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Block-Sparse Recovery with
Optimal Block Partition
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Abstract—This paper presents a convex recovery method for
block-sparse signals whose block partitions are unknown a priori.
We first introduce a nonconvex penalty function, where the block
partition is adapted for the signal of interest by minimizing the
mixed `2/`1 norm over all possible block partitions. Then, by
exploiting a variational representation of the `2 norm, we derive
the proposed penalty function as a suitable convex relaxation of
the nonconvex one. For a block-sparse recovery model designed
with the proposed penalty, we develop an iterative algorithm
which is guaranteed to converge to a globally optimal solution.
Numerical experiments demonstrate the effectiveness of the
proposed method.

Index Terms—Block-sparsity, unknown partition, penalty func-
tion, convex optimization, proximal splitting algorithm.

I. INTRODUCTION

SPARSITY has been widely used in signal processing and
machine learning by the `1 norm, i.e., the best convex

approximation of the `0 pseudo-norm [1]–[8]. At the same
time, many efforts have also been devoted to improve the
performance by better approximating the `0 pseudo-norm,
e.g., [9]–[16]. Another important direction for the performance
improvement is to exploit the underlying structure of nonzero
components. Block-sparsity is a typical instance of such
structured sparsity, where nonzero components are clustered
in blocks. For recovery of a block-sparse signal whose block
partition is known a priori, extensive researches, e.g., [17]–
[26], show the remarkable performance improvements by the
mixed `2/`1 norm using the known block partition, compared
to the non-structured sparse methods. However, in fact, the
information on the block partition is not available in many
applications, e.g., acoustic signal recovery [27]–[29], image
restoration [30]–[32], change detection [33]–[35], and radar
signal processing [36]–[39]. For instance, the target signal
of the phased array weather radar [37]–[41] is block-sparse
in the Fourier domain due to the narrow bandwidth of the
power spectrum, but the block partition is unknown because it
depends on the unknown mean and standard deviation of the
Doppler frequency. In such situations, the estimation accuracy
of the mixed `2/`1 norm often degrades due to a pre-fixed
block partition used instead of the ideal one.
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Motivated by these observations, we consider the estimation
problem of x? ∈ CN which is block-sparse across unknown
non-overlapping blocks B?1 , . . . ,B?K? (see Fig. 1 for an il-
lustration). More precisely, we suppose that the subvector
x?B?k

:= (x?n)n∈B?k contains only (nearly) zero components for
many k, i.e.,

x?B?k ≈ 0 for many k ∈ {1, . . . ,K?}.

We use the term block-sparse in a strict sense, i.e., B?k consists
of only consecutive indices for each k = 1, . . . ,K?:

B?k = {n ∈ {1, . . . , N} | n?k ≤ n ≤ m?
k},

with some n?k,m
?
k ∈ {1, . . . , N}. We also suppose that

B?1 , . . . ,B?K? form a partition of {1, . . . , N}:
⋃K?

k=1 B?k =
{1, . . . , N}, B?k 6= ∅ (k = 1, . . . ,K?), and B?k ∩ B?k′ =
∅ (k 6= k′). Note that the non-overlapping condition B?k ∩
B?k′ = ∅ is not restrictive since the sizes of B?1 , . . . ,B?K? can
be different.

Several attempts have been made to deal with the unknown
blocks B?1 , . . . ,B?K? . A commonly used modification is to use
overlapping blocks in the mixed `2/`1 norm, e.g., [42]–[49].
Among them, the latent group lasso (LGL) method [48], [49]
presents a sophisticated approach to select relevant blocks
from pre-defined overlapping blocks. The LGL penalty is
defined as the minimum of a convex function, and thus the
corresponding regularization model can be solved as a convex
optimization problem (see Appendix A for detail). However,
since the problem size grows with the number of candidate
blocks, the LGL method has a restriction on the number of
candidate blocks, which leads to the degradation of the esti-
mation accuracy. Nonconvex frameworks are also developed,
but they have computational difficulties. The greedy methods
[50], [51] have to manage candidate blocks explicitly, and thus
are not suitable for the situation of unknown block partition.
Indeed, when the block partition is unknown, they have to
evaluate O(N3) candidate blocks to determine which block
is adopted. Bayesian approaches [52], [53] design nonconvex
optimization problems considering the unknown block parti-
tion, and present their iterative solvers. However, the iterative
algorithms require O(N3) operations at every iteration due
to the matrix inversion, which are not affordable in particular
for large-scale problems. In addition, due to local minima of
the nonconvex optimization problem, it is difficult to elude
the influence of initial values given for algorithms. Thus, it is
highly desired to realize a convex method which can handle
the unknown blocks B?1 , . . . ,B?K? whose sizes are different,
with low computational complexity.

In this paper, we propose a convex recovery method for
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x? block-sparse across the unknown blocks B?1 , . . . ,B?K? . Our
major contribution is to design a novel convex penalty func-
tion, named latent optimally partitioned (LOP)-`2/`1 penalty,
which can automatically adapt the block partition for the signal
of interest. More precisely, we first introduce a nonconvex
penalty function as the minimum of the mixed `2/`1 norm
over all possible block partitions. Then, to derive a tight
convex relaxation of the nonconvex penalty function, using
a variational representation of the `2 norm (see Lemma 1),
we represent the nonconvex penalty function by the min-
imization of a convex function under the `0 pseudo-norm
constraint on latent variables. Finally, the LOP-`2/`1 penalty
is derived by replacing the `0 pseudo-norm constraint with
its best convex approximation, i.e., the `1 norm constraint.
To compute an optimal solution of the proposed block-sparse
recovery model, we reformulate it into a convex optimiza-
tion problem involving the latent variables of the LOP-`2/`1
penalty. Although the reformulated convex problem involves
a discontinuous function which is difficult to handle, we
show that it can be solved by combining proximal splitting
techniques [54]–[62] and theory of perspective functions [63]–
[65]. As a concrete example, we develop an O(N) iterative
algorithm with guaranteed convergence to the optimal solution.
Numerical experiments on both synthetic examples and real-
world data show that the proposed method achieves superior
estimation accuracy to existing convex methods including the
LGL method.

The rest of this paper is organized as follows. In Section
II, we introduce the LOP-`2/`1 penalty, and also show its
extension to multi-dimensional signals. In Section III, we
design the block-sparse recovery model with the LOP-`2/`1
penalty, and develop the iterative algorithm which converges
to the optimal solution of the model. Section IV provides
numerical examples, followed by conclusion in Section V.

A preliminary short version of this paper was presented at
a conference [66].

Notations: R, R+, and C respectively denote the sets
of all real numbers, all nonnegative real numbers, and all
complex numbers. We denote the cardinality of a set S by
|S|. For matrices or vectors, we denote the simple transpose
and the Hermitian transpose respectively by (·)> and (·)H.
For x = (x1, . . . , xN )> ∈ CN and an index set I ⊂
{1, . . . , N}, xI := (xn)n∈I ∈ C|I| denotes the subvector
of x indexed by I. We define the support of x ∈ CN
by supp(x) := {n ∈ {1, . . . , N} | xn 6= 0}. The `2
norm, the `1 norm, and the `0 pseudo-norm of x ∈ CN are
respectively defined by ‖x‖2 :=

√
xHx, ‖x‖1 :=

∑N
n=1 |xn|,

and ‖x‖0 := |supp(x)|. We define the operator norm of
L ∈ CM×N by ‖L‖op := maxx6=0[‖Lx‖2/‖x‖2].

