
i

∫
Ii

(x− ξi−1

hi

)k+l−4

dx

=

d∑
k=2

d∑
l=2

k(k − 1)l(l − 1)

h3
i (k + l − 3)

c
〈i〉
k c
〈i〉
l

=

d−2∑
k=0

d−2∑
l=0

(d− k)(d− k − 1)(d− l)(d− l − 1)

h3
i (2d− k − l − 3)

c
〈i〉
d−kc

〈i〉
d−l

= cTi Qici, (8)

where ci := (c
〈i〉
d , c

〈i〉
d−1, . . . , c

〈i〉
0 )T ∈ Rd+1 and a symmetric posi-

tive semidefinite matrixQi ∈ R(d+1)×(d+1) is defined by

[Qi]k+1,l+1 :=
(d− k)(d− k − 1)(d− l)(d− l − 1)

h3
i (2d− k − l − 3)

(k = 0, 1, . . . , d− 2 and l = 0, 1, . . . , d− 2)

and [Qi]k+1,l+1 := 0 (k = d− 1, d or l = d− 1, d). From (7) and
(8), the roughness penalty on I can be expressed as∫

I

|s′′(x)|2 dx = cTQc, (9)

where c := (cT1 , c
T
2 , . . . , c

T
n )T ∈ Rn(d+1) is the coefficient vector

of s ∈ BSρd(tn) and Q ∈ Rn(d+1)×n(d+1) is a symmetric positive
semidefinite matrix defined byQ := diag(Q1,Q2, . . . ,Qn).

2.2.2. Linear Equation for the ρ-Times Differentiability

For a breaking spline s ∈ BSρd(tn) in (5), to ensure the ρ-times con-
tinuous differentiability over (ξi−1, ξi+1), i.e., s ∈ Cρ(ξi−1, ξi+1),
the coefficients of the adjacent polynomials pi and pi+1 in (6) must
satisfy the following equations:

s ∈ Cρ(ξi−1, ξi+1)

⇔ p
(l)
i (ξi) = p

(l)
i+1(ξi) (l = 0, 1, . . . , ρ)

⇔ 1

hli

d∑
k=l

k!

(k − l)!c
〈i〉
k =

l!

hli+1

c
〈i+1〉
l (l = 0, 1, . . . , ρ)

⇔ 1

hli

d∑
k=l

k!

(k − l)!c
〈i〉
k −

l!

hli+1

c
〈i+1〉
l = 0 (l = 0, 1, . . . , ρ).

(10)
From (10), there is a matrixHi ∈ R(ρ+1)×2(d+1) satisfying

s ∈ Cρ(ξi−1, ξi+1) ⇔ Hi

[
ci
ci+1

]
= 0. (11)



In this paper, to remove the ambiguity of Hi on (i) constant multi-
plication and (ii) the order of the row vectors, we assume that each
matrixHi (i = 1, 2, . . . , n− 1) satisfies

Hi

[
ci
ci+1

]
=


pi(ξi)− pi+1(ξi)
p′i(ξi)− p′i+1(ξi)

...
p
(ρ)
i (ξi)− p(ρ)i+1(ξi)

 . (12)

3. PIECEWISE SMOOTH FUNCTION ESTIMATION
BY EDGE-PRESERVING SPLINE SMOOTHING

In this section, we estimate the piecewise smooth function f in (1)
from its noisy samples zi in (2) with the use of a breaking spline s ∈
BSρd(tn), where the knots are defined by ξ0 := x1−h/2 and ξi :=
xi + h/2 (i = 1, 2, . . . , n). Then from (6), the function values of s
at the sampling points xi ∈ (ξi−1, ξi) (i = 1, 2, . . . , n) are given by

s(xi) =

d∑
k=0

c
〈i〉
k

1

2k
=
[

1

2d
1

2d−1
· · · 1

]
ci =: aTci. (13)

Therefore, the data fidelity term used in (4) can be expressed as
n∑
i=1

|s(xi)− zi|2 = ‖Ac− z‖22, (14)

where z := (z1, z2, . . . , zn)T ∈ Rn and A ∈ Rn×n(d+1) is a ma-
trix whose row vectors are based on the vector aT in (13). Note that
for conventional splines, i.e., the solutions of Problems 1 and 2, each
knot ξi is located at the sampling point xi while for the proposed
splines, each knot ξi is located at the middle point of xi and xi+1,
and hence the ith sample zi is related only to the ith polynomial pi.

Suppose that the sampling interval h is short enough compared
with the length of each (ζj−1, ζj) (j = 1, 2, . . . ,m), i.e., there are
enough samples to accurately reconstruct each fj if the discontinu-
ous points ζj can be detected. Then, the discontinuous knots ξi of
s ∈ BSρd(tn), approximating f , should sparsely exist on (ξ0, ξn).
Moreover, even if lim

x→ζj−0

y→ζj+0 |f
(l)
j (x)− f (l)

j+1(y)| 6≈ 0 (l = 0, 1, 2)
and xi < ζj < xi+1 hold for some i and j, |s(xi)−zi|2, |s(xi+1)−
zi+1|2 and

∫ ξi+1

ξi−1
|s′′(x)|2 dx can be small for s 6∈ C0(ξi−1, ξi+1).

