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Abstract—We propose nonlinear beamforming for phased ar-
ray weather radars (PAWRs). Conventional beamforming is lin-
ear in the sense that a backscattered signal arriving from each
elevation is reconstructed by a weighted sum of received signals,
which can be seen as a linear transform for the received signals.
For distributed targets such as raindrops, however, the number of
scatterers is significantly large, differently from the case of point
targets that are standard targets in array signal processing. Thus,
the spatial resolution of the conventional linear beamforming is
limited. To improve the spatial resolution, we exploit two charac-
teristics of a periodogram of each backscattered signal from the
distributed targets. The periodogram is a series of the powers of
the discrete Fourier transform (DFT) coefficients of each back-
scattered signal and utilized as a nonparametric estimate of the
power spectral density. Since each power spectral density is pro-
portional to the Doppler frequency distribution, 1) major compo-
nents of the periodogram are concentrated in the vicinity of the
mean Doppler frequency, and 2) frequency indices of the major
components are similar between adjacent elevations. These are
expressed as group-sparsities of the DFT coefficient matrix of the
backscattered signals, and we propose to reconstruct the signals
through convex optimization exploiting the group-sparsities. We
consider two optimization problems. One problem roughly evalu-
ates the group-sparsities and is relatively easy to solve. The other
evaluates the group-sparsities more accurately but requires more
time to solve. Both problems are solved with the alternating di-
rection method of multipliers including nonlinear mappings. Sim-
ulations using synthetic and real-world PAWR data show that the
proposed method dramatically improves the spatial resolution.

Index Terms—Beamforming, convex optimization, distributed
target, group-sparsity, periodogram, phased array weather radar.
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I. INTRODUCTION

PHASED array weather radars (PAWRs) [1]–[6] have been
developed to quickly detect hazardous weather phenom-

ena such as a thunderstorm with heavy rain. Classical parabolic
Doppler weather radars [7], [8] transmit a pencil beam and re-
ceive backscattered signals within a narrow range of elevation
angles. By repeatedly transmitting and receiving the signals at
several elevation angles with the mechanical vertical scan, the
classical Doppler radar can observe the weather in the sky. On
the other hand, PAWRs transmit a fan beam and receive back-
scattered signals within a wide range of elevation angles by an
array antenna. Then, the backscattered signals within the nar-
row ranges are reconstructed from the received signals of the
array antenna by digital beamforming [9]–[20]. This is the key
technology in the PAWR because it gets rid of the mechanical
vertical scan and hence the temporal resolution is significantly
improved in the weather observation. For example, the PAWR
developed at Osaka University performs a volume scan of 60
kilometers radius with 600 range, 300 azimuth, and 110 eleva-
tion points (i.e., with a resolution of about 100 [m]×1.2 [deg]×
0.82 [deg]) in 30 seconds by one rotation in the azimuth direc-
tion [5], [21], while the Doppler radar performs a similar scan
with freely-selected 10 to 20 elevation points of about 1.2 [deg]
beamwidth in 5 to 10 minutes by rotations equal to the number
of the elevations [8] (see [22] for comparison of these radars).

The weather observation accuracy in the PAWR depends on
beamforming. Major methods [9]–[19] reconstruct the signal
arriving from each elevation as a complex weighted sum of the
received signals. In particular, Capon (CP) beamforming [12]–
[17], also known as the minimum variance distortionless re-
sponse (MVDR) beamforming [18], is widely used because it
can adaptively reduce the influence of so-called sidelobes if a
sufficient number of beams (pulses) are transmitted. However,
for quick weather observations, the number of pulses should be
as small as possible. To meet this demand, Yoshikawa et al.
[19] proposed the minimum mean square error (MMSE) beam-
forming by modifying the direction-of-arrival (DOA) estima-
tion method of Blunt et al. in [23] to a beamforming method
imposed with a directional gain constraint. In MMSE beam-
forming, differently from CP beamforming, the covariance ma-
trix of the received signals is iteratively updated, and hence
the backscattered signal arriving from each elevation is recon-
structed robustly even if the number of the pulses is small.
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Beamforming methods were developed originally for obser-
vations of point targets in array signal processing, while targets
of the PAWR are distributed targets such as raindrops. In this
case, the number of scatterers is significantly large, i.e., much
greater than the number of antenna elements. As a result, the
spatial resolution of the above linear methods [9]–[19] is lim-
ited, and fine fluctuations of the average signal powers corre-
sponding to precipitation profile have not been captured.

To overcome the limitation of the linear methodology, this
article proposes a nonlinear beamforming method. We formu-
late the beamforming as an ill-conditioned inverse problem. To
solve it, we exploit properties of periodograms of the backscat-
tered signals from the distributed targets. The periodogram is
a series of the powers of the discrete Fourier transform (DFT)
coefficients of each backscattered signal and often used as a
nonparametric estimator for the power spectral density of the
backscattered signal. Since the power spectral density is pro-
portional to the Doppler frequency distribution [7], 1) domi-
nant components of each periodogram are concentrated in the
vicinity of the mean Doppler frequency, and 2) frequency in-
dices of the dominant components are similar between the pe-
riodograms of adjacent elevation angles. We express these two
properties as group-sparsities of the DFT coefficient matrix of
the backscattered signals and propose to reconstruct the DFT
coefficient matrix by minimizing a cost function that consists
of a data-fidelity term and two group ℓ1-norms evaluating the
group-sparsities. We consider two optimization problems that
compute the group ℓ1-norms in different ways. One roughly
evaluates the group-sparsities and is relatively easy to solve,
while the other evaluates the group-sparsities more accurately
but requires more time to solve. Both problems are solved with
the alternating direction method of multipliers (ADMM) [24]–
[27]. Since nonlinear mappings called the proximity operators
are used in the ADMM iterations, the proposed beamforming
is a nonlinear transform for the received signals. Numerical
simulations using synthetic and real-world PAWR data show
that the proposed nonlinear beamforming greatly improves the
spatial resolution in comparison with the linear beamforming.

There are several studies that use certain sparsities in various
domains of different applications to improve the resolution of
radars. For example, the sparsity of point targets in the range-
velocity domain is already used for Doppler radars [28]–[31]
and phased array radars [32], [33]. In [34], [35], by supposing
that there exist multiple point targets of the same velocity at
different ranges, the velocity-wise group-sparsity in the range-
velocity domain is used for Doppler radars. In [36]–[38], the
sparsity of point targets in the elevation axis is used for phased
array radars. For synthetic aperture radar imaging, to obtain a
high-resolution image in the range-azimuth domain, the spar-
sity of the image or its discrete cosine transform coefficients
[39]–[41] and group-sparsities due to the continuity of objects
[42]–[44] are used. In [28]–[44], the resolution is improved via
convex or nonconvex optimization based mainly on the (group)
ℓ1-norm or ℓ0-pseudonorm that evaluates each sparsity. In this
article, group-sparsities of distributed targets in the elevation-
velocity domain are newly used for phased array radars, and we
obtain high-resolution beamforming results as the solutions to
convex optimization problems based on two group ℓ1-norms.

Note that in [34], [35] the velocity-wise group ℓ1-norm (or ℓ0-
pseudonorm) can be used from the assumption on the velocity,
while in [42]–[44] complicated nonconvex regularization terms
based on hierarchical probability models are used to evaluate
group-sparsities whose group partitions are unknown. To avoid
the group partition problem, as with latent group lasso [45]–
[48], this article uses small overlapping groups that enable us
to evaluate the group-sparsities by convex regularization terms.

The rest of this article is organized as follows. In Section II,
after explaining mathematical notation, we introduce the basic
principles of the classical Doppler weather radar, and then we
formulate the observation model in the PAWR. In Section III,
we describe three conventional linear beamforming [11], [12],
[19]. Section IV presents the proposed nonlinear beamforming.
First, we derive the data-fidelity term in the frequency domain.
Second, we explain the group ℓ1-norms evaluating two group-
sparsities of periodograms in Section IV-A and Section IV-B.
Third, we propose two convex optimization problems includ-
ing their ADMM iterations in Section IV-C and Section IV-D.
Section V shows the effectivity of the proposed beamforming
by simulations, and finally Section VI concludes this article.

II. PRELIMINARIES

Let R, R+, and C be the sets of all real numbers, nonnega-
tive real numbers, and complex numbers, respectively. We use
j ∈ C to denote the imaginary unit, i.e., j :=

√
−1. For any

complex number x ∈ C, x̄ denotes its complex conjugate, and
|x| :=

√
xx̄ denotes its absolute value. We write vectors and

matrices by boldface small and capital letters, respectively. We
use In ∈ {0, 1}n×n to denote the identity matrix of order n.
The transpose and Hermitian transpose of a vector or a matrix
are denoted by (·)T and (·)H, respectively. The ℓ2-norm (or the
Euclidean norm) of a vector x := (x1, x2, . . . , xn)

T ∈ Cn is
defined by ∥x∥2 :=

√∑n
i=1 |xi|2. A weighted group ℓ1-norm1

of x is defined, with a non-overlapping partition G := (Gi)
nG
i=1

and a nonnegative vector ξ := (ξ1, ξ2, . . . , ξnG
)T ∈ RnG

+ , by
∥x∥G1,ξ :=

∑nG

i=1 ξi∥xGi
∥2, where Gi ( ̸= ∅) is an index set for

the ith group s.t.
⋃nG

i=1 Gi = {1, 2, . . . , n} and Gi1 ∩ Gi2 = ∅
(i1 ̸= i2), and xG := (xi)i∈G is the subvector extracted from
x with G. If xGi ≈ 0 for many groups Gi, x is called group-
sparse2 [47]. The Frobenius norm of a matrix X := (xi1,i2) ∈
Cn1×n2 is defined by ∥X∥F :=

√∑n1

i1=1

∑n2

i2=1 |xi1,i2 |2. We
use E[·] to denote the expected value of some random variable.
Table I shows constants used in this article for radar settings,
where the left column is used for both Doppler weather radar
and PAWR, and the right column is used for only PAWR.

A. Basic Principles of Weather Observation by Doppler Radar

Classical parabolic Doppler weather radars transmit pulses
for a specific elevation angle and receive backscattered signals
generated by the incidence of the transmitted signals to targets

1We also define a weighted group ℓ1-norm of a matrix X in a similar way.
2We also use the word “group-sparse” for matrices in a similar sense. If all

Gi consist only of consecutive indices, x is also called block-sparse [49], [50].
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TABLE I
CONSTANTS USED IN THIS ARTICLE FOR RADAR SETTINGS

Both Doppler and PAWR Only PAWR
c speed of light d antenna element spacing
λ carrier wavelength N number of antenna elements

r
target range (distance θmin bottom/top of angular interval
from radar to target) θmax where fan beam is transmitted

T
pulse repetition time

M
number of subintervals dividing

(sampling period) [θmin, θmax] for beamforming

L
number of pulses

K
number of point targets or sub-

(number of samples) intervals where scatterers exist

(clouds and raindrops). For a fixed range r [m], the lth discrete-
time sample x̂l ∈ C of the received signal is expressed as

x̂l := xl + εl := x

(
(l − 1)T +

2r

c

)
+ εl (l = 1, 2, . . . , L),

(1)

where c [m/s] is the speed of light, T [s] is the pulse repetition
time satisfying T ≥ 2r

c , L is the number of the pulses, xl ∈ C
is the sample of the backscattered signal x(t) generated by the
pulse transmitted at t = (l−1)T , and εl ∈ C is additive white
Gaussian noise of variance E[|εl|2] = σ2

ε . Normally, the total
observation time LT is very short3 and we can consider x(t) to
be one realization of a continuous-time random process X(t)
that is wide-sense stationary,4 ergodic,5 zero-mean and zero-
pseudoautocorrelation, i.e., µx := E[X(t)] = 0 and Qx(τ) :=
E[X(t+ τ)X(t)] = 0. Moreover, its autocorrelation function
Rx(τ) := E[X(t+ τ)X(t)] satisfies

∫∞
−∞ |τRx(τ)|dτ < ∞.