Let (U , ‖ · ‖) be a finite-dimensional Hilbert space. A
function f : U → R ∪ {∞} is called proper if its effective
domain dom(f) := {u ∈ U | f(u) < ∞} is nonempty.
A function f : U → R ∪ {∞} is lower semicontinuous if
its lower level set {u ∈ U | f(u) ≤ a} is closed for
every a ∈ R. A function f : U → R ∪ {∞} is convex if
f(βu+(1−β)v) ≤ βf(u)+(1−β)f(v) for every u,v ∈ U
and β ∈ (0, 1). The set of all proper lower semicontinu-
ous convex functions from U to R ∪ {∞} is denoted by

block sizes and positions are unknown

Fig. 1. Illustration of a block-sparse signal, where we consider that the block
partition is unknown a priori, i.e., the sizes and the positions of B?1 , . . . ,B?K?
are unknown.

Γ0(U). A function f : U → R ∪ {∞} is called coercive if
lim‖u‖→∞ f(u) = ∞. The proximity operator of f ∈ Γ0(U)
is defined by proxf (u) := arg minv∈U

[
f(v) + 1

2‖u− v‖
2
]
.

II. DESIGN OF PROPOSED PENALTY FUNCTION

To evaluate the block-sparsity of x ∈ CN across the fixed
non-overlapping blocks B1, . . . ,Bj ⊂ {1, . . . , N}, the mixed
`2/`1 norm is widely used as a convex penalty function. The
mixed `2/`1 norm is defined as the sum (i.e. the `1 norm) of
the block-wise `2 norms:

‖x‖(Bk)jk=1
2,1 :=

j∑
k=1

√
|Bk|‖xBk‖2, (1)

where we employ the weight
√
|Bk| so that larger blocks are

penalized more heavily. Note that this weight is consistent
with the existing studies assuming known structures, e.g, [21]–
[24].1 The mixed `2/`1 norm promotes the block-sparsity by
pushing components in Bk toward zeros together. However,
since the mixed `2/`1 norm excessively penalizes blocks com-
posed of both zero and nonzero components, its performance
degrades when B1, . . . ,Bj do not match with the ground-truth
B?1 , . . . ,B?K? .

To avoid the block mismatch, the block partition is adapted
for x in the proposed penalty function named latent optimally
partitioned (LOP)-`2/`1 penalty. As shown in Fig. 2, we
first introduce a nonconvex penalty function ψK(x) as the
minimum of the mixed `2/`1 norm over the partition of at most
K blocks. Then, as a suitable convex relaxation of ψK(x), we
derive the LOP-`2/`1 penalty Ψα(x). Concretely, we define
ψK(x) by

ψK(x) := min
j∈{1,...,K}

[
min

(Bk)jk=1∈Pj
‖x‖(Bk)jk=1

2,1

]

= min
j∈{1,...,K}

[
min

(Bk)jk=1∈Pj

j∑
k=1

√
|Bk|‖xBk‖2

]
, (2)

1The weight is more important for the proposed framework as we consider
the minimization of (1) over all possible block partitions (see Remark 1).
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where Pj consists of all j block partitions of {1, . . . , N}, i.e.,

(Bk)jk=1 ∈ Pj

⇔



j⋃
k=1

Bk = {1, . . . , N},

Bk 6= ∅ (k = 1, . . . , j),

Bk ∩ Bk′ = ∅ (k 6= k′),

Bk = {n ∈ {1, . . . , N} | nk ≤ n ≤ mk}
for some nk,mk ∈ {1, . . . , N} (k = 1, . . . , j).

(3)

Note that K can be set to an upper bound of the ground-
truth K?. Note also that, since the sizes of B1, . . . ,Bj are
adapted, the non-overlapping condition Bk ∩ Bk′ = ∅ is not
restrictive. In other words, since the block sizes are adapted,
overlapping of blocks is unnecessary for the proposed penalty
(see Fig. 2 for an example where zero and nonzero components
are correctly separated by the non-overlapping blocks).

Remark 1 (Validity of the weight of the mixed `2/`1 norm).
The weight

√
|Bk| in (1) is needed to eliminate the trivial

solution in (2). If we omit the weight in (1), the minimum of
(2) is always attained when all variables are gathered into a
single block, i.e., when j = 1, because the inequality2

‖xB‖2 ≤ ‖xB′‖2 + ‖xB′′‖2

holds for any block B ⊂ {1, . . . , N} decomposed as B =
B′∪B′′ with B′ and B′′ satisfying B′ 6= ∅, B′′ 6= ∅, and B′∩
B′′ = ∅. Thus, we have to penalize larger blocks more heavily.
We demonstrate the validity of the weight

√
|Bk| as follows.

Suppose that a block B is decomposed into non-overlapping
blocks B′ and B′′ satisfying the above conditions. In addition,
suppose that xB′ 6= 0 and xB′′ = 0. Then, from |B| > |B′|,
‖xB‖2 = ‖xB′‖2 6= 0, and ‖xB′′‖2 = 0, we have√

|B|‖xB‖2 >
√
|B′|‖xB′‖2 +

√
|B′′|‖xB′′‖2.

This implies that the objective of (2) is decreased by de-
composing B into B′ and B′′ which respectively correspond
to nonzero components and zero components. Namely, the
trivial solution is avoided thanks to the weight

√
|Bk|. Note

that, since the number of blocks in (2) is at most K due
to the constraint set, it is impossible to decompose blocks
unlimitedly.

To derive the convex relaxation of ψK(x), we exploit the
following lemma which shows a variational representation of
the `2 norm.

Lemma 1. Define φ : C× R→ R+ ∪ {∞} by

φ(x, τ) :=


|x|2

2τ
+
τ

2
, if τ > 0;

0, if x = 0 and τ = 0;

∞, otherwise,

(4)

which is a coercive lower semicontinuous convex function.

2This inequality follows from the triangle inequality because x̄B = x̄B
′
+

x̄B
′′

due to B = B′ ∪ B′′ and B′ ∩ B′′ = ∅, where x̄I ∈ RN is defined
for I ⊂ {1, . . . , N} by x̄In = xn if n ∈ I and x̄In = 0 otherwise.

adapted to minimize the mixed           norm

take the minimum over the number of blocks

suitable convex relaxation

Fig. 2. Outline of design of the latent optimally partitioned (LOP)-`2/`1
penalty Ψα(x).

Then, the block-wise `2 norm is variationally represented as√
|B|‖xB‖2 = min

τ∈R

∑
n∈B

φ(xn, τ), (5)

for any nonempty B ⊂ {1, . . . , N}, where the minimum is
attained when τ = ‖xB‖2/

√
|B|.

Proof. See Appendix B.

Remark 2. Lemma 1 is a slight modification of the existing
result √

|B|‖xB‖2 = inf
τ>0

∑
n∈B

[
|xn|2

2τ
+
τ

2

]
used in, e.g., [49] for the analysis of the LGL penalty and [67]
for the design of a directed-graph-sparse penalty. Since the do-
main of

∑
n∈B

[
|xn|2

2τ + τ
2

]
is not closed, this representation is

inappropriate for the use in concrete optimization algorithms,
as the applicability of the algorithm of [67] is limited [68].
Indeed, the study of [49] uses this representation only for the
theoretical analysis of the LGL penalty but not for the design
of the penalty and the corresponding optimization. Lemma 1
resolves this issue by using the lower semicontinuous convex
function φ.

Applying Lemma 1 for each
√
|Bk|‖xBk‖2 in (2), we can

rewrite ψK(x) as

ψK(x) = min
j∈{1,...,K}

[
min

(Bk)jk=1∈Pj ,τ∈Rj

j∑
k=1

∑
n∈Bk

φ(xn, τk)

]
.

