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PAPER
Image Super-Resolution via Generative Adversarial Networks Using
Metric Projections onto Consistent Sets for Low-Resolution Inputs*

Hiroya YAMAMOTO†, Nonmember, Daichi KITAHARA†a), Hiroki KURODA†b),
and Akira HIRABAYASHI†c), Members

SUMMARY This paper addresses single image super-resolution (SR)
based on convolutional neural networks (CNNs). It is known that recovery
of high-frequency components in output SR images of CNNs trained by the
least square errors or least absolute errors is insufficient. To generate real-
istic high-frequency components, SR methods using generative adversarial
networks (GANs), composed of one generator and one discriminator, are
developed. However, when the generator tries to induce the discriminator’s
misjudgment, not only realistic high-frequency components but also some
artifacts are generated, and objective indices such as PSNR decrease. To re-
duce the artifacts in the GAN-based SR methods, we consider the set of all
SR images whose square errors between downscaling results and the input
image are within a certain range, and propose to apply the metric projection
onto this consistent set in the output layers of the generators. The proposed
technique guarantees the consistency between output SR images and input
images, and the generators with the proposed projection can generate high-
frequency components with few artifacts while keeping low-frequency ones
as appropriate for the known noise level. Numerical experiments show that
the proposed technique reduces artifacts included in the original SR images
of a GAN-based SR method while generating realistic high-frequency com-
ponents with better PSNR values in both noise-free and noisy situations.
Since the proposed technique can be integrated into various generators if
the downscaling process is known, we can give the consistency to existing
methods with the input images without degrading other SR performance.
key words: single image super-resolution, convolutional neural network,
generative adversarial network, metric projection, consistent set

1. Introduction

Super-resolution (SR) is a reconstruction problem of high-
resolution (HR) images containing high-frequency compo-
nents from given low-resolution (LR) images having only
low-frequency components [2]–[21]. In SR, it is important
not only to increase the number of pixels but also to recover
the original high-frequency components. In this paper, we
address single image SR that is an under-determined inverse
problem since we have to recover an HR image from a single
LR image having a smaller number of pixels. The simplest
ways to increase the number of pixels are algebraic interpo-

Manuscript received April 26, 2021.
Manuscript revised August 14, 2021.
Manuscript publicized September 29, 2021.

†The authors are with the Dept. of Information Science and En-
gineering, Ritsumeikan University, Kusatsu-shi, 525-8577 Japan.

*This paper is an extended version of our previous paper pre-
sented at the 28th EUSIPCO, October 2020 [1]. The previous paper
only addressed noise-free input images while the current paper ex-
tends the proposed projection technique to noisy input images.

a) E-mail: d-kita@media.ritsumei.ac.jp (Corresponding author)
b) E-mail: kuroda@media.ritsumei.ac.jp
c) E-mail: akirahrb@media.ritsumei.ac.jp

DOI: 10.1587/transfun.2021EAP1038

lations, e.g., the nearest-neighbor, bilinear, bicubic, and nat-
ural bicubic spline interpolations. Although these algebraic
methods are quick, they cannot recover the high-frequency
components at all. Therefore, SR results, called SR images
in this paper, of the algebraic methods are very blurred.

To accurately recover the high-frequency components,
most SR methods learn the transformation from LR images
to HR images by using training data. Dictionary learning was
exploited for single image SR [2], [3] in the past. Recently,
SR methods based on convolutional neural networks (CNNs)
[4]–[16] are mainly studied in terms of both reconstruction
accuracy and processing time. Dong et al. proposed the first
end-to-end CNN for SR, named SRCNN [4]. SRCNN gen-
erates SR images with three convolution layers from inter-
polated LR images that are enlarged to the HR image size by
a bicubic interpolation. There exist many improved versions
[5]–[16] of SRCNN. For example, VDSR [6] increased the
number of the convolution layers by introducing the residual
learning to resolve the gradient vanishing. ESPCN [7] pro-
posed a sub-pixel convolution layer, called the pixel shuffler,
that enlarges LR images at various magnification ratios and
removes the bicubic interpolation used in the input layer of
SRCNN. In each SR method [4]–[16], a single CNN, called a
generator, is trained by minimizing mainly the mean square
error (MSE) or the mean absolute error (MAE) between true
HR images and the output SR images of the generator.