On the basis of the above discussion, we propose to solve the fol-
lowing non-convex optimization problem based on Problem 2:

minimize
s∈BSρ

d
(tn)

n∑
i=1

|s(xi)− zi|2 + λ

∫
I

|s′′(x)|2 dx+ κND(s), (15)

where ρ ≥ 2, λ > 0, κ > 0, and ND(s) ∈ N denotes the number
of discontinuous knots ξi s.t. pi(ξi) 6= pi+1(ξi). From (9), (11), and
(14), the problem in (15) can be expressed as an optimization prob-
lem on the coefficient vector c ∈ Rn(d+1):

minimize
c∈Rn(d+1)

‖Ac− z‖22 + λcTQc+ κ

n−1∑
i=1

Γ

(
Hi

[
ci
ci+1

])
, (16)

where Γ : Rρ+1 → {0, 1} is a binary function defined by Γ(x) := 0
if x = 0, and Γ(x) := 1 otherwise. In order to approximately solve
the problem in (16), we use a convex relaxation technique.

The third term of the cost function in (16) can be considered as
a group `0 (pseudo) norm without overlapping:

‖Hc‖G0 :=

n−1∑
i=1

Γ

(
Hi

[
ci
ci+1

])
(17)

with the use of some matrixH ∈ R(n−1)(ρ+1)×n(d+1) based on the
matrices Hi (i = 1, 2, . . . , n− 1). Hence, we replace the group `0
norm in (17) with a weighted group `1 norm:

‖Hc‖G1,w :=

n−1∑
i=1

∥∥∥∥Hi

[
ci
ci+1

]∥∥∥∥
2,wi

:=

n−1∑
i=1

√√√√ ρ∑
l=0

w
〈i〉
l

∣∣∣p(l)i (ξi)− p(l)i+1(ξi)
∣∣∣2, (18)

where w〈i〉l > 0,wi := (w
〈i〉
0 , w

〈i〉
1 , . . . , w

〈i〉
ρ )T ∈ Rρ+1, andw :=

(wT
1 ,w

T
2 , . . . ,w

T
n−1)T ∈ R(n−1)(ρ+1). In (18), we use the defini-

tions of the matricesHi in (12). As a result, we solve the following
convex optimization problem:

minimize
c∈Rn(d+1)

‖Ac− z‖22 + λcTQc+ κ‖Hc‖G1,w (19)

for the estimation of the piecewise smooth function f . We name the
problems in (15) and (19) “edge-preserving spline smoothing.” The
optimal solution of the problem in (19) can be computed by the al-
ternating direction method of multipliers (ADMM) [32].

ADMM solves the following optimization problem:

find x∗ ∈ argmin
x∈Rn

F (x) +G(Lx),

where L ∈ Rm×n and two functions F : Rn → R ∪ {∞} and G :
Rm → R ∪ {∞} are proper, lower semicontinuous and convex.1

From any initialization of (µ0,ν0) ∈ Rm×Rm, ADMM iteratively
computes

xt+1 = argmin
x∈Rn

F (x) +
1

2γ
‖µt −Lx− νt‖

2
2

µt+1 = proxγG(Lxt+1 + νt)

νt+1 = νt +Lxt+1 − µt+1

(20)

for t ≥ 0 with any γ > 0, where proxγG : Rm → Rm denotes the
proximity operator2 of γG. Then (xt)

∞
t=1 converges to the optimal

solution x∗. To solve the problem in (19), we define L := WH ,
F (c) := ‖Ac − z‖22 + λcTQc, and G(Lc) := κ‖Lc‖G1 , where
W ∈ R(n−1)(ρ+1)×(n−1)(ρ+1) is a diagonal matrix whose compo-
nents are the square roots of w〈i〉l . Moreover, by redefining 2γ as γ,
the iterative computation in (20) is expresses as

ct+1 =

(
ATA+ λQ+

1

γ
HTW 2H

)−1

·
(
ATz +

1

γ
HTW (µt − νt)

)
µt+1 = prox γκ

2
‖·‖G1

(WHct+1 + νt)

νt+1 = νt +WHct+1 − µt+1

1A function F : Rn → R ∪ {∞} is called proper, lower semicontinous,
and convex if dom(F ) := {x ∈ Rn |F (x) < ∞} 6= ∅, lev≤α(F ) :=
{x ∈ Rn |F (x) ≤ α} is closed for all α ∈ R, and F (λx+ (1− λ)y) ≤
λF (x) + (1− λ)F (y) for all x,y ∈ Rn and λ ∈ (0, 1), respectively.