Strictly speaking, x(t) is expressed as the sum of individual
backscattered signals in the scattering resolution volume [7]:

x(t) =
∑
s

as(t)e
j(2πfst+ϕs), (2)

where as(t) ≥ 0 is the scattering amplitude of the sth particle,
fs [Hz] is called the Doppler frequency, which is independently
generated from a common probability density function q(f),
and ϕs [rad] is called the phase shift, which is uniformly dis-
tributed from [−π, π) under the assumption that precipitation
profile is uniform within the scattering resolution volume. The
power spectral density of the backscattered signal x(t) is given
by the Fourier transform of the autocorrelation function Rx(τ):

S(f) :=

∫ ∞

−∞
Rx(τ)e

−j2πfτ dτ . (3)

3For example, if the maximum range is r = 60 [km] and the speed of light
is c = 300 [km/ms], the pulse repetition time in (1) should be set to T =
0.4 [ms] or more. In this situation, when the number of pulses is L = 20, the
observation time is about LT = 8 [ms]. Raindrops fall at several meters per
second, and thus they move only several centimeters during the observation.

4Let X(t) be a continuous-time random process. X(t) is called wide-sense
stationary or weak-sense stationary if its mean and (pseudo)autocorrelation do
not vary by shifts in the time t, i.e., ∀t E[X(t)] =

∫
C xq(x|t) dx = µx and

∀t∀τ E[X(t+ τ)X(t)] =
∫∫

C2 x1x̄2q(x1, x2|t+ τ, t) dx1dx2 = Rx(τ)
and E[X(t + τ)X(t)] =

∫∫
C2 x1x2q(x1, x2|t + τ, t) dx1dx2 = Qx(τ),

where q(x|t) is the probability density function of x(t) and q(x1, x2|t+τ, t)
is the joint probability density function of x1 := x(t+ τ) and x2 := x(t).

5A wide-sense stationary process X(t) is called ergodic if any realization
x(t) of the random process X(t) satisfies limT→∞

1
T

∫ T
0 x(t) dt = µx and

limT→∞
1
T

∫ T
0 x(t+ τ)x(t) dt = Rx(τ) by the mean-square convergence.

Suppose that the amplitude as(t) and the Doppler frequency fs
are independent and the shape of each raindrop is almost un-
changed, i.e., ∀t∀τ E[

∑
s as(t+ τ)as(t)] ≈ P holds, during

the observation [7], where P := Rx(0) = E[|xl|2] is the aver-
age signal power. Then, Rx(τ) ≈ PE[ej2πfsτ ] holds, and the
power spectral density S(f) in (3) can be expressed as

S(f) ≈ PE
[
δ(f − fs)

]
= Pq(f) =

λP

2
qv

(
λf

2

)
. (4)

In (4), δ is the delta function, λ [m] is the carrier wavelength,
and qv : R → R+ is a common probability density function for
each Doppler velocity vs =

λfs
2 [m/s], where the direction of

approach to the radar is defined as the positive direction of the
Doppler velocity. From (4), we can see that the power spectral
density S(f) is almost proportional to the Doppler frequency
distribution q(f) [7]. On the frequency f , we customarily con-
sider S(f)

P as its probability density q(f), and we call its mean

µf :=

∫ ∞

−∞
f
S(f)

P
df ≈

∫ ∞

−∞
fq(f) df (5)

the mean Doppler frequency and its standard deviation

σf :=

√∫ ∞

−∞
(f − µf )2

S(f)

P
df ≈

√∫ ∞

−∞
(f − µf )2q(f) df

(6)

the Doppler frequency width. Similarly, we call µv =
λµf

2 the
mean Doppler velocity and call σv =

λσf

2 the Doppler velocity
width. The main purpose of the Doppler weather radars is to
estimate P , µf (or µv) and σf (or σv) from the measurements
x̂l in (1), since these parameters correspond to the amount of
rainfall, the mean wind speed and the variation of wind speeds.

As shown in (4), S(f) has information about P and q(f).
However, the backscattered signal x(t) is observed in discrete-
time, and we have to consider the power spectral density of xl

that is given by the discrete-time Fourier transform of Rx(lT ):

S⟨d⟩(f) :=
∞∑

l=−∞

Rx(lT )e
−j2πflT =

1

T

∞∑
n=−∞

S

(
f − n

T

)
.

(7)

If S(f) = 0 for |f | ≥ 1
2T , S(f) can be perfectly reconstructed

from S⟨d⟩(f). Furthermore, we have to estimate S⟨d⟩(f) in (7)
from finite samples xl (l = 1, 2, . . . , L), where we assume L is
even and εl = 0 in (1) for simplicity but the discussion can be
extended to noisy samples x̂l with odd L. To estimate S⟨d⟩(f),
we compute the normalized DFT coefficients uk ∈ C of xl by

uk :=
1√
L

L∑
l=1

xle
−j

2π(k−1−L/2)(l−1)
L (k = 1, 2, . . . , L). (8)

Then, we compute a periodogram as a series of the powers of
the normalized DFT coefficients uk:

|uk|2 =
1

L

∣∣∣∣∣
L∑

l=1

xle
−j

2π(k−1−L/2)(l−1)
L

∣∣∣∣∣
2

(k = 1, 2, . . . , L).

(9)
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The expected value of the periodogram (|uk|2)Lk=1 is given by

E
[
|uk|2

]
=

1

L
E

[
L∑

l1=1

L∑
l2=1

xl1 x̄l2e
−j

2π(k−1−L/2)(l1−l2)
L

]

=
1

L

L∑
l1=1

L∑
l2=1

E[xl1 x̄l2 ]e
−j

2π(k−1−L/2)(l1−l2)
L

=
1

L

L∑
l1=1

L∑
l2=1

Rx

(
(l1 − l2)T

)
e−j

2π(k−1−L/2)(l1−l2)
L

=

L−1∑
l=−(L−1)

(
1− |l|

L

)
Rx(lT )e

−j
2π(k−1−L/2)l

L . (10)

From (7), (10), and
∑∞

l=−∞ |lRx(lT )| < ∞, we have

lim
L→∞

E
[
|uk|2

]
= S⟨d⟩

(
k − 1− L/2

LT

)
. (11)

Therefore, the periodogram is often used as a nonparametric
estimator for S⟨d⟩(f). Moreover, the parameters P , µf and σf

can be estimated from the periodogram (|uk|2)Lk=1, e.g., by

P̂ =
1

L

L∑
l=1

|xl|2 =
1

L

L∑
k=1

|uk|2

µ̂f =
1

P̂L

kpeak+L/2−1∑
k=kpeak−L/2

k − 1− L/2

LT
|ukmodL

|2

σ̂f =

√√√√√ 1

P̂L

kpeak+L/2−1∑
k=kpeak−L/2

(
k − 1− L/2

LT
− µ̂f

)2
|ukmodL

|2


(12)

in [51], where kpeak := argmaxk |uk|, kmodL := k−⌊k−1
L ⌋L,

and ⌊·⌋ is the floor function. In (12), µ̂f and σ̂f are calculated
by unfolding the frequency f in (7) wrapped below the Nyquist
frequency 1

2T . In most cases, the Doppler frequency width σf

is smaller than the sampling frequency 1
T , and thus the Doppler

frequency close to the Nyquist frequency is properly measured.
Note that if pulse compression by frequency modulation is

utilized as in [52], [53], then we treat the received signal after
matched filtering with the carrier frequency shift as x̂l in (1).
Differently from the basic case of transmitting truncated sinu-
soidal pulses, the pulse compression causes some dependence
between the received signals x̂l of adjacent range bins. In this
article, we suppose that the influence of this dependence is not
dominant, and hence x̂l at each range is processed separately.

B. Observation Model in Phased Array Weather Radar

First of all, we show the observation model for K point tar-
gets. Let a PAWR have an N -element uniform linear array with
the inter-element spacing d [m]. A plane wave signal scattered
from the κth point target hits on the array antenna at an un-
known angle θ⋆κ ∈ [−π

2 ,
π
2 ], where θ⋆1 < θ⋆2 < · · · < θ⋆K [rad].

The lth time sample yl ∈ CN of the received signal is given by

yl =

K∑
κ=1

x⋆
κ,la(θ

⋆
κ) + εl (l = 1, 2, . . . , L), (13)

where x⋆
κ,l ∈ C is the lth time sample of the κth plane wave

signal, a(θ⋆κ) ∈ CN is the so-called steering vector defined by

a(θ) :=
(
1, e−j 2πd sin θ

λ , e−j 4πd sin θ
λ , . . . , e−j

2(N−1)πd sin θ
λ

)T
,

(14)

and εl ∈ CN is additive white Gaussian noise, independent of
the signals x⋆

κ,l, of covariance matrix Rε := E[εlε
H
l ] = σ2

εIN .
On the other hand, our targets such as raindrops are called

distributed targets [19], that are supposed to exist continuously
(strictly speaking, a sufficient number of raindrops exist within
the antenna beamwidth). In this case, the number K of scatter-
ers (raindrops) is too large and the observation model in (13) is
difficult to use. Instead, we approximate the observation model
by dividing the whole angular interval [θmin, θmax] ⊂ [−π

2 ,
π
2 ]

into non-overlapping subintervals [θm − ∆θ
2 , θm + ∆θ

2 ] (m =
1, 2, . . . ,M ), where the number M of the subintervals is user-
defined, ∆θ := θmax−θmin

M , and θm := θmin+(m− 1
2 )∆θ. As a

result, we use the following discretized approximation model

yl =

M∑
m=1

xm,lam + εl = Axl + εl (l = 1, 2, . . . , L), (15)

where xm,l ∈ C is the lth sample of the sum of backscattered
plane wave signals in the mth subinterval [θm− ∆θ

2 , θm+ ∆θ
2 ],

xl := (x1,l, x2,l, . . . , xM,l)
T ∈ CM , am := a(θm) ∈ CN , and

A := [a1 a2 · · · aM ] ∈ CN×M . Note that the signal xl in
(1) corresponds to xm,l in (15) for a specific elevation angle
θm, and the noise vector εl in (15) includes model errors due
to the discretization. These model errors become smaller as M
increases, i.e., as ∆θ decreases, but it is difficult to predict the
accurate amount of the model errors. Since standard Doppler
weather radars perform observations with about 1 [deg] beam-
width, we consider that the model errors have little effect on
weather observations if ∆θ ≤ 1 [deg]. Therefore, we suppose
that ∆θ ≤ 1 [deg] and εl is still additive white Gaussian noise
independent of xl. In the PAWR system, θm denotes the mth
elevation angle, and the average signal power vector

p := (P1, P2, . . . , PM )T

:=
(
E
[
|x1,l|2

]
, E
[
|x2,l|2

]
, . . . , E

[
|xM,l|2

])T ∈ RM
+ (16)

corresponds to precipitation profile along the elevation axis.
Even if pulse compression is used in the PAWR, we can treat

the received signal after matched filtering with the carrier fre-
quency shift as yl in (15). In this case, yl and xl contain some
dependence in the range direction. As in Section II-A, we sup-
pose the influence of this dependence is small, and the received
signal yl at each range is processed separately in the following.