It is well-known that SR images generated from CNNs
based on MSE or MAE are over-smoothed yet, i.e., recov-
ery of high-frequency components is still insufficient, since
the high-frequency components hardly contribute to the val-
ues of MSE and MAE. To generate realistic high-frequency
components, Ledig et al. proposed SRGAN [17] that uses a
generative adversarial network (GAN) [22]. SRGAN is com-
posed of two CNNs used as a generator and a discriminator.
The discriminator is trained to judge whether the input image
is a true HR image or a generated SR image. Since the gen-
erator tries to induce the discriminator’s misjudgment, SR
images having realistic high-frequency components can be
generated. However, in the process of inducing the discrim-
inator’s misjudgment, some artifacts that do not exist in true
HR images are also generated, and MSE and MAE increase.
In addition, although the downscaling results of the true HR
images are the input LR images, the re-downscaling results of
the SR images tend to be different from the LR images.

To reduce artifacts in SR images of GAN-based meth-
ods, this paper proposes to consider the consistency of the SR
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images for given LR inputs in two different situations. One is
a situation where the LR images are noise-free, and the other
is a situation where the LR images are contaminated by addi-
tive Gaussian noise. In the noise-free situation, we consider
the set of all SR images whose downscaling results are the
same as the input LR image. This set is a linear manifold, and
we propose to modify the output into an SR image in this set
with the minimum moving distance. This proposed modifi-
cation is represented as the orthogonal projection onto the
linear manifold in the output layer of a generator, and easily
computed as in [23] under a simple blockwise downscaling
model in (1) (see Sect. 3.1). The proposed method can be
applied to any generator, and SR images having the perfect
consistency with the input LR images are always generated.
Since a true HR image has the perfect consistency with the
LR image obviously, the orthogonal projection brings the SR
image closer to the true HR image (see Fig. 3 in Sect. 4).

On the other hand, in the noisy situation, if we directly
apply the above orthogonal projection, then noisy SR images
are generated because the perfect consistency with the noisy
inputs is imposed on them. Instead, based on the observation
that the energy of noise will be within a certain range with
high probability (see Fig. 5 in Sect. 5), we consider the set
of all SR images whose square errors between downscaling
results and the noisy LR image are within this range. Though
this consistent set is nonconvex, we can give the exact metric
projection onto it under the simple blockwise downscaling
model. Thus, we propose to apply this projection in the out-
put layer of a generator. Since a true HR image belongs to
the consistent set with high probability, the projection brings
the SR image closer to the HR image with high probability.

For both noise-free and noisy situations, the projection
can appropriately guarantee the consistency between output
SR and input LR images with the minimum moving distance.
Hence, generators of GAN-based SR methods with the pro-
jection create high-frequency components while maintain-
ing low-frequency ones and suppressing noise and artifacts.
Moreover, to generate SR images as close as possible to the
consistent sets before the projections, we further propose to
add the total distance modified by the projections to the loss
function as the projection loss. By decreasing the value of
the projection loss, the moving distance by each projection is
further reduced, which facilitates training of the generators
under the consistency. Simulations in Sect. 6 demonstrate
that the proposed technique reduces artifacts included in the
original SR images of a GAN-based SR method while gener-
ating realistic high-frequency components with better values
for objective indices in both noise-free and noisy situations.

This paper is concluded in Sect. 7 and the main contri-
butions of this paper are summarized as follows.

1. We define the consistent sets to which HR images be-
long with high probability, according to the noise level.

2. We apply the exact projections to SR images onto the
consistent sets, and add the projection loss in training.

3. We show the effectiveness of the proposed technique
integrated into a GAN-based SR method by simulations.

2. Relation to Existing Works

As reviewed in detail in [24], various SR methods based on
CNNs have been proposed, and each method has different
advantages and limitations. To improve the SR performance,
three main research directions†: (i) changing the network ar-
chitecture, (ii) changing the loss function, and (iii) integrat-
ing other learning strategies, are considered. It is noteworthy
that the proposed technique can be integrated into most SR
methods without contradiction since the metric projection is
applied to an SR image as the post-processing in the output
layer and the projection loss is just added to the loss function.
The proposed technique is expected to be especially effective
for GAN-based SR methods [17]–[21] because we can give
them the consistency with the input LR images, which is al-
most automatically satisfied in single-CNN-based SR meth-
ods minimizing MSE or MAE (see simulations in Sect. 6).

To improve the image quality of SR images of SRGAN,
EUSR-PCL [18], ESRGAN [19], and RCA-GAN [20] pro-
pose different network architectures and loss functions, but
they do not evaluate the consistency with given input images.
PULSE [21] evaluates errors between the re-downscaling re-
sults of SR images and the input images as the downscaling
loss that is also proposed in [25], [26]. Although the down-
scaling loss is the same as the projection loss in the noise-free
situation (see (15) in Sect. 4), PULSE does not apply the pro-
jection and thus cannot guarantee the perfect consistency.