Note that the particular weight
√
|Bk| in (1) allows the

application of Lemma 1. Introducing a latent vector σ =
(σ1, . . . , σN )> ∈ RN as

σn = τk (n ∈ Bk) for k = 1, . . . , j,

as illustrated in Fig. 3, we see that σ is characterized by the
condition that

‖Dσ‖0 ≤ j − 1,
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where D is the first difference operator defined by

D :=


−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −1 1

 ∈ R(N−1)×N ,

because Bk consists of only consecutive indices for each k =
1, . . . , j. Moreover, from

⋃j
k=1 Bk = {1, . . . , N} and Bk ∩

Bk′ = ∅ (k 6= k′) in (3), we have
j∑

k=1

∑
n∈Bk

φ(xn, τk) =

N∑
n=1

φ(xn, σn).

Thus, we can represent ψK(x) as

ψK(x) = min
j∈{1,...,K}

 min
σ∈RN

‖Dσ‖0≤j−1

N∑
n=1

φ(xn, σn)


= min

σ∈RN
‖Dσ‖0≤K−1

N∑
n=1

φ(xn, σn).

Finally, based on the fact that the `1 norm is the tightest convex
relaxation of the `0 pseudo-norm in the constraint, we derive
the LOP-`2/`1 penalty as

Ψα(x) := min
σ∈RN
‖Dσ‖1≤α

N∑
n=1

φ(xn, σn), (6)

where α ∈ R+ is a tuning parameter related to the number of
blocks.

Theorem 1. For any α ∈ R+, Ψα takes finite values, i.e.,
dom(Ψα) = CN . Moreover, Ψα is coercive, continuous,
nonnegative, and convex. Note that this implies Ψα ∈ Γ0(CN ).

Proof. See Appendix C.

Intuitively, Ψα evaluates the block-sparsity of x with
automatically adapted block partition as follows. Since the
constraint ‖Dσ‖1 ≤ α promotes the sparsity of Dσ, σ
is encouraged to be block-wise constant. At the same time,
since φ(x, τ) is basically |x|

2

2τ + τ
2 (see (4)), roughly speaking,

minimizing
∑N
n=1 φ(xn, σn) w.r.t. σ yields the weighted

quadratic sum of x where larger components of x have
smaller weights. These mechanisms make Ψα(x) the weighted
quadratic sum of x with block-wise constant weights where
blocks consisting of larger components have smaller weights.
Thus, if large components of x are clustered in several blocks,
the value of Ψα(x) becomes small. Note that the number of
blocks is controlled by α. Thus, with a reasonable choice of
α, decreasing the value of Ψα(x) can promote the block-
sparsity of x with the adapted block partition. Remark that
the computational difficulty is resolved because blocks are
implicitly controlled by the vector σ of size N (see Remark
5 in Section III for the overall complexity of the proposed
method).

As its special instances, the LOP-`2/`1 penalty reproduces
the mixed `2/`1 norm with the coarsest partition and the finest

difference operator

Fig. 3. Illustration of the latent vector σ and its difference Dσ for j = 7.
It can be seen that Dσ has only j − 1 = 6 nonzero components.

partition. This is more precisely shown in the next theorem.

Theorem 2. The LOP-`2/`1 penalty reproduces the mixed
`2/`1 norm with the largest block {1, . . . , N} and the smallest
blocks ({k})Nk=1 respectively for α = 0 and α→∞, i.e.,

Ψ0(x) = ‖x‖{1,...,N}2,1 =
√
N‖x‖2, (7)

lim
α→∞

Ψα(x) = ‖x‖({k})
N
k=1

2,1 = ‖x‖1. (8)

Proof. See Appendix D.

This theorem also suggests that the tuning parameter α in-
deed controls the number of blocks in the LOP-`2/`1 penalty,
though blocks do not explicitly appear in (6).

Remark 3 (How to choose α). We show that a reasonable
choice of α is to use

α ≥ 2κ̄σ̄, (9)

where κ̄ is the number of nonzero blocks and σ̄ is the average
of the standard deviation (i.e. the square root of the signal
power) of nonzero blocks for the target signal:

κ̄ := |K|,

σ̄ :=
1

κ̄

∑
k∈K

‖x?B?k‖2√
|B?k|

,

where K := {k ∈ {1, . . . ,K?} | x?B?k 6= 0}. We begin by
computing an ideal σ? from x?. Since σ? is desired to be
constant for the block B?k, by considering the minimization of∑
n∈B?k

φ(x?n, σ) w.r.t. σ, we have

σ?n =
‖x?B?k‖2√
|B?k|

(n ∈ B?k) for k = 1, . . . ,K?,

from Lemma 1. For simplicity, suppose that B?k and B?k+1 are
consecutive blocks. Then, we have

‖Dσ?‖1 =

K?−1∑
k=1

∣∣∣∣∣∣
‖x?B?k+1

‖2√
|B?k+1|

−
‖x?B?k‖2√
|B?k|

∣∣∣∣∣∣
≤ 2

K?∑
k=1

‖x?B?k‖2√
|B?k|

= 2κ̄σ̄.
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Note that this inequality is expected to be tight because a
nonzero block is usually adjacent to zero blocks. In order
that σ? is contained in the constraint ‖Dσ‖1 ≤ α in (6),
α should be chosen from the range (9). Note that, from our
experiments shown in Section IV, the performance of the LOP-
`2/`1 penalty seems fairly robust against the choice of α from
the range slightly larger than 2κ̄σ̄.

Remark 4 (Generalization to multi-dimensions). For a matrix
X ∈ CN×M , the LOP-`2/`1 penalty can be naturally extended
by replacing the 1D difference operator with a 2D one:

Ψ(2d)
α (X) := min

Σ∈RN×M
‖D2d(Σ)‖1≤α

N∑
n=1

M∑
m=1

φ(Xn,m,Σn,m), (10)

where D2d : RN×M → R(N−1)M+N(M−1) computes differ-
ences in vertical and horizontal directions by

D2d(Σ) =

[
Dv(Σ)
Dh(Σ)

]
,

Dv(Σ) = (Σn+1,m − Σn,m)(n,m)∈{1,...,N−1}×{1,...,M},

Dh(Σ) = (Σn,m+1 − Σn,m)(n,m)∈{1,...,N}×{1,...,M−1}.

Note that we do not only focus on rectangular blocks, and
Ψ

(2d)
α can manage blocks of various shapes because most

components of D2d(Σ) are zeros when Σ is constant on each
block, irrespective of block shapes. The LOP-`2/`1 penalty
can be naturally extended to signals in multi-dimensional
spaces, e.g., pth-order tensors, by modifying the difference
operator in similar ways.

III. PROPOSED BLOCK-SPARSE RECOVERY MODEL AND
ITS OPTIMIZATION ALGORITHM

We present a block-sparse recovery model using the LOP-
`2/`1 penalty (6), and develop an iterative algorithm which
converges to an optimal solution of the model. Specifically,
we consider the following regularization model:

minimize
x∈CN

f(Lx) + λΨα(x), (11)

where f(Lx) is some convex data-fidelity function with
f : CJ → R+ and L ∈ CJ×N , and λ > 0 is the regularization
parameter. We suppose that f ∈ Γ0(CJ), and its proximity op-
erator can be computed efficiently. Such examples include the
square error 1

2‖y−Ax‖
2
2 and the absolute error ‖y−Ax‖1,

where y is the the known observation vector and A is the
known measurement matrix. For these errors, we respectively
set3f(u) = 1

2‖y−u‖
2
2 and f(u) = ‖y−u‖1 for u = Lx and

L = A. The existence of the solution of (11) is guaranteed by
the coercivity of Ψα ∈ Γ0(CN ), as shown in the next theorem.

Theorem 3. For any λ > 0, the proposed model (11) has an
optimal solution.

Proof. It follows from Theorem 1 by [69, Corollary 11.16].