III. CONVENTIONAL METHODS: LINEAR BEAMFORMING

The beamforming is a reconstruction problem of xl in (15).
Major beamforming methods [9]–[19] estimate xl by multiply-
ing complex weights wm ∈ CN (m = 1, 2, . . . ,M ) and yl as

x̂l := (x̂1,l, x̂2,l, . . . , x̂M,l)
T

:= (wH
1 yl,w

H
2 yl, . . . ,w

H
Myl)

T = WHyl. (17)
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In this article, we call the methodology based on (17) the lin-
ear beamforming. Note that the least squares (LS) method

x̂LS,l := WH
LS yl := A†yl (18)

does not necessarily work well, even if N ≥ M , since A is ill-
conditioned when ∆θ is smaller than the antenna beamwidth
that is determined by the antenna size, where A† ∈ CM×N is
the Moore–Penrose pseudoinverse of A. In the following, we
explain three linear methods, Fourier (FR) beamforming [11],
Capon (CP) beamforming [12], and MMSE beamforming [19].

A. FR Beamforming

FR beamforming [11] is the most basic linear method and
its complex weight vector is defined by

wFR,m :=
am

N
(19)

independently of yl. The vector wFR,m is equal to a matched
filter that maximizes the signal-to-noise ratio E[|xm,lw

H
mam|2]

E[|wH
mεl|2] .

If N ≥ M and there exists some positive integer n satisfying
∀m d

λ (sin θm+1−sin θm) ≈ n
N , then FR beamforming can re-

construct the signal xl in the manner of the inverse DFT, but
this ideal condition is usually not met. Actually, in the typical
case, the average signal power Pm is often overestimated [19].
To explain this fact, we derive the observation model as in (13)
from (15) by redefining K (≤ M ) as the number of the sub-
intervals [θm − ∆θ

2 , θm + ∆θ
2 ] in which scatterers (raindrops)

exist, and θ⋆κ as the center of such a subinterval. Then, from

x̂FR,m,l :=
aH
m

N
yl = xm,l +

1

N

∑
θ⋆
κ ̸=θm

x⋆
κ,la

H
ma(θ⋆κ) +

aH
mεl
N

,

(20)

the signal power Pm = E[|xm,l|2] is overestimated by (12):

P̂FR,m =
1

L

L∑
l=1

|x̂FR,m,l|2 ≫ E
[
|xm,l|2

]
+

σ2
ε

N
(21)

for many elevation angles θm due to the influence of sidelobes,
i.e., the influence of θ⋆κ (̸= θm) satisfying |aH

ma(θ⋆κ)| ̸≈ 0.

B. CP Beamforming

CP beamforming [12], that is also known as MVDR beam-
forming [18], is a data-dependent method, differently from FR
beamforming. To avoid the overestimation, CP beamforming
minimizes the signal power 1

L

∑L
l=1 |x̂m,l|2 = wH

mR̂ywm un-
der the condition wH

mam = 1, where R̂y := 1
L

∑L
l=1 yly

H
l ∈

CN×N denotes the sample covariance matrix of the zero-mean
random vector yl. The weight vector wCP,m is defined as the
solution to the following optimization problem

minimize
wm

wH
mR̂ywm subject to wH

mam = 1, (22)

and given by

wCP,m :=
R̂−1

y am

aH
mR̂−1

y am

(23)

if L ≥ N (strictly speaking, if rank(R̂y) = N ). In particular,
if N ≥ K + 1 and L is sufficiently large, then we have

P̂CP,m :=
1

L

L∑
l=1

|x̂CR,m,l|2 ≈ E
[
|xm,l|2

]
+ σ2

ε∥wCP,m∥22

(24)

for all m since ∀θ⋆κ ̸= θm |wH
CP,ma(θ⋆κ)| ≈ 0 holds. However,

if L is not so large, the average signal powers Pm are under-
estimated [19]. Moreover if L < N , R̂−1

y cannot be computed.

C. MMSE Beamforming

The MMSE method is often used in communications [54]–
[60] to recover xl by (17), and it solves the following problem

minimize
wm

E
[
|xm,l −wH

myl|2
]
. (25)

The optimal solution to this problem is given by

Wop :=
[
wop,1 wop,2 · · · wop,M

]
:= R−1

y ARx, (26)

where xl or its covariance matrix Rx := E[xlx
H
l ] ∈ CM×M

is known6 in the communications scenario. In the latter case, if
the matrix A is also known, then the covariance matrix Ry :=
E[yly

H
l ] ∈ CN×N of yl is given by Ry = ARxA

H+σ2
εIN .

Blunt et al. [23] extended the MMSE method in (26) to the
DOA estimation for signals x⋆

κ,l from point targets, where each
angle θ⋆κ in (13) is estimated as a discretized angle θm in (15).
xl and Rx are unknown in this scenario, but we can suppose
E[xm1,l x̄m2,l] = E[xm1,l]E[x̄m2,l] = 0 (m1 ̸= m2). Hence,
Rx is a diagonal matrix Rx = diag(p) and approximated by
R̂x⊙IM := ( 1

L

∑L
l=1 xlx

H
l )⊙IM , where ⊙ is the Hadamard

product. The signal vector xl is estimated, from the initial es-
timate x̂

(0)
DOA,l = x̂FR,l = AHyl/N , by iteratively computing

R(i)
x =

(
1

L

L∑
l=1

x̂
(i)
DOA,l x̂

(i)H
DOA,l

)
⊙ IM

W
(i+1)
DOA = (AR(i)

x AH + σ2
εIN )−1AR(i)

x

x̂
(i+1)
DOA,l = W

(i+1)H
DOA yl (l = 1, 2, . . . , L)

(27)

for i ≥ 0 until x̂DOA,l converges. The signal power Pm is esti-
mated by P̂DOA,m = 1

L

∑L
l=1 |x̂DOA,m,l|2 (m = 1, 2, . . . ,M ),

and each angle θ⋆κ is estimated as a peak position of P̂DOA,m.
Differently from the DOA estimation where we detect peak

positions of Pm, the estimation accuracy of xl and Pm is im-
portant in the beamforming. In this point of view, large peaks
of P̂DOA,m are stable even for small L while small peaks are
unstable for dense scatterers with small L. To improve the ac-
curacy, Yoshikawa et al. [19] proposed MMSE beamforming
by adding a directional gain constraint to the method in (27) as
in CP beamforming in (23) and the adaptive pulse compression
in [61]. MMSE beamforming considers the following problem

minimize
wm

E
[
|xm,l −wH

myl|2
]

subject to wH
mam = 1,

(28)

6In the former case, the observation matrix A is unknown.
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and the exact optimal solution to this problem is given by

wMMSE,m :=
R−1

y am

aH
mR−1

y am

. (29)

Based on (27) and (29), the signal vector xl is estimated, from
the initial estimate x̂

(0)
MMSE,l = x̂FR,l, by iteratively computing

R(i)
x =

(
1

L

L∑
l=1

x̂
(i)
MMSE,l x̂

(i)H
MMSE,l

)
⊙ IM

R(i)
y = AR(i)

x AH + σ2
εIN

w
(i+1)
MMSE,m =

R
(i)−1
y am

aH
mR

(i)−1
y am

(m = 1, 2, . . . ,M )

x̂
(i+1)
MMSE,l = W

(i+1)H
MMSE yl (l = 1, 2, . . . , L)

(30)

for i ≥ 0 until x̂MMSE,l converges. Differently from CP beam-
forming, Ry and xl can be stably estimated even for small L.

IV. NONLINEAR BEAMFORMING VIA CONVEX
OPTIMIZATION BASED ON GROUP-SPARSITIES

An essential problem for the linear beamforming in (17) is
that when the number K of subintervals including scatterers is
close to N or larger than N , the estimation accuracy degrades,
i.e., fine fluctuations of the average signal powers Pm in (16)
cannot be captured. This is because each weight vector wm ∈
CN can only create at most N−1 null directions and the influ-
ence of sidelobes occurs. In this article, to eliminate the side-
lobes and improve the spatial resolution, we consider the use
of certain sparsities in optimization problems as in [28]–[44].

In radar applications, the sparsity has been used mainly for
point targets since the signal to be estimated can itself be re-
garded as sparse [28]–[38]. On the other hand, in this article,
we show that the signal from distributed targets (raindrops) can
be regarded as group-sparse in the elevation-velocity domain,
but its appropriate non-overlapping group partition is unknown
in advance. Instead of finding the non-overlapping groups, we
use small overlapping groups as with latent group lasso [45]–
[48], and evaluate the group-sparsities by convex regularizers.

In this section, we propose a nonlinear beamforming method
based on convex optimization. First, we gather xl and yl into
X := [x1 x2 · · · xL] = [x̃1 x̃2 · · · x̃M ]T ∈ CM×L and
Y := [y1 y2 . . . yL] ∈ CN×L, respectively, where x̃m :=
(xm,1, xm,2, . . . , xm,L)

T ∈ CL. Then the beamforming can be
translated into a reconstruction problem of X from Y , and the
data-fidelity for the measurements yl in (15) is evaluated by

L∑
l=1

∥yl−Axl∥22 = ∥Y −AX∥2F = ∥Y T−XTAT∥2F. (31)

For each discrete-time backscattered signal x̃m at θm, define
its normalized DFT coefficients uk,m ∈ C (k = 1, 2, . . . , L) as
in (8). Let F := 1√

L
[f−L

2
f−L

2 +1 · · · fL
2 −1]

T ∈ CL×L be
the normalized discrete Fourier transform matrix, where fi :=

(1, e−j 2πi
L , e−j 4πi

L , . . . , e−j
2(L−1)πi

L )T ∈ CL. By using F , the
DFT coefficient vector um := (u1,m, u2,m, . . . , uL,m)T ∈ CL
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Fig. 1. Relation between the power spectral density S(f) of x(t), the power
spectral density S⟨d⟩(f) of xl, and the periodogram (|uk|2)Lk=1, where the
Gaussian function in (34) is used as the Doppler frequency distribution with
P = 1, µf = 700 [Hz], σf = 220 [Hz], T = 4× 10−4 [s], and L = 20. If
we set the carrier wavelength to λ = 3.18×10−2 [m], then σv ≈ 3.5 [m/s].
Black, blue, and red lines depict 1

T
S(f), S⟨d⟩(f), and E[|uk|2], respectively.

is expressed as um = F x̃m (m = 1, 2, . . . ,M ). Furthermore,
we define the DFT coefficient matrix U = (uk,m) ∈ CL×M by

U :=
[
u1 u2 · · · uM

]
= FXT. (32)

The reconstruction of X and that of U are essentially equiv-
alent due to the unitarity of F , and the weather parameters can
be computed from U by (12). Thus in this article, we consider
the beamforming as a reconstruction problem of U from Y .
We have XT = FHU , and (31) can be transformed into

∥Y T−XTAT∥2F = ∥Y T−FHUAT∥2F = ∥FY T−UAT∥2F
(33)

from the unitarity of F . In the following, after describing two
group-sparsities of U , we estimate U by solving convex opti-
mization problems based on (33) and the two group-sparsities
(see Footnote 2 for the meaning of the word “group-sparse”).