3. Single Image Super-Resolution via Neural Networks

3.1 Formulation of Downscaling without Noise

Let𝑌 := (𝑌𝑖, 𝑗 ,𝑐) ∈ [0, 1] 𝐼×𝐽×𝐶 be a low-resolution (LR) im-
age to be enlarged, and let𝑌𝑖, 𝑗 ,𝑐 ∈ [0, 1] be the (𝑖, 𝑗)-th pixel
value (𝑖 = 1, 2, . . . , 𝐼 and 𝑗 = 1, 2, . . . , 𝐽) of color channel 𝑐.
If 𝑌 is a grayscale image, then 𝐶 = 1 and 𝑐 = 1. If 𝑌 is an
RGB color image, then𝐶 = 3 and 𝑐 = 1, 2, 3. Suppose that𝑌
is given as the downscaling result of a high-resolution (HR)
image 𝑋 := (𝑋𝑖, 𝑗 ,𝑐) ∈ [0, 1] 𝐼𝐾×𝐽𝐿×𝐶 with slight anti-aliasing
(i.e., slight blurring only within blocks of 𝐾𝐿 pixels) by

𝑌𝑖, 𝑗 ,𝑐 =

𝐾∑︁
𝑘=1

𝐿∑︁
𝑙=1

𝑤𝑘,𝑙𝑋(𝑖−1)𝐾+𝑘, ( 𝑗−1)𝐿+𝑙,𝑐, (1)

where 𝐾 and 𝐿 are supposed to be integers lager than 1, and
𝑤𝑘,𝑙 ∈ R are downscaling weights†† s.t.

∑𝐾
𝑘=1

∑𝐿
𝑙=1 𝑤𝑘,𝑙 = 1.

†Network components, loss functions, keywords and the perfor-
mance of major methods are summarized in [24, Table 2 and Fig. 8].

††If downscaling is the nearest-neighbor or bilinear interpola-
tion, then (1) is always satisfied. If downscaling is a certain bicubic
interpolation and both 𝐾 and 𝐿 are equal to or larger than 4, then
(1) is also satisfied, but some weights can be negative. However, if
downscaling is a bicubic interpolation and 𝐾 or 𝐿 is equal to 2 or 3,
then (1) is not satisfied. If downscaling is the natural bicubic spline
interpolation, then (1) is never satisfied. If standard anti-aliasing,
i.e., overlapped blurring as in [27], is done right before interpola-
tion process, then (1) will be an approximated downscaling model.
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Fig. 1 Proposed generator model based on EDSR. The input is an LR image and the output is an SR image projected onto the consistent set.

Fig. 2 Discriminator model used in SRGAN. The input is an HR or SR image and the output value is restricted in (0, 1) by a sigmoid function.

Define 𝒚 ∈ [0, 1]𝐶𝐼𝐽 and 𝒙 ∈ [0, 1]𝐶𝐼𝐽𝐾𝐿 as the vectorized
versions of the LR image𝑌 and the HR image 𝑋 , respectively.
By using a block-diagonal-like matrix 𝐴 ∈ R𝐶𝐼𝐽×𝐶𝐼𝐽𝐾𝐿 , the
downscaling model in (1) is expressed as a matrix form† by

𝒚 = 𝐴𝒙. (2)

3.2 Super-Resolution via Convolutional Neural Networks

Image super-resolution (SR) based on a single convolutional
neural network (CNN) has been studied by many researchers
[4]–[16], after the first end-to-end CNN work of SRCNN [4].
In particular, SRResNet proposed by Ledig et al. as a gen-
erator of SRGAN [17] (see also Sect. 3.3 below) is often
adopted as a baseline. SRResNet utilizes the architecture of
ResNet [28] that was developed originally for image recog-
nition, and has many residual blocks composed of two con-
volution layers, two batch normalizations, and one rectified
linear unit (ReLU). At the end of each residual block, the in-
put value of the residual block is added for residual learning
that enables CNNs to avoid the gradient vanishing problem.

†Although many downscaling methods, including any bicubic
interpolation with 𝐾 and 𝐿 smaller than 4 and the natural bicubic
spline interpolation, are expressed as linear operators 𝐴 as in (2),
the condition in (1) for downscaling is important to easily compute
the metric projections onto the consistent sets as in (10) and (24).