We show that an optimal solution of the proposed model
(11) can be obtained as follows. By plugging the definition

3For the square error, we can also set as f(u) = 1
2
‖y −Au‖22 and L to

the identity matrix, which would be beneficial when, e.g., AHA is diagonal.

Algorithm 1: Solver for the proposed model (11)

Input: γ > 0, 0 < µ1 ≤ 1√
‖L‖2op+1

, 0 < µ2 ≤ 1√
5

, and

x(0) ∈ CN ,σ(0) ∈ RN ,u(0) ∈ CJ ,
η(0) ∈ RN−1, r

(0)
1 ∈ CJ , r(0)

2 ∈ RN−1.
for i = 0, 1, 2, . . . do

x̃(i+1) = x(i) + µ1L
H(r

(i)
1 − µ1(Lx(i) − u(i)))

σ̃(i+1) = σ(i) + µ2D
>(r

(i)
2 − µ2(Dσ(i) − η(i)))

ũ(i+1) = u(i) − µ1(r
(i)
1 − µ1(Lx(i) − u(i)))

η̃(i+1) = η(i) − µ2(r
(i)
2 − µ2(Dσ(i) − η(i)))

(x(i+1),σ(i+1)) = proxγλϕ(x̃(i+1), σ̃(i+1))

// see (13) and (14)
u(i+1) = proxγf (ũ(i+1)) // see (15) or (16)
η(i+1) = PBα1 (η̃(i+1)) // see (17) and (18)
r

(i+1)
1 = r

(i)
1 − µ1(Lx(i+1) − u(i+1))

r
(i+1)
2 = r

(i)
2 − µ2(Dσ(i+1) − η(i+1))

of Ψα(x) in (6) into (11), the optimization problem (11) is
translated into

minimize
(x,σ)∈CN×RN

f(Lx) + λϕ(x,σ)

subject to ‖Dσ‖1 ≤ α

}
, (12)

where we let

ϕ(x,σ) :=

N∑
n=1

φ(xn, σn).

The optimization problem (12) is convex but relatively
difficult to solve because it involves the discontinuous function
ϕ(x,σ). This implies that a simple gradient descent strategy
may fail to solve (12). We show that an iterative algorithm
with guaranteed convergence to the solution of (12) can be
developed by combining proximal splitting techniques [54]–
[62] and theory of perspective functions [63]–[65]. As a
concrete example, applying the primal-dual algorithm [54]–
[59], we obtain the proposed algorithm shown in Algorithm
1 (see Appendix E for the derivation). The operators in
Algorithm 1 can be computed as follows. Interpreting φ(x, σ)
as the sum of perspective function [63] of |x|2/2 and the linear
function σ/2, based on [65, Example 2.4], we can compute
the proximity operator of γλϕ as

proxγλϕ(x,σ) =
(
proxγλφ(xn, σn)

)N
n=1

, (13)

with

proxγλφ(x, σ)

=


(0, 0), if 2γλσ + |x|2 ≤ γ2λ2;

(0, σ − γλ
2 ), if x = 0 and 2σ > γλ;(

x− γλs x
|x| , σ + γλ s

2−1
2

)
, otherwise,

(14)
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where s > 0 is the unique positive root of

s3 +

(
2

γλ
σ + 1

)
s− 2

γλ
|x| = 0,

and can be explicitly given via Cardano’s formula as follows.
Let p = 2

γλσ + 1, q = − 2
γλ |x|, and D = − q

2

4 −
p3

27 . Then,

s =



3

√
−q

2
+
√
−D + 3

√
−q

2
−
√
−D, if D < 0;

2 3

√
−q

2
, if D = 0;

2
3

√√
q2

4
+D cos

(
arctan(−2

√
D/q)

3

)
, if D > 0,

where 3
√
· denotes the real cubic root. Note that the unique

existence of the positive root follows from the uniqueness
of the proximity operator [64, Theorem 3.1]. The proximity
operator of γf depends on the employed data-fidelity function.
For the square error f(u) = 1

2‖y − u‖
2
2, we have

prox γ
2 ‖y−·‖

2
2
(u) =

γy + u

γ + 1
, (15)

and for the absolute error f(u) = ‖y − u‖1,

proxγ‖y−·‖1(u) =

(
uj +

γ

max{|yj − uj |, γ}
(yj − uj)

)J
j=1

.

(16)

The `1 ball projection PBα1 can be computed as

PBα1 (η) =

{
η, if ‖η‖1 ≤ α;

(ansign(ηn))N−1
n=1 , otherwise,

(17)

with

an := max

{
|ηn| −

1

T

(
T∑
t=1

ρt − α

)
, 0

}
, (18)

where ρ1, . . . , ρN−1 are obtained by sorting |η1|, . . . , |ηN−1|
in descending order, and

T := max

{
t ∈ {1, . . . , N − 1}

∣∣∣∣∣ 1

t

(
t∑

n=1

ρn − α

)
< ρt

}
.

The convergence of Algorithm 1 to an optimal solution of
the proposed model (11) is confirmed as follows.

Theorem 4. Choose γ > 0, µ1, µ2, and initial values
x(0), σ(0), u(0), η(0), r(0)

1 , r(0)
2 which satisfy the setting

in Algorithm 1. Then, (x(i))∞i=1 generated by Algorithm 1
converges to an optimal solution of (11).

Proof. See Appendix F.

Since Algorithm 1 also solves (12), we obtain not only the
solution for x but also the solution for σ, say σ̂. Since σ̂ is the
optimized latent vector of the LOP-`2/`1 penalty (6), we can
recover the block partition from σ̂. More precisely, since σ̂ is
expected to be block-wise constant, the endpoints of blocks are
recovered from the positions of nonzero components of Dσ̂
(see Figs. 5 and 6 in Section IV for numerical examples).

Remark 5 (Computational complexity). We summarize the
computational cost of Algorithm 1 per an iteration. We can
compute x̃(i+1), ũ(i+1), and r(i+1)

1 with O(JN) operations,
and σ̃(i+1), η̃(i+1), and r(i+1)

2 with O(N) operations since D
has only 2(N − 1) nonzero entries. The proximity operator of
γλϕ can be computed by (13) and (14) with O(N) operations.
For both the square error and the absolute error, proxγf
can be computed with O(J) operations by (15) or (16).
While the computation of the `1 ball projection PBα1 by (17)
and (18) requires O(N logN) operations for sorting, we can
use sophisticated `1 ball projection algorithms having O(N)
expected complexity, e.g., [70]. Summarizing, Algorithm 1 has
O(N) complexity per an iteration. Thus, the proposed method
has the same computational complexity as the `1 regularization
method and the mixed `2/`1 regularization method using
the non-overlapping blocks, when the primal-dual algorithm
(26) in Appendix E is applied. The computational complexity
of the LGL method depends on the design of overlapping
blocks (see Appendix A). If all possible blocks are used,
the computational complexity of the LGL method is O(N3),
which is significantly higher than the proposed method. Even
when blocks are restricted to the overlapping blocks of a fixed
size B, since the number of variables in the LGL model is
O(BN), the computational complexity of the LGL method
is about B-time as high as the proposed method. Note that
the nonconvex methods [50]–[53] have O(N3) computational
complexity, which is significantly more expensive than the
convex methods. In addition, it should be noted that the
nonconvex methods have the problem of the dependence on
initial values.

IV. NUMERICAL EXPERIMENTS

To show the effectiveness of the proposed block-sparse
recovery model (11) using the LOP-`2/`1 penalty (6), we
conduct numerical experiments on both synthetic and real-
world data. We compare the LOP-`2/`1 model with existing
convex penalties exploiting the block-sparsity: the mixed `2/`1
penalty (1) and the LGL penalty, shown in (23) of Appendix
A, which is the state-of-the-art of structured sparse penalty. We
also show the `1 penalty for reference of the non-structured
sparse penalty. Note that we here do not include the nonconvex
methods [50]–[53] because their computational complexity is
significantly higher than the convex methods (see Remark 5)
and the settings of initial values need separate discussion.