A. Narrow Bandwidth of Each Power Spectral Density

As mentioned in Section II-A, the power spectral density of
the backscattered signal is almost proportional to the Doppler
frequency distribution. In addition, the Doppler frequency dis-
tribution and the Doppler velocity distribution are essentially
the same (see (4)). Thus, unless the Doppler velocity width σv

is extremely large, the bandwidth of the power spectral density,
similar to the Doppler frequency width σf , is narrow compared
to the sampling frequency 1

T [Hz]. In particular, when the influ-
ence of the atmospheric turbulence is large,7 the power spectral
density can be modeled by a Gaussian function [7], [62], [63]:

S(f) =
P√
2πσf

e
−

(f−µf )2

2σ2
f ≈ Pq(f). (34)

In this model, the autocorrelation function is exactly given by

Rx(τ) =

∫ ∞

−∞
S(f)ej2πfτ df = Pej2πµfτe−2π2σ2

fτ
2

. (35)

7See, e.g., [62] for a detailed relation between the atmospheric turbulence
intensity and the Doppler velocity distribution at each elevation angle.
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Figure 1 illustrates the relation between S(f) in (3), S⟨d⟩(f) in
(7), and the periodogram (|uk|2)Lk=1 in (9) using (34) and (35).
As shown in Fig. 1, the frequency indices k of large E[|uk|2]
are gathered in the vicinity of the mean Doppler frequency µf .

Since E[|uk|2] ≈ 0 implies uk ≈ 0 and the above discussion
holds for every elevation θm, each DFT coefficient vector um

will be group-sparse by an appropriate non-overlapping group
partition, but the appropriate partition is unknown in advance.
Instead, we divide um into L overlapping groups of size bf :

z
⟨1⟩
1,m := (u1,m, u2,m, . . . , ubf ,m)T ∈ Cbf

z
⟨1⟩
2,m := (u2,m, u3,m, . . . , ubf+1,m)T ∈ Cbf

...

z
⟨1⟩
L−bf+1,m := (uL−bf+1,m, uL−bf+2,m, . . . , uL,m)T ∈ Cbf

z
⟨1⟩
L−bf+2,m := (uL−bf+2,m, . . . , uL,m, u1,m)T ∈ Cbf

...

z
⟨1⟩
L,m := (uL,m, u1,m, . . . , ubf−1,m)T ∈ Cbf


(36)

under the periodic boundary condition. Note that we connect
uL,m and u1,m in z

⟨1⟩
k,m (k = L − bf + 2, L − bf + 3, . . . , L)

since the frequency components of the discrete-time signal x̃m

are wrapped below the Nyquist frequency as shown in Fig. 1.
By arranging all z⟨1⟩

k,m (k = 1, 2, . . . , L and m = 1, 2, . . . ,M ),
we define a matrix

Z1 :=


z
⟨1⟩
1,1 z

⟨1⟩
1,2 · · · z

⟨1⟩
1,M

z
⟨1⟩
2,1 z

⟨1⟩
2,2 · · · z

⟨1⟩
2,M

...
z
⟨1⟩
L,1 z

⟨1⟩
L,2 · · · z

⟨1⟩
L,M

 ∈ CbfL×M . (37)

Then, z⟨1⟩
k,m ≈ 0 holds for many k and m. Therefore, the matrix

Z1 will be group-sparse by a non-overlapping partition G1 :=

(G⟨1⟩
k,m) s.t. G⟨1⟩

k,m := {(bf(k − 1) + i,m)}bfi=1. Moreover, there
is a simple matrix Bf ∈ {0, 1}bfL×L satisfying BfU = Z1.
This property can be evaluated by a weighted group ℓ1-norm

∥Z1∥G1

1,Ξ1
:=

L∑
k=1

M∑
m=1

ξ
⟨1⟩
k,m

∥∥z⟨1⟩
k,m

∥∥
2
, (38)

where Ξ1 := (ξ
⟨1⟩
k,m) ∈ RL×M

+ is a nonnegative weight matrix.

B. Similarity between the Adjacent Power Spectral Densities

In the previous section, we focused on the narrow bandwidth
of the power spectral density for each elevation angle θm. In
this section, we explain the similarity between the power spec-
tral densities at adjacent elevation angles θm and θm+1. When
∆θ is relatively small, i.e., M is set to a relatively large value
to acquire the high-resolution precipitation profile, the mean
Doppler velocity µv and the Doppler velocity width σv at θm
and those at θm+1 are expected to be similar. As a result, the
power spectral density at θm and that at θm+1 are similar.

Such a similarity also applies to the adjacent periodograms
(|uk,m|2)Lk=1 and (|uk,m+1|2)Lk=1. For a fixed frequency index
k, if E[|uk,m|2] is large, then E[|uk,m+1|2] will be also large.
If E[|uk,m|2] ≈ 0 holds, then E[|uk,m+1|2] ≈ 0 will also hold.
As a result, a vector ũk := (uk,1, uk,2, . . . , uk,M )T ∈ CM will
be group-sparse by an appropriate non-overlapping group par-
tition, but it is unknown in advance. Instead, as in the previous
section, we divide ũk into M overlapping groups of size be:

z
⟨2⟩
1,k := (uk,1, uk,2, . . . , uk,be)

T ∈ Cbe

z
⟨2⟩
2,k := (uk,2, uk,3, . . . , uk,be+1)

T ∈ Cbe

...

z
⟨2⟩
M−be+1,k := (uk,M−be+1, uk,M−be+2, . . . , uk,M )T ∈ Cbe

z
⟨2⟩
M−be+2,k := (uk,M−be+2, . . . , uk,M , uk,1)

T ∈ Cbe

...

z
⟨2⟩
M,k := (uk,M , uk,1, . . . , uk,be−1)

T ∈ Cbe


(39)

under the periodic boundary condition. By arranging all z⟨2⟩
m,k

(m = 1, 2, . . . ,M and k = 1, 2, . . . , L), we define a matrix

Z2 :=


z
⟨2⟩
1,1 z

⟨2⟩
1,2 · · · z

⟨2⟩
1,L

z
⟨2⟩
2,1 z

⟨2⟩
2,2 · · · z

⟨2⟩
2,L

...
z
⟨2⟩
M,1 z

⟨2⟩
M,2 · · · z

⟨2⟩
M,L

 ∈ CbeM×L. (40)

Then z
⟨2⟩
m,k ≈ 0 holds for many m and k. Therefore, the matrix

Z2 will be group-sparse by a non-overlapping partition G2 :=

(G⟨2⟩
m,k) s.t. G⟨2⟩

m,k := {(be(m− 1) + i, k)}bei=1, and there exists
a simple matrix Be ∈ {0, 1}beM×M satisfying BeU

T = Z2.
This property can be evaluated by a weighted group ℓ1-norm

∥Z2∥G2

1,Ξ2
:=

M−be+1∑
m=1

L∑
k=1

ξ
⟨2⟩
m,k

∥∥z⟨2⟩
m,k

∥∥
2
, (41)

where Ξ2 := (ξ
⟨2⟩
m,k) ∈ RM×L

+ is a nonnegative weight matrix
s.t. ξ⟨2⟩m,k := 0 for m = M − be +2,M − be +3, . . . ,M . Note
that E[|uk,M |2] and E[|uk,1|2] are not necessarily similar, and
hence we define the weights ξ⟨2⟩m,k as zeros for the vectors z⟨2⟩

m,k

including both uk,M and uk,1 not to evaluate these vectors. In
addition, if we know in advance that there is almost no signal
at particular elevations or frequencies, we can use this informa-
tion by increasing only the particular weights ξ

⟨1⟩
k,m and ξ

⟨2⟩
m,k.

Remark 1 (Difference from Our Previous Work [20]): In our
previous work [20], we considered the beamforming as a re-
construction problem of X , and used the same group ℓ1-norm
∥BfFXT∥G1

1,Ξ1
= ∥BfU∥G1

1,Ξ1
= ∥Z1∥G1

1,Ξ1
as in (38) for the

narrow bandwidth of each power spectral density. On the other
hand, we did not use the similarity of the adjacent power spec-
tral densities but used the continuity of precipitation profile,
i.e., we assumed that if x̃m ≈ 0, then it is highly possible that
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x̃m+1 ≈ 0. This was evaluated by a weighted group ℓ1-norm

∥BeX∥G0

1,ξ0
=

M−be+1∑
m=1

ξ⟨0⟩m

∥∥(x̃T
m, x̃T

m+1, . . . , x̃
T
m+be−1)

T
∥∥
2

=

M−be+1∑
m=1

ξ⟨0⟩m

∥∥(uT
m,uT

m+1, . . . ,u
T
m+be−1)

T
∥∥
2

=

M−be+1∑
m=1

ξ⟨0⟩m

∥∥(z⟨2⟩T
m,1 , z

⟨2⟩T
m,2 , . . . ,z

⟨2⟩T
m,L

)T∥∥
2
= ∥Z2∥G0

1,ξ0
,

(42)

where G0 := (G⟨0⟩
m ) s.t. G⟨0⟩

m := {(be(m−1)+ i, k)}i=1,2,...,be
k=1,2,...,L

and ξ0 := (ξ
⟨0⟩
m ) ∈ RM

+ is some vector s.t. ξ⟨0⟩m = 0 for m =
M − be + 2,M − be + 3, . . . ,M . Therefore, the current work
evaluates the group-sparsity of Z2 in detail for each frequency
by (41), while the previous work roughly evaluated it by col-
lecting all frequency components. In addition, if ∥Z1∥G1

1,Ξ1
and

∥Z2∥G2

1,Ξ2
are small, then ∥Z2∥G0

1,ξ0
will be automatically small.

Thus, we do not use our previous cost ∥Z2∥G0

1,ξ0
in this article.

C. Proposed Nonlinear Beamforming (Formulation I)

Based on the data-fidelity term in (33) and the two weighted
group ℓ1-norms (38) and (41), we reconstruct U from Y by
solving a convex optimization problem

minimize
U ,Z1,Z2

1

2
∥FY T −UAT∥2F + ∥Z1∥G1

1,Ξ1
+ ∥Z2∥G2

1,Ξ2

subject to Z1 = BfU and Z2 = BeU
T, (43)

with the use of ADMM [24]–[27] (see Appendix for details of
ADMM). By defining two convex functions g and h in (78) as

g(Z1,Z2) := ∥Z1∥G1

1,Ξ1
+ ∥Z2∥G2

1,Ξ2
(44)

and
h(U) :=

1

2
∥FY T −UAT∥2F, (45)

the problem in (43) is expressed as an ADMM-form:

minimize
U ,Z1,Z2

g(Z1,Z2) + h(U)

subject to (Z1,Z2) = L(U) := (BfU ,Be ◦ T (U)), (46)

where T is the transpose operator, ◦ denotes the composition
of two mappings, and L : CL×M → CbfL×M ×CbeM×L is an
linear mapping that maps U to (Z1,Z2) with Bf and Be.