Lim et al. proposed EDSR [8] as an improved version
of SRResNet, and EDSR is famous as the champion in the
NTIRE 2017 Challenge on Single Image Super-Resolution
[29]. In EDSR, the batch normalizations are removed since
they reduce the flexibility of CNNs and use a lot of memory.
The architecture of EDSR is shown in the left blue box of
Fig. 1. In this paper, instead of SRResNet, we use EDSR as
a baseline method and a generator of a GAN-based method.
Besides EDSR, EUSR [9], D-DBPN [10], RCAN [11], SAN
[12], RFANet [13], USRNet [14], DRN [15], and MADNet
[16] are also known as single-CNN-based SR methods.

Let {(𝒚𝑛, 𝒙𝑛)}𝑁𝑛=1 be training data composed of 𝑁 pairs
of LR and true HR images. Let �̂�𝑛 ∈ R𝐶𝐼𝐽𝐾𝐿 be the outputs,
called SR images, of a certain SR network for the input LR
images 𝒚𝑛 ∈ [0, 1]𝐶𝐼𝐽 . As a loss function to be minimized
for training of the SR network, the mean square error (MSE)

𝑙MSE =
1

𝐶𝐼𝐽𝐾𝐿𝑁

𝑁∑︁
𝑛=1

∥�̂�𝑛 − 𝒙𝑛∥2
2 (3)

is often adopted, where ∥·∥2 denotes the ℓ2 norm of a vector.
Some papers claim that the mean absolute error (MAE)

𝑙MAE =
1

𝐶𝐼𝐽𝐾𝐿𝑁

𝑁∑︁
𝑛=1

∥�̂�𝑛 − 𝒙𝑛∥1 (4)

leads to slightly better results [8], where ∥·∥1 is the ℓ1 norm.
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3.3 Super-Resolution via Generative Adversarial Networks

Ledig et al. proposed the first SR method using a genera-
tive adversarial network (GAN) [22], and this was named
SRGAN [17]. Conventional methods [4]–[16] train a single
CNN by minimizing, e.g., (3) or (4), but they cannot suffi-
ciently reconstruct high-frequency components of the true
HR images. On the other hand, SRGAN is composed of two
CNNs, i.e., a generator and a discriminator, and can create
realistic high-frequency components, although they might be
different from the original ones, which are seen as artifacts.

In SRGAN, the generator 𝐺 : R𝐶𝐼𝐽 → R𝐶𝐼𝐽𝐾𝐿 , i.e.,
SRResNet, and the discriminator 𝐷 : R𝐶𝐼𝐽𝐾𝐿 → (0, 1) are
alternately updated. Figure 2 shows the architecture of the
discriminator. The discriminator 𝐷 judges whether the input
is a true HR image or a generated SR image by maximizing

𝑙D =
1
𝑁

𝑁∑︁
𝑛=1

log(𝐷 (𝒙𝑛)) +
1
𝑁

𝑁∑︁
𝑛=1

log(1 − 𝐷 (�̂�𝑛)). (5)

Here, we call 𝑙D the discrimination loss, and �̂�𝑛 := 𝐺 (𝒚𝑛) ∈
R𝐶𝐼𝐽𝐾𝐿 is an SR image generated from the LR image 𝒚𝑛 by
the generator𝐺 at the current iteration. In the standard GAN
techniques, the second term 1

𝑁

∑𝑁
𝑛=1 log(1 − 𝐷 (�̂�𝑛)) in (5)

is used as a loss function to train𝐺, but in the context of SR,

𝑙A = − 1
𝑁

𝑁∑︁
𝑛=1

log(𝐷 (�̂�𝑛)) (6)

is also used as the adversarial loss due to its better gradient
behavior [17]. As a result, in training of the generator𝐺, the
total loss function to be minimized is expressed as

𝑙G = 𝑙C + 𝜅𝑙A, (7)

where 𝑙C is the content loss evaluating the consistency be-
tween �̂�𝑛 and 𝒙𝑛, and 𝜅 > 0 is a weight for the adversarial loss
𝑙A in (6). In the simplest cases, the content loss 𝑙C is defined
as 𝑙MSE in (3) or 𝑙MAE in (4) and directly evaluates errors
between �̂�𝑛 and 𝒙𝑛. In more complicated cases [17], [18],
the content loss 𝑙C is defined, e.g., as MSE of the pre-trained
VGG feature maps [30] or MAE of the differential images.