2For a proper, lower semicontinous, convex functionF : Rn→ R∪{∞},
the proximity operator proxF : Rn → Rn is given by

proxF (x) := argmin
y∈Rn

F (y) + 1
2
‖y − x‖22.
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with any γ > 0 and any (µ0,ν0) ∈ R(n−1)(ρ+1) × R(n−1)(ρ+1).
Then (ct)

∞
t=1 converges to the solution of the problem in (19).

Finally, to obtain a breaking spline s ∈ BSρd (tn) as an estimate
of f , we re-solve the problem in (15). From the optimal coefficient
vector c∗ of the problem in (19), we detect continuous knots ξi of
s ∈ BSρd (tn) by checking, for each ξi, whether |p∗i (ξi)−p∗i+1(ξi)|
is lower than a threshold value τ > 0. In (5), if ξi is the continuous
knot, then the condition s ∈ Cρ(ξi−1, ξi+1) must hold. Therefore, to
obtain the solution of (15), we solve

minimize
c∈Rn(d+1)

‖Ac− z‖22 + λcTQc

subject to Hi

[
ci
ci+1

]
= 0 for all continuous knots ξi. (21)

The problem in (21) is solved by a quadratic programming solver im-
plemented as “interior-point-convex method” in MATLAB [33], [34].

4. NUMERICAL EXPERIMENTS

Define ζ0 := 0, ζ1 := 20, ζ2 := 50, ζ3 := 70, ζ4 := 95, ζ5 := 100,
and xi := i − 0.5 (i = 1, 2, . . . , n := 100). As a result, knots of a
breaking spline s ∈ BS2

3 (tn) are ξi := i (i = 0, 1, . . . , 100). For
two piecewise smooth functions f depicted by black lines in Figs. 1
and 2, we try to reconstruct them from noisy samples zi in (2), where
the standard division of additive white Gaussian noise εi is σ = 5.
We compare the estimates by the edge-preserving spline smoothing
(the problem in (19) followed by that in (21)), the conventional spline
smoothing (Problem 2) and the second/third order TGV denoising:

minimize
r∈Rn

‖r − z‖22 + βTGVk
α(r), (22)

where r := (r1, r2, . . . , rn)T ∈ Rn is an estimate of f(xi), β > 0,
k = 2, 3, and α := (α1, α2, . . . , αk)T ∈ (0, 1)k s.t.

∑k
i=1 αi = 1.

The second order TGV is defined by

TGV2
α(r) := min

u
α1‖D1r − u‖1 + α2‖D2u‖1,

and the third order TGV is defined by

TGV3
α(r) := min

u,v
α1‖D1r−u‖1+α2‖D2u−v‖1+α3‖D3v‖1
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with difference matricesD1 ∈ R(n−1)×n,D2 ∈ R(n−2)×(n−1) and
D3 ∈ R(n−3)×(n−2). We solve the problem in (22) by ADMM. The
smoothing parameter is set to λ = 65. The weights in (19) are set
to w〈i〉0 = 1

(zi+1−zi)2+1
, w〈i〉1 = 0.01, w〈i〉2 = 0.000001, and κ =

600. In (22), for k = 2, we use (α1, α2) = (0.35, 0.65) and β = 35,
and for k = 3, we use (α1, α2, α3) = (0.1, 0.2, 0.7) and β = 130.

In Figs. 1 and 2, black circles denote the observed noisy samples
zi. Blue, yellow, and green lines depict the estimation results of the
piecewise function f by the conventional spline smoothing in (4), the
proposed edge-preserving spline smoothing in (19), and the proposed
re-estimation in (21), respectively. Red circles and light blue crosses
denote the estimation results of the function values f(xi) by the sec-
ond order and third order TGV denoising in (22), respectively. From
Figs. 1 and 2, we can see that the estimation results by the conven-
tional spline smoothing lose the edges of the true piecewise smooth
functions because the conventional splines are not permitted to have
discontinuous knots. On the other hand, because the breaking splines
can express discontinuous points, the estimation results by the pro-
posed edge-preserving spline smoothing in (19) and (21) are really
good. In particular, we find that the solution of the problem in (19)
is very similar to that of the problem in (21), i.e., the problem in (19)
achieves both detection of the discontinuous points ζj and smoothing
for other than the edges. The estimates by the second order TGV de-
noising are piecewise linear, and hence the second order TGV cannot
restore the smooth pieces while the third order TGV returns smoother
estimates, but there still exist several undesirable small edges.

5. CONCLUSION

In this paper, we proposed novel spline smoothing for the estimation
of piecewise smooth functions. For this purpose, we defined break-
ing splines permitted to have several discontinuous knots differently
from conventional splines. We estimated piecewise smooth functions
by breaking splines which minimize the sum of the data fidelity term,
the roughness penalty term, and the number of discontinuous knots.
The minimizer is computed by ADMM, and numerical experiments
demonstrated the effectiveness of the edge-preserving spline smooth-
ing. In future work, we plan to extend our approach to 2D images.
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