The ADMM iterations for (46) are given as follows. On the
first line in (79), since the function g(Z1,Z2) is divided into
two parts ∥Z1∥G1

1,Ξ1
and ∥Z2∥G2

1,Ξ2
, Z1 and Z2 are updated by

Z
(i)
1 = prox

γ∥·∥G1
1,Ξ1

(
BfU

(i) + V
(i)
1

)
Z

(i)
2 = prox

γ∥·∥G2
1,Ξ2

(
BeU

(i)T + V
(i)
2

)
 (47)

with the use of the proximity operators of the group ℓ1-norms
in (81), where γ > 0 and V1 ∈ CbfL×M and V2 ∈ CbeM×L

are dual variables. Then, on the second line in (79), we have

Ṽ
(i)
1 = V

(i)
1 +BfU

(i) −Z
(i)
1

Ṽ
(i)
2 = V

(i)
2 +BeU

(i)T −Z
(i)
2

}
. (48)

On the third line in (79), U is updated as the unique solution to
a least squares problem, and the solution U (i+1) has to satisfy

γU (i+1)ATĀ+ L∗ ◦ L
(
U (i+1)

)
= γFY TĀ+ L∗(Z(i)

1 − Ṽ
(i)
1 ,Z

(i)
2 − Ṽ

(i)
2

)
, (49)

with the adjoint operator L∗ : CbfL×M × CbeM×L → CL×M

L∗(Z1,Z2) := BT
f Z1+T (BT

e Z2) = BT
f Z1+ZT

2 Be. (50)

Moreover, the composite mapping L∗ ◦L can be computed by

L∗ ◦ L(U) = L∗(BfU ,BeU
T)

= BT
f BfU + T (BT

e BeU
T)

= bfILU + T (beIMUT) = (bf + be)U . (51)

By substituting (51) into (49), we have

U (i+1)
(
γATĀ+ (bf + be)IM

)
= γFY TĀ+BT

f

(
Z

(i)
1 − Ṽ

(i)
1

)
+
(
Z

(i)
2 − Ṽ

(i)
2

)T
Be,

(52)

and U (i+1) is obtained by applying (γATĀ+(bf+be)IM )−1

to (52) from the right side. Finally, on the fourth line in (79),
V1 and V2 are updated, with the use of ρ(i+1) ∈ [0, 2], by

V
(i+1)
1 = Ṽ

(i)
1 +

(
ρ(i+1) − 1

)(
BfU

(i+1) −Z
(i)
1

)
V

(i+1)
2 = Ṽ

(i)
2 +

(
ρ(i+1) − 1

)(
BeU

(i+1)T −Z
(i)
2

)} . (53)

By repeating (47), (48), (52) and (53) until a convergence con-
dition is met, the solution to (46) is obtained as an estimate Û .

As described in [27], convergence to the optimal solution is
easily guaranteed by setting ρ(i+1) as a constant ρ ∈ [1, 2). If
ρ(i+1) = 1 for all i, we can replace Ṽ

(i)
1 and Ṽ

(i)
2 with V

(i+1)
1

and V
(i+1)
2 , respectively. If ρ(i+1) > 1 for all i, we can ac-

celerate the convergence compared to the case of ρ(i+1) = 1.

D. Proposed Nonlinear Beamforming (Formulation II)

In (43), the matrices Z1 and Z2 are constructed from U by
applying Bf and Be ◦T , respectively, i.e., each component of
U is copied to bf groups in Z1 and be groups in Z2. Then, we
compute the ℓ2-norm of each group in (38) and (41). Since the
energy of each uk,m is spread over multiple groups, evaluation
values for the group-sparsities of U will be slightly inaccurate.

In the theoretical field of compressed sensing, a formulation
called latent group lasso has been proposed to evaluate group-
sparsities [45]–[48], where overlapping groups have been used
in a slightly different way from Formulation I. To evaluate the
group-sparsities of U more accurately than (43), we consider
another optimization problem based on the latent group lasso
formulation in which the relation between U and (Z1,Z2) is
reversed. Specifically, we also propose to solve a problem

minimize
U ,Z1,Z2

1

2
∥FY T −UAT∥2F + ∥Z1∥G1

1,Ξ1
+ ∥Z2∥G2

1,Ξ2

subject to BT
f Z1 = U and BT

e Z2 = UT, (54)

where the weight matrix Ξ2 = (ξ
⟨2⟩
m,k) satisfies ξ

⟨2⟩
m,k = ∞ for

m = M − be + 2,M − be + 3, . . . ,M , i.e., z⟨2⟩
m,k = 0 has to

hold for m = M − be + 2,M − be + 3, . . . ,M . Differently
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from the problem in (43), U and UT in (54) are constructed
by applying BT

f and BT
e to Z1 and Z2, respectively. Such a

latent group lasso formulation can concentrate the energy of
each uk,m on a few groups in Z1 and Z2, although it requires
more time to solve. Thus, the number of almost-zero vectors
z
⟨1⟩
k,m ≈ 0 and z

⟨2⟩
m,k ≈ 0 increases, and the group-sparsity with

fixed-size overlapping groups can be accurately evaluated [47].
To solve the problem in (54) with ADMM, we define five

auxiliary variables Λ1 ∈ CbfL×M , Λ2 ∈ CbeM×L, and Γn ∈
CL×M (n = 1, 2, 3). Then, define functions g and h in (78) as

g(Λ1,Λ2,Γ1,Γ2,Γ3) := ∥Λ1∥G1

1,Ξ1
+∥Λ2∥G2

1,Ξ2
+ι(Γ1,Γ2,Γ3)

(55)

and
h(U ,Z1,Z2) :=

1

2
∥FY T −UAT∥2F, (56)

with the use of an indicator function ι s.t. ι(Γ1,Γ2,Γ3) := 0 if
Γ1 = Γ2 = Γ3 and ι(Γ1,Γ2,Γ3) := ∞ otherwise. Moreover,
by defining an linear mapping L in (78) as

L(U ,Z1,Z2) := (Z1,Z2,U ,BT
f Z1, T (BT

e Z2)), (57)

the problem in (54) is expressed as an ADMM-form:

minimize
U ,Z1,Z2,Λ1,Λ2,Γ1,Γ2,Γ3

g(Λ1,Λ2,Γ1,Γ2,Γ3) + h(U ,Z1,Z2)

subject to (Λ1,Λ2,Γ1,Γ2,Γ3) = L(U ,Z1,Z2). (58)

Note that although the function h(U ,Z1,Z2) actually depends
only on U , we added Z1 and Z2 as arguments to make it easier
to understand that the problem in (58) as the ADMM-from.

The ADMM iterations for (58) are given as follows. On the
first line in (79), since g(Λ1,Λ2,Γ1,Γ2,Γ3) is divided into
three parts ∥Λ1∥G1

1,Ξ1
, ∥Λ2∥G2

1,Ξ2
, and ι(Γ1,Γ2,Γ3), the vari-

ables Λ1 and Λ2 are updated, with the use of some γ > 0, by

Λ
(i)
1 = prox

γ∥·∥G1
1,Ξ1

(
Z

(i)
1 + V

(i)
1

)
Λ

(i)
2 = prox

γ∥·∥G2
1,Ξ2

(
Z

(i)
2 + V

(i)
2

)
 , (59)

and Γn (n = 1, 2, 3) are updated, with the use of the proximity
operators of the indicator function in (82), by

Γ(i)
n =

1

3

(
U (i) +BT

f Z
(i)
1 +Z

(i)T
2 Be +V

(i)
3 +V

(i)
4 +V

(i)
5

)
,

(60)

where V1 ∈ CbfL×M , V2 ∈ CbeM×L, and Vn ∈ CL×M (n =
3, 4, 5) are dual variables. On the second line in (79), we have

Ṽ
(i)
1 = V

(i)
1 +Z

(i)
1 −Λ

(i)
1

Ṽ
(i)
2 = V

(i)
2 +Z

(i)
2 −Λ

(i)
2

Ṽ
(i)
3 = V

(i)
3 +U (i) − Γ

(i)
1

Ṽ
(i)
4 = V

(i)
4 +BT

f Z
(i)
1 − Γ

(i)
2

Ṽ
(i)
5 = V

(i)
5 +Z

(i)T
2 Be − Γ

(i)
3


. (61)

On the third line in (79), U , Z1, and Z2 can be updated as the
solutions to three different least squares problems since the lin-
ear mapping L does not mix U , Z1 and Z2. Specifically, from

L∗(Λ1,Λ2,Γ1,Γ2,Γ3) := (Γ1,Λ1 +BfΓ2,Λ2 +BeΓ
T
3 ),
(62)

PAWR

Fig. 2. Reflection intensities Ẑm observed by the PAWR at Osaka University
on March 30, 2014, and a flowchart on the average signal powers Pm in our
simulations. These intensities were given from the results of FR beamforming.

U is updated by

U (i+1) =
(
γFY TĀ+Γ

(i)
1 − Ṽ

(i)
3

)(
γATĀ+ IM

)−1
. (63)

Z1 and Z2 are respectively updated by

Z
(i+1)
1 =

(
IbfL+BfB

T
f

)−1(
Λ

(i)
1 − Ṽ

(i)
1 +Bf

(
Γ
(i)
2 − Ṽ

(i)
4

))
,

(64)

and

Z
(i+1)
2 =

(
IbeM+BeB

T
e

)−1(
Λ

(i)
2 −Ṽ

(i)
2 +Be

(
Γ
(i)
3 −Ṽ

(i)
5

)T)
.

(65)

Note that, if we use the matrix inversion lemma [64], [65], then
(IbfL +BfB

T
f )

−1 in (64) can be computed by(
IbfL +BfB

T
f

)−1
= IbfL −Bf

(
IL +BT

f Bf

)−1
BT

f

= IbfL − 1

bf + 1
BfB

T
f , (66)

and (IbeM+BeB
T
e )

−1 in (65) can also be computed similarly.
Finally, on the fourth line in (79), V1, V2, V3, V4 and V5 are
updated, with the use of ρ(i+1) ∈ [0, 2], by

V
(i+1)
1 = Ṽ

(i)
1 +

(
ρ(i+1) − 1

)(
Z

(i+1)
1 −Λ

(i)
1

)
V

(i+1)
2 = Ṽ

(i)
2 +

(
ρ(i+1) − 1

)(
Z

(i+1)
2 −Λ

(i)
2

)
V

(i+1)
3 = Ṽ

(i)
3 +

(
ρ(i+1) − 1

)(
U (i+1) − Γ

(i)
1

)
V

(i+1)
4 = Ṽ

(i)
4 +

(
ρ(i+1) − 1

)(
BT

f Z
(i+1)
1 − Γ

(i)
2

)
V

(i+1)
5 = Ṽ

(i)
5 +

(
ρ(i+1) − 1

)(
Z

(i+1)T
2 Be − Γ

(i)
3

)


. (67)

By repeating (59)–(61), (63)–(65) and (67) until a convergence
condition is met, the solution to (58) is obtained as an estimate
Û . From the ADMM iterations in Formulations I and II, we
see that the problem in (54) is more difficult than that in (43).

V. NUMERICAL SIMULATIONS

A. Settings for Synthetic Data

To show the effectiveness of the proposed nonlinear beam-
forming, first we conducted simulations using synthetic data
based on the reflection intensities, in Fig. 2, observed by the
PAWR at Osaka University on March 30, 2014. The reflection
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intensity Ẑ [dBZ] indicates the scattering factor per unit vol-
ume considering the radar range equation and the permittivity
of raindrops, and it is computed from the signal power P as

Ẑ = 10 log10

(
r4P

νΩ

)
, (68)

where ν is a constant determined from the characteristics of the
radar and the permittivity of raindrops, and Ω is the size of the
scattering resolution volume at range r. Note that in the beam-
forming, Ω is inversely proportional to the number M of sub-
intervals. In Fig. 2, there exist 110 reflection intensities at each
range between the whole elevations of −30 [deg] and 60 [deg],
and they were computed from the results of FR beamforming.
This PAWR system considers that if the value of the reflection
intensity is less than 10 [dBZ], there is no signal at that point.