A. Synthetic Examples

We consider the estimation of a block-sparse signal x? ∈
RN from noisy compressive measurements. More precisely,
we define the measurements by y := Ax? + ε, where the en-
tries of A ∈ Rd×N (d < N) are drawn from i.i.d. Gaussian
distribution N (0, 1), and ε ∈ Rd is the white Gaussian noise.
The block-sparse signal x? having 4 nonzero blocks and 80
nonzero components with N = 250 is randomly generated
by the following scheme. The sizes of 4 nonzero blocks are
randomly determined under the condition that the sum of the
sizes is 80. The nonzero blocks are randomly located without
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(b) NMSE against SNR where the number of measurements is fixed to 200.

Fig. 4. Comparison of the regularization models for the recovery of block-sparse signals from noisy compressive measurements, where the results are averaged
over 100 independent trials.

overlap, i.e., under the condition |supp(x?)| = 80. The zero
blocks are automatically determined from the locations of the
nonzero blocks. Amplitudes of nonzero components are drawn
from i.i.d. N (0, 1). Note that we randomly generate the block
partition for each trial to investigate the average performance
for various block partitions.

In the proposed LOP-`2/`1 model (11), we use the square
error by setting f(u) = 1

2‖y − u‖
2
2 and L = A. The

existing penalties are also combined with the square error in
similar ways. Note that the regularization parameter is tuned
independently for each model to obtain the best accuracy. For
the proposed model, the regularization parameter λ is tuned
after the selection of α, though the optimal λ is almost the
same for α used in our experiments. The proposed model
(11) is solved by Algorithm 1, where we set γ = 10−1,
µ1 = 1√

‖A‖2op+1
, and µ2 = 1√

5
which satisfy the condition for

the convergence to an optimal solution. The existing models
are also solved by applying the primal-dual algorithm (26)
in Appendix E. We terminate the iteration when the norm of
the differences between the variables of successive iterates is
below the threshold 10−4.

We compare the LOP-`2/`1 model and the existing models
in terms of the normalized mean square error (NMSE)

‖x? − x̂‖22
‖x?‖22

,

where x̂ is the solution of each model. In Figs. 4(a) and
(b), we show the NMSE respectively against the number d
of measurements and the SNR E[‖Ax?‖22]/E[‖ε‖22], where
the results are averaged over 100 independent trials. Note that
the variance of each component of ε is determined after the
generation of A and x? according to the specified SNR. The
mixed `2/`1 model is tested for block sizes 2 and 5, and the
LGL model uses overlapping blocks of size 2 in (23). Different
block sizes are given to the mixed `2/`1 model to see the

performance dependency on the block size. More precisely,
the block sizes 2 and 5 are chosen for the best performances
respectively for the cases where the numbers of measurements
are large and small. From Figs. 4(a) and (b), we see that the
LOP-`2/`1 model outperforms the existing models. Since 2κ̄σ̄
in (9) of Remark 3 is approximately 8 in this experiment,4 we
see that the performance of the LOP-`2/`1 model is fairly
robust against the choice of the tuning parameter α, if α is
chosen from the range slightly larger than 2κ̄σ̄.

For the proposed method, we also examine the performance
of the block partition estimation. Since the proposed LOP-
`2/`1 model (11) is solved as (12), we also obtain σ̂ the
solution of (12) for the variable σ. Since σ̂ is expected to take
constant values for the same block, the blocks can be recovered
by checking the values of σ̂. Fig. 5 shows σ̂ obtained for
an example of trials where the number of measurements is
200 and the SNR is 40dB. In Fig. 6, we show the block
partition computed from the nonzero positions of Dσ, where
we discard the components of Dσ whose magnitudes are
smaller than the threshold 0.3 for the visibility of the result.
For reference, we also show the ground-truth signal x? in
Fig. 6. The proposed method correctly estimates the zero
blocks, but tends to divide the nonzero blocks into smaller
blocks. Since nonzero components are randomly generated in
our experiments, nonzero components generated for the same
block might have a slight deviation in the magnitudes (see,
e.g., the last nonzero block from the left in Fig. 6(a)). Thus, it
can be said that the blocks estimated by the proposed method
adequately reflect the property of the generated ground-truth
signal. We also see that, increasing α, the nonzero blocks
are divided into smaller blocks, while the zero blocks are
kept almost the same. Since nonzero components in the same
block have a slight deviation, the division of nonzero blocks

4This is because the number κ̄ of nonzero blocks is set to 4, and the sample
standard deviation σ̄ is expected to be close to 1 since the nonzero components
are drawn from N (0, 1).
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Fig. 5. The latent vector σ̂ optimized in the LOP-`2/`1 penalty Ψα(x)
for a trial of experiments where SNR and the number of measurements are
respectively 40dB and 200.

is harmless for the estimation of x?. This is hypothesized to
be a reason of the robustness of the proposed method against
the choice of α in terms of the estimation accuracy of x?.

Lastly, we investigate how close the proposed LOP-`2/`1
model is to the mixed `2/`1 model using the ground-
truth blocks B?1 , . . . ,B?K? , though which are not available
in practice. For simplicity, we here fix the ground-truth
blocks as B?1 = {1, . . . , 50}, B?2 = {51, . . . , 50 + B?},
B?3 = {51 + B?, . . . , 150}, B?4 = {151, . . . , 150 + B?},
B?5 = {151 + B?, . . . , 250}, where only B?2 and B?4 contain
nonzero components, and B? is the size of these nonzero
blocks. Note that 2κ̄σ̄ in (9) of Remark 3 approximately equals
to 4 in this setting. Fig. 7 shows the NMSE of the proposed
model with several choices of α and the mixed `2/`1 model
using the ground-truth blocks, where the results are averaged
over 100 independent trials. In Fig. 7, we also show the `1
model and the `2 model, which respectively correspond to the
LOP-`2/`1 model with α → ∞ and α = 0 (see Theorem 2).
Since the mixed `2/`1 model uses the ground-truth blocks in
this experiment, it shows the best performance. Although the
proposed model does not use the information on the ground-
truth blocks, the proposed model with α slightly larger than
2κ̄σ̄ shows comparable performance to the mixed `2/`1 model
using the ground-truth blocks. This validates the effectiveness
of the optimization of the block partition in the proposed
method.
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Fig. 6. Block partition computed from σ̂ shown in Fig. 5, where the endpoints
of blocks are shown in red dot lines. The ground-truth signal x? is shown
for reference.

B. Application to Phased Array Weather Radar

A major goal of the phased array weather radar (PAWR)
[40], [41] is to estimate the backscattered signal X? ∈ CM×N
from noisy observations Y := AX?+E ∈ Cd×N obtained by
transmitting fan beams, where A ∈ Cd×M is a known array
manifold matrix, E ∈ Cd×N is the white Gaussian noise, and
M , N , and d respectively are the numbers of elevation angles,
pulses, and array elements. This estimation problem is called
beamforming in the PAWR literature [37]–[39]. As shown in
[38], [39], the backscattered signal X? exhibits block-sparsity
in the Fourier domain for each elevation angle. Since the block
partition depends on the unknown mean and standard deviation
of the Doppler frequency at each elevation angle, it is also
unknown and different for each elevation angle. Thus, the
proposed approach is suitable for the PAWR beamforming.
Specifically, we design a LOP-`2/`1 model for the PAWR
beamforming as

minimize
X∈CM×N

1

2
‖Y −AX‖2fro + λΨ̃(2d)

α (FX>), (19)

where ‖ · ‖fro denotes the Frobenius norm, and F ∈ CN×N
is the normalized discrete Fourier transform matrix. To ex-
ploit the column-wise block-sparsity of FX>, we use Ψ̃

(2d)
α

slightly modified from (10) by replacing D2d with the vertical
difference operator Dv. To apply Algorithm 1, we rewrite (19)
in the form of (12) as follows. Since F is a unitary matrix,
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we have

‖Y −AX‖2fro = ‖Y > −X>A>‖2fro
= ‖FY > − FX>A>‖2fro.