We conducted the following simulations based on [66]. By
setting r = 7.5 [km], θmin = −15 [deg] and θmax = 30 [deg],
we extracted 110 (θmax−θmin)

π/2 = 55 data samples from Fig. 2.
The target reflection intensity Ẑm [dBZ] at each θm was gener-
ated by cubic spline interpolation of these 55 samples followed
by adding Gaussian random numbers of variance 9. Note that
the random numbers were needed to create the high-resolution
precipitation profile. We supposed that r4

νΩ = 1 for simplicity
when M = 55. From (68) and the relation between Ω and M ,
we defined the average signal power Pm at each θm by

Pm =


55

M
× 10Ẑm/10 if Ẑm ≥ 10,

55

M
× 10−9 if Ẑm < 10.

(69)

We used λ = 31.8 [mm], d = 16.5 [mm], and T = 0.4 [ms].
As a result, the Nyquist frequency was 1

2T = 1250 [Hz] and the
Nyquist Doppler velocity was λ

4T ≈ 19.9 [m/s]. We used the
Gaussian function in (34) as the power spectral density Sm(f)
at each θm, and we defined the mean Doppler frequency by

µfm = − 2

λ

(
20 sin

(
2πm

M

)
+ nm

)
[Hz], (70)

where nm ∈ R is a Gaussian random number of variance 1.
The Doppler frequency width at each θm was simply fixed to
σfm = 4

λ ≈ 126 [Hz] which corresponds to σvm = 2 [m/s].
The exact autocorrelation function Rxm(τ) of the backscat-

tered signal xm(t) at each θm can be computed as in (35), and
the covariance matrix of each random vector x̃m is given by

Rm := E[x̃mx̃H
m]

=


Rxm(0) Rxm

(T ) · · · Rxm
((L−1)T )

Rxm
(T ) Rxm

(0) · · · Rxm
((L−2)T )

...
...

. . .
...

Rxm
((L−1)T ) Rxm

((L−2)T ) · · · Rxm
(0)

 .

(71)

Based on [7], [67], each target signal x̃m was generated8 from

8In this model, the variance V [|uk,m|2] := E[(|uk,m|2 −E[|uk,m|2])2]
of the periodogram satisfies V [|uk,m|2] = (E[|uk,m|2])2, which leads to

lim
L→∞

V
[
|uk,m|2

]
=

(
S
⟨d⟩
m

( k−1−L/2
LT

))2
, (72)

i.e., the variance does not converge to zero when L approaches infinity [68].

a circularly-symmetric complex Gaussian distribution

q̃m(x̃) =
1

πLdet(Rm)
e−x̃HR−1

m x̃. (73)

In (15), the number of antenna elements was set to N = 128,
and the variance of the noise εl was set to σ2

ε = 2.5.
We compared the proposed nonlinear beamforming, NL-I in

(43) and NL-II in (54), to LS in (18),9 FR in (19), CP in (23),
and MMSE beamforming in (30) for M = 110, 160 and L =
20, 60, 256. Note that CP beamforming in (23) cannot be used
for L = 20, 60 since L < N holds. When M = 110, the num-
ber of subintervals in which signals exist10 was K = 93 < N .
On the other hand, when M = 166, that was K = 142 > N ,
and hence it is difficult to estimate X or U . Moreover, in both
cases, the condition number of AHA, denoted by cn(AHA)
in Table II, is extremely large, and the beamforming problem
based on the observation model in (15) is very ill-conditioned.

The weights of NL-I in (43) were set to ξ
⟨1⟩
k,m = 1.5 N√

bf
×

10−3 and ξ
⟨2⟩
m,k = 2.5 N√

be
× 10−4, the group size bf was set to

bf = 3 for L = 20, bf = 8 for L = 60, and bf = 12 for L =
256, and the group size be was set to be = 5 for M = 110
and be = 7 for M = 166. The weights of NL-II in (54) were
set to ξ

⟨1⟩
k,m = 6.5N

√
bf ×10−4 and ξ

⟨2⟩
m,k = 7.5N

√
be×10−5,

the group size bf was set to bf = 5 for L = 20, bf = 13 for
L = 60, and bf = 21 for L = 256, and the group size be was
set to be = 6 for M = 110 and be = 7 for M = 166.

We evaluated the estimate X̂ or Û = FX̂ T of each method
by the following normalized mean square error (NMSE).

• NMSE for xm,l or uk,m

∥X − X̂∥2F
∥X∥2F

=

∑M
m=1

∑L
l=1 |xm,l − x̂m,l|2∑M

m=1

∑L
l=1 |xm,l|2

=
∥U − Û∥2F

∥U∥2F
=

∑L
k=1

∑M
m=1 |uk,m − ûk,m|2∑L

k=1

∑M
m=1 |uk,m|2

. (74)

Moreover, we evaluated the estimated periodograms (|ûk,m|2)
by the following normalized mean absolute errors (NMAEs).

• NMAE for |uk,m|2∑L
k=1

∑M
m=1

∣∣|uk,m|2 − |ûk,m|2
∣∣∑L

k=1

∑M
m=1 |uk,m|2

. (75)

• NMAE for E[|uk,m|2]∑L
k=1

∑M
m=1

∣∣E[|uk,m|2]− |ûk,m|2
∣∣∑L

k=1

∑M
m=1 E[|uk,m|2]

. (76)

• NMAE for S⟨d⟩
m (k−1−L/2

LT )∑L
k=1

∑M
m=1

∣∣S⟨d⟩
m

(k−1−L/2
LT

)
− |ûk,m|2

∣∣∑L
k=1

∑M
m=1 S

⟨d⟩
m

(k−1−L/2
LT

) . (77)

NMAE in (75) compares the estimate (|ûk,m|2) with true peri-
odograms (|uk,m|2) in (9), as NMSE in (74) compares the es-
timate Û = (ûk,m) with true DFT coefficients U = (uk,m) in

9To avoid the numerical instability in the computation of the pseudoinverse
A†, we truncated the singular values of A that are smaller than 0.005.

10We defined K as the number of the indices m s.t. Ẑm ≥ 10.
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TABLE II
AVERAGES OF THE NORMALIZED ERRORS OF THE ESTIMATED SIGNALS AND THE ESTIMATED PERIODOGRAMS OF EACH METHOD IN 100 TRIALS

Simulation Settings Evaluation Metric ⧹ Method LS FR CP MMSE NL-I NL-II
NMSE for uk,m 0.6377 1.1060 — 0.4189 0.2608 0.2556

L = 20
NMAE for |uk,m|2 0.9231 1.3744 — 0.6372 0.5066 0.4931

M = 110 NMAE for E[|uk,m|2] 0.9185 1.6742 — 0.9726 0.7223 0.7143

K = 93 NMAE for S⟨d⟩
m (

k−1−L/2
LT

) 0.9546 1.6975 — 1.0039 0.7428 0.7366

∆θ ≈ 0.41 [deg] NMSE for uk,m 0.6324 1.1057 — 0.4271 0.2328 0.2265

cn(AHA) > 1030
L = 60

NMAE for |uk,m|2 0.9263 1.3621 — 0.6549 0.4787 0.4669

(we used the same NMAE for E[|uk,m|2] 0.9222 1.6341 — 1.0041 0.6845 0.6808

power spectrum NMAE for S⟨d⟩
m (

k−1−L/2
LT

) 0.9338 1.6407 — 1.0131 0.6899 0.6866

N = 128 Sm(f) for all NMSE for uk,m 0.6306 1.1042 0.7538 0.4183 0.2188 0.2143

T = 0.4 [ms] L = 20, 60, 256)
L = 256

NMAE for |uk,m|2 0.9275 1.3465 0.9558 0.6447 0.4611 0.4501

c = 300 [km/ms] NMAE for E[|uk,m|2] 0.9259 1.6690 0.9225 1.0344 0.6668 0.6809

λ = 31.8 [mm] NMAE for S⟨d⟩
m (

k−1−L/2
LT

) 0.9290 1.6706 0.9297 1.0368 0.6680 0.6821

d = 16.5 [mm] NMSE for uk,m 0.7324 2.1567 — 1.4603 0.6012 0.6078

r = 7.5 [km]
L = 20

NMAE for |uk,m|2 0.8670 2.4415 — 1.6916 0.7816 0.7813

θmin = −15 [deg] M = 166 NMAE for E[|uk,m|2] 0.8184 2.4541 — 1.7487 0.7859 0.7828

θmax = 30 [deg] K = 142 NMAE for S⟨d⟩
m (

k−1−L/2
LT

) 0.8639 2.4797 — 1.7845 0.8069 0.8060

∆θ ≈ 0.27 [deg] NMSE for uk,m 0.7261 2.1812 — 1.5514 0.5694 0.5664

cn(AHA) = ∞
L = 60

NMAE for |uk,m|2 0.8733 2.4994 — 1.8467 0.7600 0.7556

(we used the same NMAE for E[|uk,m|2] 0.8292 2.5310 — 1.9364 0.7487 0.7454

power spectrum NMAE for S⟨d⟩
m (

k−1−L/2
LT

) 0.8473 2.5390 — 1.9474 0.7559 0.7530

Sm(f) for all NMSE for uk,m 0.7281 2.1718 1.2436 1.5854 0.5601 0.5581

L = 20, 60, 256)
L = 256

NMAE for |uk,m|2 0.8814 2.4785 1.2371 1.8901 0.7560 0.7515

NMAE for E[|uk,m|2] 0.8372 2.5225 1.1516 1.9895 0.7354 0.7435

NMAE for S⟨d⟩
m (

k−1−L/2
LT

) 0.8422 2.5245 1.1585 1.9921 0.7370 0.7451

(8). Although U and (|uk,m|2) are the targets to be estimated
directly, they are realizations of random variables, and the ex-
pected values E[|uk,m|2] in (10) or the power spectral densities
S
⟨d⟩
m (k−1−L/2

LT ) in (7) have more accurate information on Pm,
µfm and σfm . Hence, in (76) and (77), we compare (|ûk,m|2)
with the two more ideal values E[|uk,m|2] and S

⟨d⟩
m (k−1−L/2

LT ).