Thus, by letting Z = FX> and substituting the definition of
Ψ̃

(2d)
α , the optimization problem (19) can be translated into

minimize
(Z,Σ)∈CN×M×RN×M

1

2
‖FY > −ZA>‖2fro + λϕ̃(Z,Σ)

subject to ‖Dv(Σ)‖1 ≤ α

 ,

(20)
where

ϕ̃(Z,Σ) :=

N∑
n=1

M∑
m=1

φ(Zn,m,Σn,m).

Further, by defining Ā ∈ CdN×NM and D̄v ∈ R(N−1)M×NM

satisfying5

(∀Z ∈ CN×M ) vec(ZA>) = Āvec(Z),

(∀Σ ∈ RN×M ) Dv(Σ) = D̄vvec(Σ),

and ȳ := vec(FY >) ∈ CdN , we can rewrite (20) as

minimize
(z̄,σ̄)∈CNM×RNM

1

2
‖ȳ − Āz̄‖22 + λϕ(z̄, σ̄)

subject to ‖D̄vσ̄‖1 ≤ α

 . (21)

Since (21) is in the form of (12), we can solve (21) by
Algorithm 1 with setting6 f(z̄) = 1

2‖ȳ − Āz̄‖
2
2, L = I ,

and D = D̄v. From ẑ the solution of (21), we obtain the
solution of (19) by X̂ = (FHvec−1(ẑ))>, where vec−1 is the
inverse of the vectorization operator. Existing penalties are also
combined with the square error and solved in similar ways,
where the regularization parameters are tuned independently
to obtain the best results.

We conduct a numerical simulation in a setting similar to
[37]–[39]. The backscattered signal X? ∈ CM×N is generated
based on the real reflection intensity measured by the PAWR
at Osaka University,7 where the elevation angles are chosen
uniformly from −15° to 30° degrees with M = 110, and the
mean and the standard deviation of the Doppler frequency are
respectively drawn from uniform distributions of [−1.25, 1.25]
and [0.0314, 0.1257] in kHz for each elevation angle. We set
N = 50 and d = 128, and E as the white Gaussian noise of
the standard deviation

√
5. Table I shows the NMSE

‖X? − X̂‖2fro
‖X?‖2fro

,

averaged over 50 independent trails, where the LGL model
uses overlapping blocks of size 2, and `2/`1 (a) and (b)
respectively refer to the mixed `2/`1 models using block sizes
2 and 4. The result shows that the LOP-`2/`1 model achieves

5We define the vectorization operator by vec(V ) := (v>1 , . . . ,v
>
q )> ∈

Cpq for V := (v1, . . . ,vq) ∈ Cp×q .
6We use this setting because Ā is a block-diagonal matrix. The proximity

operator of f(z̄) = 1
2
‖ȳ−Āz̄‖22 can be computed as prox γ

2
‖ȳ−Ā·‖22

(z̄) =

(γĀHĀ+ I)−1(γĀHȳ + z̄).
7The PAWR data is courtesy of Prof. Tomoo Ushio, Dr. Hiroshi Kikuchi,

and Dr. Eiichi Yoshikawa.
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Fig. 7. Comparison of the LOP-`2/`1 model against the mixed `2/`1 model
using the ground-truth blocks, where the `1 model and the `2 model are also
shown for reference of the LOP-`2/`1 model with α→∞ and α = 0.

better estimation accuracy than the existing models, and is
quite robust against the choice of the tuning parameter α. In
Fig. 8, we show examples of the power spectra of the ground-
truth and the estimates, i.e., squared magnitudes of entries of
FX?> and FX̂>. It can be seen that the LOP-`2/`1 model
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TABLE I
COMPARISON OF THE REGULARIZATION MODELS FOR SIMULATION OF PHASED ARRAY WEATHER RADAR IN TERMS OF NMSE IN DB AVERAGED OVER

50 INDEPENDENT TRIALS.

LOP-`2/`1 (α = 120M) LOP-`2/`1 (α = 130M) LOP-`2/`1 (α = 140M) `2/`1 (a) `2/`1 (b) `1 LGL

−15.62 −15.72 −15.71 −14.78 −14.03 −13.39 −14.83
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Fig. 8. Examples of power spectra of ground-truth and estimates of the backscattered signal, shown in dB, for phased array weather radar simulation.

reduces the artifacts caused in the LGL model, e.g., in the
zoomed areas of Fig. 8.

C. Application of Proposed 2D Penalty to Speech Denoising
To show the effectiveness of the 2D extension (10) of the

LOP-`2/`1 penalty, we conduct experiments on the speech
denoising exploiting block-sparsity of the spectrogram. We
generate noisy speech as y := s? + ε ∈ Rd, where s? is a
2-second clip of speech taken from [71] with 16kHz sampling
rate (i.e. d = 32000), and ε is the white Gaussian noise.
The spectrogram X? := F(s?) of the clean speech, where F
denotes the short-time Fourier transform (STFT), is expected
to be block-sparse because entries ofX? in adjacent frequency
bins and frames tend to be zeros or nonzeros together. The
block partition depends on the characteristics of the speech
to be recovered, and thus is unknown a priori. Hence, the
proposed approach is suitable for exploiting the block-sparsity
of the spectrogram. Specifically, we apply the 2D LOP-`2/`1
penalty in (10) to the speech denoising as

X̂ ∈ arg min
X∈CN×M

1

2
‖y −F−1(X)‖22 + λΨ(2d)

α (X), (22)

where N and M are respectively the numbers of frequency
bins and frames, and F−1 denotes the inverse STFT. We
implement the STFT as a semi-orthogonal transformation by
using the hann window of 32ms (i.e. 512 samples) with 75%
overlap and appropriate zero padding. Note that this setting
implies N = 512 and M = 253. Since D2d and F−1 are
linear operators, we can solve (22) by Algorithm 1 through
reformulation with the vectorization of X , similarly to the
reformulation of (20) into (21), where we should choose
µ2 ≤ 1/3 according to the operator norm of D2d. Note that
F−1 can be computed as F∗, the adjoint of F , thanks to the
semi-orthogonality of F . The existing penalties are used in
manners similar to (22), where the regularization parameters
are tuned independently to obtain the best NMSE.

Experiments are conducted for male and female speech with
input SNRs of 5dB and 10dB. In Table II, we show the NMSE

‖s? −F−1(X̂)‖22
‖s?‖22

,

averaged over 20 independent trials, where `2/`1 (a) and
(b) respectively denote the mixed `2/`1 models using block
sizes 2 × 4 and 2 × 2, which yield best results among
block sizes {1, 2, 4, 8} × {1, 2, 4, 8}. We here do not include
the LGL model since the use of 2D overlapping blocks is
computationally expensive. From Table II, we see that the 2D
LOP-`2/`1 model achieves better estimation accuracy than the
existing models for every experimental condition. In addition,
the performance of the 2D LOP-`2/`1 model is fairly robust
against the choice of α. Fig. 9 shows the magnitude spectro-
grams of the clean speech and the estimates, i.e., magnitudes
of entries of X? and X̂ , for the denoising of male speech
with 10dB input SNR. Rectangular artifacts are observed in
Fig. 9(b) which shows the magnitude spectrogram obtained
by the mixed `2/`1 model with the block size 2 × 4. These
artifacts are considered to be caused by the rectangular blocks
used in the mixed `2/`1 norm. Note that, since the blocks
are used explicitly, it is difficult to employ blocks of various
shapes in the mixed `2/`1 norm due to the computational
complexity. On the other hand, the 2D LOP-`2/`1 penalty
can handle blocks of various shapes because the blocks are
implicitly controlled with the 2D difference operator D2d (see
Remark 4). Indeed, from Fig. 9(c), we see that the 2D LOP-
`2/`1 model considerably reduces such artifacts, and more
accurately recovers detailed shapes of the spectrogram.

V. CONCLUSION

We presented a convex recovery method for block-sparse
signals whose block partitions are not available a priori. We
first introduce a nonconvex penalty function ψK in (2), where
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TABLE II
COMPARISON OF THE REGULARIZATION MODELS FOR SPEECH DENOISING IN TERMS OF NMSE IN DB AVERAGED OVER 20 INDEPENDENT TRIALS.

LOP-`2/`1 (α = 0.006NM) LOP-`2/`1 (α = 0.007NM) LOP-`2/`1 (α = 0.008NM) `2/`1 (a) `2/`1 (b) `1

Male, 5dB −12.36 −12.28 −12.23 −12.16 −11.98 −11.85

Male, 10dB −15.78 −15.73 −15.68 −15.56 −15.41 −15.28

Female, 5dB −14.05 −14.07 −14.06 −13.69 −13.49 −13.47

Female, 10dB −17.37 −17.43 −17.41 −17.04 −16.90 −16.85
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Fig. 9. Examples of magnitude spectrograms of clean speech and estimates, shown in dB, for the denoising of male speech with the input SNR of 10dB.

the block partition is optimized for the signal of interest by
minimizing the mixed `2/`1 norm. Then, as the tight convex
relaxation of ψK , we derive the proposed latent optimally
partitioned (LOP)-`2/`1 penalty Ψα in (6). For the block-
sparse recovery model (11) using the LOP-`2/`1 penalty, we
develop the iterative solver as Algorithm 1 which is guaranteed
to converge to an optimal solution. Numerical experiments on
both synthetic and real-world data illustrate the effectiveness
of the proposed method.

APPENDIX A
BRIEF REVIEW OF CONVEX BLOCK-SPARSE PENALTIES

USING OVERLAPPING BLOCKS

A simple modification of the mixed `2/`1 norm is to use, in
(1), overlapping blocks B̄1, . . . , B̄K̄ ⊂ {1, . . . , N} such that

K̄⋃
k=1

B̄k = {1, . . . , N},

B̄k 6= ∅ (k = 1, . . . , K̄),

B̄k = {n ∈ {1, . . . , N} | n̄k ≤ n ≤ m̄k}
for some n̄k, m̄k ∈ {1, . . . , N} (k = 1, . . . , K̄),

where the non-overlapping condition B̄k∩B̄k′ = ∅ (k 6= k′)
is omitted, e.g., as in [42]–[47]. However, this modification
cannot remove the blocks containing both zero and nonzero
components. To alleviate this drawback, the latent group
lasso (LGL) method [48], [49] is presented to select relevant
blocks from the pre-defined overlapping blocks B̄1, . . . , B̄K̄ .

Specifically, the LGL penalty is defined by8

LGL(x) := min
(w1,...,wK̄)∈CN×K̄

x=
∑K̄
k=1wk,

supp(wk)⊂B̄k (k=1,...,K̄)

K̄∑
k=1

√
|B̄k|‖wk‖2. (23)

The LGL penalty can also be written as

LGL(x) = min
w̃∈CÑ
x=Gw̃

K̄∑
k=1

√
|B̄k|‖w̃Ik‖2,

where Ñ =
∑K̄
k=1 |B̄k|,

Ik :=

{
n ∈ {1, . . . , Ñ}

∣∣∣∣∣ 1 +

k−1∑
m=1

|B̄m| ≤ n ≤
k∑

m=1

|B̄m|

}
,

G :=
[
G1 · · · GK̄

]
∈ RN×Ñ ,

Gk :=

 On̄k−1,|B̄k|
I|B̄k|

ON−m̄k,|B̄k|

 ∈ RN×|B̄k|,

and Ip ∈ Rp×p and Op,q ∈ Rp×q respectively denote the
identity matrix of order p and the zero matrix of size p × q.
Thus, when the LGL penalty is combined with some convex
data-fidelity function, the resulting regularization model can
be solved as a convex optimization problem of w̃ ∈ CÑ .
However, it is intractable to use all possible blocks as
B̄1, . . . , B̄K̄ because the problem size becomes too large, i.e.,
Ñ = N(N + 1)(N + 2)/6, in this case. Due to this issue,
B̄1, . . . , B̄K̄ are typically restricted to blocks of a fixed size.

8By setting B̄k to other than blocks, the LGL method is applicable to other
structured sparsity, while this paper focuses on the block-sparsity.
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On the other hand, the proposed approach is free from such
issue because the block partition is implicitly optimized in the
proposed penalty (6) with the latent vector σ of size N .

APPENDIX B
PROOF OF LEMMA 1

First, we prove the properties of φ defined by (4). Notice
that φ can be written as

φ(x, τ) =
h(x, τ)

2
+
τ

2
,

where

h(x, τ) :=


|x|2

τ
, if τ > 0;

0, if x = 0 and τ = 0;

∞, otherwise.

Since h is perspective function of |x|2, it is lower semicontinu-
ous convex [63, Proposition 2.3 and Example 2.6], and thus φ
is lower semicontinuous convex. The coercivity of φ is proven
by showing φ(x, τ)→∞ (|x|+ |τ | → ∞) as follows.

a) (Case of |τ | → ∞) Clear from φ(x, τ) ≥ τ
2 .

b) (Case of |τ | is bounded) In this case, we have |x| →
∞ and ∃R > 0 such that |τ | ≤ R. Moreover, since
φ(x, τ) =∞ when τ ≤ 0 and x 6= 0, we have

(∀x 6= 0) φ(x, τ) ≥ |x|
2

2R
,

which implies φ(x, τ)→∞ due to |x| → ∞.

Next, we prove the equation (5) as follows.

a) (Case of xB 6= 0) For τ > 0, we have∑
n∈B

φ(xn, τ) =
∑
n∈B

(
|xn|2

2τ
+
τ

2

)
=
‖xB‖22

2τ
+
τ

2
|B|.

Since xB 6= 0 in this case, ‖xB‖
2
2

2τ + |B|
2 τ is a strictly

convex function of τ > 0, and the minimum is attained
when τ = ‖xB‖2/

√
|B|. Thus, we have

min
τ>0

∑
n∈B

φ(xn, τ) =
√
|B|‖xB‖2.

For τ = 0, since there exists n ∈ B such that xn 6= 0 in
this case, we have

∑
n∈B φ(xn, 0) =∞. For τ < 0, the

definition of φ in (4) readily implies
∑
n∈B φ(xn, τ) =

∞. Summarizing, we have the equation (5) where the
minimum is attained when τ = ‖xB‖2/

√
|B|.

b) (Case of xB = 0) For τ > 0, since xn = 0 for every
n ∈ B in this case, we have∑

n∈B
φ(xn, τ) =

∑
n∈B

(
|xn|2

2τ
+
τ

2

)
=
τ

2
|B| > 0.

For τ = 0, we have∑
n∈B

φ(xn, 0)︸ ︷︷ ︸
=0

= 0.

For τ < 0, we have
∑
n∈B φ(xn, τ) = ∞. Thus, the

minimum is attained when τ = 0, and

min
τ∈R

∑
n∈B

φ(xn, τ) = 0.