B. Simulation Results for Synthetic Data

Table II summarizes the average, for each situation and each
method, of the normalized errors in 100 trials, where the power
spectral density Sm(f) at each θm was fixed throughout all the
100 trials. From Table II, we see that, when M = 110, the pro-
posed methods, NL-I and NL-II, reduced NMSE from LS by
100× 0.6377−0.2608

0.6377 ≈ 59% and 100× 0.6377−0.2556
0.6377 ≈ 60% for

L = 20, 100× 0.6324−0.2328
0.6324 ≈ 63% and 100× 0.6324−0.2265

0.6324 ≈
64% for L = 60, and 100× 0.6306−0.2188

0.6306 ≈ 65% and 100 ×
0.6306−0.2143

0.6306 ≈ 66% for L = 256. We write this as “NL-I and
NL-II reduced NMSE by 59–66% from LS when M = 110.”
We also see that NL-I and NL-II reduced NMSE by 76–81%
from FR, 71–72% from CP, and 38–49% from MMSE when
M = 110, while by 17–23% from LS, 72–74% from FR, 55%
from CP, and 58–65% from MMSE when M = 166. Thus, the
proposed methods greatly improved the estimation accuracy of
U . In addition, we find that MMSE beamforming estimated X
with relatively high accuracy among the linear methods when
M = 110 while the estimation accuracy significantly degraded
due to the occurrence of sidelobes when M = 166 and became
lower than CP beamforming when L = 256. This implies that

MMSE beamforming is affected by the initial value x̂
(0)
MMSE,l,

which may lead to more overestimation than CP beamforming.
On the estimated periodograms (|ûk,m|2), from Table II and

the same calculations as in the previous paragraph, we see that
NL-I and NL-II reduced NMAE for |uk,m|2 by 45–51% from
LS, 63–67% from FR, 52–53% from CP, and 20–30% from
MMSE when M = 110, while by 10–15% from LS, 68–70%
from FR, 39% from CP, and 54–60% from MMSE when M =
166. Further, NL-I and NL-II reduced NMAEs for E[|uk,m|2]
and S

⟨d⟩
m (k−1−L/2

LT ) by 21–28% from LS, 56–60% from FR,
26–28% from CP, and 26–36% from MMSE when M = 110,
while by 4–12% from LS, 67–71% from FR, 35–36% from CP,
and 55–63% from MMSE when M = 166. Thus, the proposed
methods greatly improved the accuracy of the periodograms.

On the number of pulses, three linear methods, LS, FR, and
MMSE, did not necessarily reduce NMSE and NMAEs, even if
L was changed from 20 to 60 and 256. On the other hand, the
proposed methods, NL-I and NL-II, could reduce NMSE and
NMAEs by the increase of L. This is because, as L increases,
E[|uk,m|2] approaches S

⟨d⟩
m (k−1−L/2

LT ) and hence U becomes
more group-sparse, which is ideal for the proposed methods.

Figures 3, 4, 6 and 7 show examples of beamforming results
for (M,L) = (110, 20), (110, 60), (166, 20), (166, 60), where
(a) shows the power spectral densities S

⟨d⟩
m (k−1−L/2

LT ) in (7),
(b) shows the expected values E[|uk,m|2] of periodograms in
(10), (c) shows the true periodograms (|uk,m|2) in (9) to be es-
timated, and (d), (e), (f), (g) and (h) show the estimated peri-
odograms (|ûk,m|2) by LS, FR, MMSE, NL-I and NL-II beam-
forming, respectively. Figures 5 and 8 show examples of beam-
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Fig. 3. Comparison of the power spectral densities, true periodograms, and each beamforming result in case of M = 110 and L = 20: (a) S⟨d⟩
m (

k−1−L/2
LT

),
(b) E[|uk,m|2], (c) |uk,m|2, (d) |ûk,m|2 by LS, (e) |ûk,m|2 by FR, (f) |ûk,m|2 by MMSE, (g) |ûk,m|2 by NL-I, and (h) |ûk,m|2 by NL-II beamforming.
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Fig. 4. Comparison of the power spectral densities, true periodograms, and each beamforming result in case of M = 110 and L = 60: (a) S⟨d⟩
m (

k−1−L/2
LT

),
(b) E[|uk,m|2], (c) |uk,m|2, (d) |ûk,m|2 by LS, (e) |ûk,m|2 by FR, (f) |ûk,m|2 by MMSE, (g) |ûk,m|2 by NL-I, and (h) |ûk,m|2 by NL-II beamforming.
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Fig. 5. Comparison of true periodograms and each beamforming result in case of M = 110 and L = 256: (a) E[|uk,m|2], (b) |uk,m|2, (c) |ûk,m|2 by LS,
(d) |ûk,m|2 by FR, (e) |ûk,m|2 by CP, (f) |ûk,m|2 by MMSE, (g) |ûk,m|2 by NL-I, and (h) |ûk,m|2 by NL-II beamforming, where we omit the figure of
the power spectral densities S

⟨d⟩
m (

k−1−L/2
LT

) since it is almost the same as Fig. 4(a), and the result of CP beamforming is added instead since L > N holds.
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Fig. 6. Comparison of the power spectral densities, true periodograms, and each beamforming result in case of M = 166 and L = 20: (a) S⟨d⟩
m (

k−1−L/2
LT

),
(b) E[|uk,m|2], (c) |uk,m|2, (d) |ûk,m|2 by LS, (e) |ûk,m|2 by FR, (f) |ûk,m|2 by MMSE, (g) |ûk,m|2 by NL-I, and (h) |ûk,m|2 by NL-II beamforming.
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Fig. 7. Comparison of the power spectral densities, true periodograms, and each beamforming result in case of M = 166 and L = 60: (a) S⟨d⟩
m (

k−1−L/2
LT

),
(b) E[|uk,m|2], (c) |uk,m|2, (d) |ûk,m|2 by LS, (e) |ûk,m|2 by FR, (f) |ûk,m|2 by MMSE, (g) |ûk,m|2 by NL-I, and (h) |ûk,m|2 by NL-II beamforming.
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Fig. 8. Comparison of true periodograms and each beamforming result in case of M = 166 and L = 256: (a) E[|uk,m|2], (b) |uk,m|2, (c) |ûk,m|2 by LS,
(d) |ûk,m|2 by FR, (e) |ûk,m|2 by CP, (f) |ûk,m|2 by MMSE, (g) |ûk,m|2 by NL-I, and (h) |ûk,m|2 by NL-II beamforming, where we omit the figure of
the power spectral densities S

⟨d⟩
m (

k−1−L/2
LT

) since it is almost the same as Fig. 7(a), and the result of CP beamforming is added instead since L > N holds.
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forming results for (M,L) = (110, 256), (166, 256), where we
omit the figures of S⟨d⟩

m (k−1−L/2
LT ) because they are almost the

same as Fig. 4(a) and Fig. 7(a), and instead, those of (|ûk,m|2)
by CP beamforming are inserted into (e). In these figures, we
consider that there is no signal at points shown in blue. From
Figs. 3(a)–3(c), 4(a)–4(c), 6(a)–6(c) and 7(a)–7(c), we can see
that E[|uk,m|2] in (b) approached S

⟨d⟩
m (k−1−L/2

LT ) in (a), and
the target periodograms (|uk,m|2) in (c) became more group-
sparse as the number L of pulses increased from 20 to 60. In
addition, From Figs. 5(a), 5(b), 8(a) and 8(b), we also see that
E[|uk,m|2] further approached S

⟨d⟩
m (k−1−L/2

LT ) when L = 256
as shown in (11), and (|uk,m|2) became further group-sparse.
In the following, we judge that the closer the figure of the es-
timated periodograms (|ûk,m|2) is to that of the target values
(|uk,m|2) and those of the two more ideal values E[|uk,m|2]
and S

⟨d⟩
m (k−1−L/2

LT ), the better the beamforming result is.
When M = 110, from Figs. 3(d), 4(d) and 5(c), LS beam-

forming diffused the energy of the backscattered signals to all
elevations, and these results cannot be used for the weather ob-
servation because they cannot detect the elevations with no or
few raindrops. From Figs. 3(e), 4(e) and 5(d), FR beamforming
overestimated the signal power due to sidelobes as shown in
(21), which is noticeable particularly from 23 [deg] to 27 [deg]
because the signal power should be almost zero in this interval.
From Fig. 5(e), CP beamforming could find that there is no
signal from 23 [deg] to 27 [deg] but diffused the energy of the
backscattered signals to all frequencies at the other elevations.
From Figs. 3(f), 4(f) and 5(f), MMSE beamforming estimated
the periodograms with relatively high accuracy, but the energy
of the backscattered signals was still diffused mainly along the
elevation axis. On the other hand, from Figs. 3(g), 3(h), 4(g),
4(h), 5(g) and 5(h), we can confirm that the proposed methods,
NL-I and NL-II beamforming, could obtain the most accurate
periodograms with very little energy diffusion. Indeed, the no-
signal points of (|uk,m|2) and E[|uk,m|2] shown in blue and
narrow vertical lines in light blue were well reproduced. The
results of NL-I and NL-II beamforming were very similar, but
NL-II beamforming could obtain the slightly higher-resolution
periodograms because the color transition is a little bit finer in
Figs. 3(h), 4(h) and 5(h) than in Figs. 3(g), 4(g) and 5(g).

When M = 166, each signal power Pm decreases compared
to the case of M = 110 from (69). Thus, not only the number
of variables to be estimated increases, but also the signal-to-
noise ratio decreases. From Figs. 6(d), 7(d) and 8(c), LS beam-
forming did not cause overestimation but diffused the energy
of the backscattered signals to all elevations. From Figs. 6(e),
6(f), 7(e), 7(f) and 8(d)–8(f), FR, CP, and MMSE beamforming
caused some overestimation due to the inevitable occurrence of
sidelobes, while features of the estimated periodograms were
inherited from the case of M = 110. The results of FR beam-
forming in Figs. 6(e), 7(e) and 8(d) were greatly overestimated,
and those of MMSE beamforming in Figs. 6(f), 7(f) and 8(f)
were affected by the initial estimate x̂

(0)
MMSE,l = x̂FR,l, which

led to more overestimation than CP beamforming in Fig. 8(e)
when L = 256. In this severe situation, the proposed methods,
NL-I and NL-II beamforming, obtained the most accurate peri-
odograms without the overestimation and the energy diffusion
as shown in Figs. 6(g), 6(h), 7(g), 7(h), 8(g) and 8(h). As in

TABLE III
AVERAGE COMPUTATION TIME [s] OF EACH METHOD IN 100 TRIALS

(M,L) LS FR CP MMSE NL-I NL-II
(110, 20) 0.00010 0.00011 — 0.0368 1.304 8.91
(110, 60) 0.00013 0.00019 — 0.0416 3.989 16.80
(110, 256) 0.00048 0.00060 0.0171 0.0967 17.372 127.73
(166, 20) 0.00012 0.00013 — 0.0526 2.348 11.13
(166, 60) 0.00020 0.00024 — 0.0680 5.706 34.68
(166, 256) 0.00077 0.00081 0.0204 0.1983 19.911 261.59

the case of M = 110, the no-signal points shown in blue and
narrow vertical lines in light blue were well reproduced. Thus,
we see that the proposed nonlinear beamforming greatly im-
proved the spatial resolution compared to the linear methods.

In both cases of M = 110 and M = 166, the proposed non-
linear methods greatly improved the spatial resolution, but two
slight drawbacks were also found. One is that there was slight
underestimation due to the soft-thresholding-like computation
in (81), i.e., the power of the estimated signals by the proposed
methods tended to be a little smaller than the true signal power.
The other is that the vertical line in the figure of periodograms
was sometimes estimated at an elevation next to the correct one
due to the large condition number of AHA. In addition, when
the number L of pulses was small, there was a gap between the
target periodogram values (|uk,m|2) (or their expected values
E[|uk,m|2]) and the power spectral densities S

⟨d⟩
m (k−1−L/2

LT ),
and hence the original group-sparsities of S⟨d⟩

m (k−1−L/2
LT ) have

not yet been fully exploited. We plan to address these issues in
future work, e.g., by further improving the regularization term.