Since xB = 0 in this case, this implies (5) where the
minimum is attained when τ = 0 = ‖xB‖2/

√
|B|.

APPENDIX C
PROOF OF THEOREM 1

Since Ψα is defined by the partial minimization of the coer-
cive lower semicontinuous convex function

∑N
n=1 φ(xn, σn)

under the closed convex constraint ‖Dσ‖1 ≤ α, and{
σ ∈ RN

∣∣∣∣∣
N∑
n=1

φ(xn, σn) <∞ and ‖Dσ‖1 ≤ α

}
6= ∅

(24)

for any α ∈ R+, Ψα takes finite values for every x ∈ CN ,
i.e., dom(Ψα) = CN , by [69, Proposition 11.15]. Note that
(24) holds for α ∈ R+ since Dσ = 0 for any σ satisfying
σ1 = σ2 = · · · = σN . The convexity of Ψα follows from the
convexity of

∑N
n=1 φ(xn, σn) and ‖Dσ‖1 ≤ α by [69, Propo-

sition 8.35]. Since Ψα is convex and dom(Ψα) = CN , Ψα is
continuous by [69, Corollary 8.40]. From

∑N
n=1 φ(xn, σn) ≥

0, Ψα is nonnegative. Lastly, the coercivity of Ψα follows
from

Ψα(x) = min
σ∈RN
‖Dσ‖1≤α

N∑
n=1

φ(xn, σn)

≥ min
σ∈RN

N∑
n=1

φ(xn, σn)

=

N∑
n=1

[
min
σn∈R

φ(xn, σn)

]
= ‖x‖1,

where the last equality is obtained by applying Lemma 1 for
each of minσn∈R φ(xn, σn) (n = 1, . . . , N).

APPENDIX D
PROOF OF THEOREM 2

The equation (7) is proven as

Ψ0(x) = min
σ∈RN
‖Dσ‖1≤0

N∑
n=1

φ(xn, σn)

= min
σ∈R

N∑
n=1

φ(xn, σ) =
√
N‖x‖2,

where the second equality holds due to

‖Dσ‖1 ≤ 0⇔Dσ = 0⇔ σ1 = σ2 = · · · = σN ,

and the last equality follows from Lemma 1. Next, (8) is
proven as

lim
α→∞

Ψα(x) = min
σ∈RN

N∑
n=1

φ(xn, σn) = ‖x‖1,

where the last equality holds by Lemma 1.
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APPENDIX E
PRIMAL-DUAL ALGORITHM AND REFORMULATION OF (12)

The Chambolle-Pock primal-dual algorithm [54], [55] and
the Loris-Verhoeven algorithm [56], [57] are widely used for
solving convex optimization problems. As explained in [62],
these algorithms are essentially the same for the following
problem

minimize
v∈V

G(v) subject to Hv = 0, (25)

and the iteration can be written asṽ
(i+1) = v(i) +H∗(r(i) −Hv(i))

v(i+1) = proxγG(ṽ(i+1))

r(i+1) = r(i) −Hv(i+1),

(26)

where we suppose that G ∈ Γ0(V), H : V → W is a linear
operator, H∗ : W → V is the adjoint of H , V and W are
finite-dimensional Hilbert spaces, and γ > 0. This algorithm is
also known as the linearized augmented Lagrangian algorithm
[58], [59]. The convergence of (26) to an optimal solution of
(25) is shown in the following lemma from, e.g., [62, Theorem
5.3] and [58, Corollary 1].

Lemma 2. Suppose that an optimal solution of (25) exists, the
so-called qualification condition9 0 ∈ ri(H(dom(G))) holds,
‖H‖op ≤ 1, and γ > 0. Let v(0) ∈ V and r(0) ∈ W . Then,
(v(i))∞i=1 generated by (26) converges to an optimal solution
of (25).

We rewrite (12) into the form of (25) by introducing
auxiliary variables u = Lx and η = Dσ:

minimize
(x,σ,u,η)∈CN×RN×CJ×RN−1

f(u) + λϕ(x,σ) + ιBα1 (η)︸ ︷︷ ︸
=:G(x,σ,u,η)

subject to
[
µ1L O −µ1I O
O µ2D O −µ2I

]
︸ ︷︷ ︸

=:H


x
σ
u
η

 = 0


,

(27)
where ιBα1 (η) is the indicator function of the `1 ball and
defined by

ιBα1 (η) :=

{
0, if ‖η‖1 ≤ α;

∞, otherwise,

I and O respectively denote the identity and zero matrices of
appropriate sizes, and µ1 and µ2 satisfying

0 < µ1 ≤
1√

‖L‖2op + 1

0 < µ2 ≤
1√
5

< 1√
‖D‖2op + 1




(28)

are introduced so that ‖H‖op ≤ 1. Applying the primal-dual
algorithm (26) to the problem (27), we obtain the proposed
algorithm shown as Algorithm 1 in Section III, where the

9For a set S ⊂ V , H(S) := {Hv ∈ W | v ∈ S}. For a set C ⊂ W ,
ri(C) denotes the relative interior of C (see, e.g., [69, Definition 6.9]).

updates are written in terms of (x,σ,u,η). Note that the
proximity operator of γG in (26) reduces to the proximity
operators of γλϕ, γf , and γιBα1 , since γG is the separable
sum of these functions. Note also that the proximity operator
of γιBα1 reduces to the `1 ball projection PBα1 .

APPENDIX F
PROOF OF THEOREM 4

First, the existence of the solution of (27) is guaranteed from
Theorem 3 and the equivalence between (11), (12), and (27).
The qualification condition for (27) is confirmed as follows.
The effective domain of G is given by

dom(G) = dom(ϕ)× dom(f)× dom(ιBα1 )

= (C× R++ ∪ {(0, 0)})N × CJ ×Bα1 ,

where R++ denotes the set of all positive real numbers, and
Bα1 = {η ∈ RN−1 | ‖η‖1 ≤ α}. Thus, we have

H(dom(G)) =

{[
µ1Lx− µ1u
µ2Dσ − µ2η

]∣∣∣∣ (x,σ,u,η) ∈ dom(G)

}
= (L(CN )− CJ)× (D(RN )− µ2B

α
1 ), (29)

where we use the relation D(RN++) = D(RN ). This relation
holds because, for any σ ∈ RN , D(σ + c1) = Dσ and
σ + c1 ∈ RN++ can be satisfied with some c ∈ R++, where
1 := (1, 1, . . . , 1)> ∈ RN++. Since the expression (29) implies
that H(dom(G)) is a nonempty convex set satisfying the
symmetry H(dom(G)) = −H(dom(G)), the qualification
condition 0 ∈ ri(H(dom(G))) holds by [69, Example 6.10].
The condition ‖H‖op ≤ 1 is checked as follows. Since

HHH =

[
µ2

1(LLH + I) O
O µ2

2(DD> + I)

]
is block-diagonal, with ρ(·) denoting the largest eigenvalue of
the argument, we have

‖H‖op =
√
ρ(HHH)

= max

{√
ρ(µ2

1(LLH + I)),
√
ρ(µ2

2(DD> + I))

}
= max

{
µ1

√
ρ(LLH) + 1, µ2

√
ρ(DD>) + 1

}
= max

{
µ1

√
‖L‖2op + 1, µ2

√
‖D‖2op + 1

}
≤ 1,

where the last inequality holds since µ1 and µ2 are chosen
to satisfy (28). Thus, by Lemma 2, (x(i),σ(i),u(i),η(i))∞i=1

converges to an optimal solution of (27). The convergence
of (x(i))∞i=1 to the solution of (11) follows from the relation
between (11), (12), and (27).
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