Next, we compared the computation time of each method.
Note that the time of the proposed beamforming depends on γ,
ρ(i+1), and the convergence condition. We fixed ρ(i+1) = 1.9
for both NL-I and NL-II beamforming and all (M,L), γ was
manually set between 100 and 2000 for each method and each
(M,L) to make the convergence as fast as possible, and we
stopped the ADMM iterations when ∥U (i+1)−U (i)∥F ≤ L

256
or i = 1000 was satisfied. Table III shows the average com-
putation time [s] of each method in 100 trials, where the same
simulations as in Table II were done by MATLAB R2020a on
Surface Book (Windows 10, Intel Core i7-6600U, 2.60 GHz,
16 GB). From Table III, we can see that the nonlinear methods
require much more computation time than the linear methods
because they compute the exact solutions to complicated opti-
mization problems with iterations. Comparing NL-I and NL-II
beamforming, NL-II requires 4–13 times longer time, although
it indicates slightly higher accuracy than NL-I in Table II. Thus
NL-I has a better balance between the accuracy and the time.
If we want high-resolution results in a short computation time,
it is better to use NL-I beamforming. If it is acceptable to take
a longer time to obtain more accurate results, we can use NL-II
beamforming that outputs slightly higher-resolution results, as
argued in theoretical papers [45]–[48] on compressed sensing.

C. Results for Real-World Data

We finally applied the proposed method, NL-I beamforming,
to real-world data observed by the PAWR at Osaka University
on August 6, 2015, and verified its result. Figure 9 shows the
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Fig. 9. Beamforming results for real-world data with (M,L) = (80, 15): (a) |ûk,m|2 by FR, (b) |ûk,m|2 by MMSE, and (c) |ûk,m|2 by NL-I beamforming.

results of (a) FR, (b) MMSE, and (c) NL-I beamforming. Main
PAWR parameters were set to N = 100, L = 15, r = 14 [km],
θmin = −30 [deg], θmax = 5 [deg], and M = 80 (i.e., ∆θ =
0.4375 [deg]), and the other parameters had the same values as
in Table II. Since pulse compression was used, we treated the
received signal after matched filtering as yl in (15). Note that
the results of LS, CP, and NL-II beamforming are not shown
because the result of LS was too bad, CP cannot be used when
L < N , and the result of NL-II was similar to that of NL-I.

True signal values are unknown in this situation,11 and thus
we check the effectiveness of the proposed method from fea-
tures of the estimated periodograms in Fig. 9. The results of FR
and MMSE beamforming in Figs. 9(a) and 9(b) are similar, but
we can confirm from the elevations of −7 [deg] to 5 [deg] that
the number of light blue points in Fig. 9(b) is smaller than in
Fig. 9(a). This is because the influence of sidelobes could be
suppressed by MMSE beamforming. However, both figures are
blurred, and the high-resolution precipitation profile cannot be
acquired. On the other hand, the result of NL-I beamforming
in Fig. 9(c), is group-sparse, i.e., regions with almost no signal
shown in blue are clearly visible. The energy diffusion along
the elevation axis also seems to be suppressed compared to the
linear methods in Figs. 9(a) and 9(b), and hence we judge that
the proposed method, NL-I beamforming, acquired the higher-
resolution precipitation profile than the linear beamforming.

Since the above real-world data contained much more noise
than the synthetic data and was affected by the pulse compres-
sion, we had to set the weights ξ

⟨1⟩
k,m and ξ

⟨2⟩
m,k in (43) to large

values to obtain the result shown in Fig. 9(c). As a result, it is
highly possible that some underestimation occurs in Fig. 9(c)
due to the soft-thresholding-like computation in (81). To ac-
quire the high-resolution precipitation profile with less under-
estimation, we need to make periodograms more group-sparse.
To achieve this, the use of window functions and the adaptive
pulse compression in [69] can be considered as future work.

VI. CONCLUSION

In this article, we proposed a nonlinear beamforming method
for PAWRs. Differently from a standard radar which observes
point targets, the PAWR receives a lot of backscattered signals
from distributed targets, and the spatial resolution of the linear
beamforming methods for the distributed targets is limited due

11If we try to observe the true signals by a parabolic Doppler weather radar,
the antenna size has to be very large and the speed of the vertical scan has to
be extremely fast. In practice, it is difficult to develop such a Doppler radar.

to the lack of the number of null directions. To obtain the high-
resolution precipitation profile, we treated beamforming as an
inverse problem and solved it by using two characteristics of
periodograms of the backscattered signals. One is the narrow
bandwidth of each periodogram, and the other is the similarity
between the adjacent periodograms. Both characteristics were
expressed as group-sparsities of the DFT coefficient matrix of
the backscattered signals. We proposed to reconstruct the DFT
coefficient matrix by minimizing a convex cost function which
consists of one data-fidelity term and two group ℓ1-norms that
evaluate the group-sparsities, where two slightly different for-
mulations, NL-I and NL-II beamforming, were considered. We
computed the exact minimizer of the convex cost, with ADMM
including the nonlinear proximity operators, as the result of the
proposed beamforming. Existing radar applications have used
certain sparsities of point targets, while this study, to the best
of the authors’ knowledge, is the first radar application using
group-sparsities of distributed targets in the elevation-velocity
domain. Although an appropriate non-overlapping group par-
tition was unknown, we could evaluate each group-sparsity by
using small overlapping groups as with latent group lasso.

To show the effectiveness of the proposed nonlinear beam-
forming, we first conducted simulations for synthetic data. The
proposed beamforming greatly improved the estimation accu-
racy of both backscattered signals and periodograms compared
to major linear beamforming methods. The linear methods did
not necessarily reduce the normalized errors even if the num-
ber of pulses increased, while the proposed beamforming could
reduce the normalized errors by the increase of the pulses. In
addition, some overestimation occurred in the linear methods
when the number of subintervals increased, while the proposed
beamforming did not cause the overestimation. Then, from the
figures of the estimated periodograms, we confirmed that no-
signal regions and narrow vertical lines were well reproduced
without the energy diffusion, i.e., the proposed beamforming
dramatically improved the resolution of precipitation profile.

Next, we compared the average computation time of each
beamforming method. The proposed beamforming took much
more computation time than the linear methods, since it solves
complicated optimization problems with iterations. Therefore,
the proposed beamforming is useful as an offline algorithm to
acquire the high-resolution precipitation profile, but it is diffi-
cult to directly use it in real-time processing at present. On the
two formulations, NL-I and NL-II beamforming, NL-II could
obtain the slightly higher-resolution precipitation profile with
slightly higher accuracy than NL-I, but it required 4–13 times
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longer computation time. Although the latent group lasso for-
mulation as in NL-II has been proposed in the theoretical field
of compressed sensing, NL-I had a better balance between the
accuracy and the time than NL-II at least for the beamforming,
which can be considered a novel finding in the theoretical field.

Finally, we applied each beamforming method to real-world
data including pulse compression. From the figures of the esti-
mated periodograms, we confirmed that no-signal regions were
well reproduced without the energy diffusion by the proposed
beamforming, as in the results for the synthetic data. Thus, the
proposed beamforming improved the spatial resolution for the
real-world data. Although fine fluctuations of the periodograms
were captured by the proposed beamforming, probably some
underestimation was caused by increasing the weight parame-
ters ξ⟨1⟩k,m and ξ

⟨2⟩
m,k to suppress large noise and the influence of

the pulse compression. To acquire the high-resolution results
with less underestimation for such real-world data, we need to
make periodograms more group-sparse. For this purpose, we
plan to integrate window functions and the adaptive pulse com-
pression in [69] into the proposed beamforming as future work.

APPENDIX
ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Let us consider the following convex optimization problem

minimize
x∈X ,z∈Z

g(z) + h(x) subject to z = L(x), (78)

where X and Z are finite-dimensional real Hilbert spaces with
the standard inner products, L : X → Z is a linear mapping,
and g : Z → R ∪ {∞} and h : X → R ∪ {∞} are proper,
lower semicontinuous, and convex functions.12 ADMM [24]–
[27] solves the problem in (78), together with the correspond-
ing dual problem, from any (x(0),v(0)) ∈ X ×Z by iterating

z(i) = proxγg
(
L(x(i)) + v(i)

)
ṽ(i) = v(i) + L(x(i))− z(i)

x(i+1) = argmin
x∈X

γh(x) +
1

2
∥L(x)− z(i) + ṽ(i)∥2X

v(i+1) = ṽ(i) +
(
ρ(i+1) − 1

)(
L(x(i+1))− z(i)

)
(79)

for i ≥ 0. In (79), γ > 0, v ∈ Z and ṽ ∈ Z are dual variables,
∥·∥X is the Euclidean norm of X induced by the standard inner
product, proxγg : Z → Z is the proximity operator defined by

proxγg(ζ) := argmin
z∈Z

γg(z) +
1

2
∥ζ − z∥2Z , (80)

and ρ(i+1) ∈ [0, 2] satisfies
∑∞

i=0 ρ
(i+1)(2− ρ(i+1)) = ∞. In

particular, if ρ(i+1) = 1 for all i, which is the most commonly
used setting, then we can replace ṽ(i) with v(i+1) and remove
the fourth line in (79). The sequence (x(i), z(i))∞i=0 defined by
the iterations in (79) converges to a solution to (78). Moreover,
the sequences (v(i)/γ)∞i=0 and (ṽ(i)/γ)∞i=0 both converge to a

12A function h : X → R ∪ {∞} is called proper, lower semicontinuous,
and convex if dom(h) := {x ∈ X |h(x) < ∞} is nonempty, lev≤α(h) :=
{x ∈ X |h(x) ≤ α} is closed for all α ∈ R, and h(βx1 + (1− β)x2) ≤
βh(x1)+(1−β)h(x2) for all x1,x2 ∈ X and all β ∈ (0, 1), respectively.

solution to the dual problem. As described in [27], the over-
relaxation setting, i.e., ρ(i+1) > 1 for all i, can accelerate the
convergence, compared to the standard setting s.t. ρ(i+1) = 1.

In the following, we introduce the proximity operators used
in this article. When g is a weighted group ℓ1-norm with a non-
overlapping group partition G := (Gi)

nG
i=1 and a weight vector

ξ := (ξ1, ξ2, . . . , ξnG
)T ∈ RnG

+ , from γg(z) + 1
2∥ζ − z∥2Z =∑nG

i=1(γξi∥zGi
∥2+ 1

2∥ζGi
−zGi

∥22), the computation of proxγg
is divided into those of proxγξi∥·∥2

. Specifically, proxγg(ζ) =
proxγ∥·∥G

1,ξ
(ζ) can be computed for each subvector ζGi

by

proxγξi∥·∥2
(ζGi

) =


∥ζGi

∥2 − γξi
∥ζGi∥2

ζGi if ∥ζGi∥2 > γξi,

0 if ∥ζGi∥2 ≤ γξi.
(81)

Let ζi ∈ Z (i = 1, 2, . . . , n) be n variables of the same size.
Let ι be the indicator function of the consensus set [70] for the
n-tuple (ζ1, ζ2, . . . , ζn), i.e., ι(ζ1, ζ2, . . . , ζn) := 0 if ζ1 =
ζ2 = · · · = ζn and ι(ζ1, ζ2, . . . , ζn) := ∞ otherwise. The
proximity operator of ι can be easily computed by

proxγι(ζ1, ζ2, . . . , ζn) =
1

n

(
n∑

i=1

ζi,

n∑
i=1

ζi, . . . ,

n∑
i=1

ζi

)
.

(82)

As can be seen from (82), the proximity operator of the indi-
cator function is equal to the projection onto the consensus set
and does not depend on the value of γ differently from (81).
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