4. Orthogonal Projection in the Noise-Free Situation

In the conventional loss function in (7), the content loss 𝑙C
mainly evaluates differences between generated SR images
�̂�𝑛 and target HR images 𝒙𝑛. However, it is not considered
whether re-downscaling results 𝐴�̂�𝑛 are close to given LR
images 𝒚𝑛 or not. On the other hand, the true HR images 𝒙𝑛
always satisfy 𝐴𝒙𝑛 = 𝒚𝑛 in the noise-free situation. To make
the most of training data, this paper also considers errors be-
tween the re-downscaling results 𝐴�̂�𝑛 and the LR images 𝒚𝑛.

More concretely, we propose a modification technique
which enables any generator to generate SR images �̌�𝑛 sat-
isfying 𝐴�̌�𝑛 = 𝒚𝑛 in the noise-free situation. The proposed

Fig. 3 Linear manifold A𝑛 in (8) and errors horizontal/vertical to A𝑛.

modification is expected to be especially effective for GAN-
based SR methods [17]–[21] since each generator can learn
high-frequency components while keeping the original low-
frequency ones, i.e., information on the input LR images 𝒚𝑛.

First, we define the set of all SR images whose down-
scaling results are the same as the input LR image 𝒚𝑛 by

A𝑛 := {𝒙 ∈ R𝐶𝐼𝐽𝐾𝐿 | 𝐴𝒙 = 𝒚𝑛}
= {𝒙𝑛 + 𝒛 ∈ R𝐶𝐼𝐽𝐾𝐿 | 𝐴𝒛 = 0} = 𝒙𝑛 + N(𝐴), (8)

where N(𝐴) is the null space of the matrix 𝐴. From (8), it is
found that the set A𝑛 is a linear manifold, and the true HR
image 𝒙𝑛 always belongs to A𝑛. As shown in the right red
box of Fig. 1, we propose to apply the orthogonal projection
𝑃A𝑛

: R𝐶𝐼𝐽𝐾𝐿 → A𝑛 onto A𝑛 to the conventional output
image �̂�𝑛 of some generator. The proposed SR image �̌�𝑛 :=
𝑃A𝑛

(�̂�𝑛) always has the perfect consistency as 𝐴�̌�𝑛 = 𝒚𝑛.
Note that the word “orthogonal projection” strictly refers to
the metric projection onto a subspace, but here we use the
same word for the metric projection onto the linear manifold
because A𝑛 is a shifted version of the subspace N(𝐴) and a
generalized Pythagorean equation holds (see (11) below).

The proposed SR image �̌�𝑛 is concretely expressed as

�̌�𝑛 = 𝑃A𝑛
(�̂�𝑛) = argmin

𝒙∈A𝑛

∥�̂�𝑛 − 𝒙∥2

= �̂�𝑛 − 𝐴T (𝐴𝐴T)−1 (𝐴�̂�𝑛 − 𝒚𝑛). (9)

In general, fast and exact computation of (𝐴𝐴T)−1 is difficult
when the image size becomes huge. In this paper, since we
assumed the blockwise downscaling model in (1), 𝐴𝐴T is
always a diagonal matrix and thus (9) is easily computed by

�̌�𝑛 = 𝑃A𝑛
(�̂�𝑛) = �̂�𝑛 −

1∑𝐾
𝑘=1

∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙

𝐴T (𝐴�̂�𝑛 − 𝒚𝑛). (10)

Figure 3 shows the relation between 𝒙𝑛, �̂�𝑛, and �̌�𝑛. As
shown in Fig. 3, MSE between �̂�𝑛 and 𝒙𝑛 in (3) (brown line)
can be divided into vertical components to A𝑛 (blue line)
and horizontal components to A𝑛 (green line), and we have
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∥�̂�𝑛 − 𝒙𝑛∥2
2 = ∥�̂�𝑛 − 𝑃A𝑛

(�̂�𝑛)∥2
2 + ∥𝑃A𝑛

(�̂�𝑛) − 𝒙𝑛∥2
2 (11)

≥ ∥𝑃A𝑛
(�̂�𝑛) − 𝒙𝑛∥2

2 = ∥�̌�𝑛 − 𝒙𝑛∥2
2. (12)

From (12), if 𝐴�̂�𝑛 ≠ 𝒚𝑛, then MSE always becomes smaller,
i.e., PSNR always improves, by applying the orthogonal pro-
jection 𝑃A𝑛

. Since the output image is changed from �̂�𝑛 to
�̌�𝑛 = 𝑃A𝑛

(�̂�𝑛), we also change, e.g., the MSE content loss to

𝑙C′ =
1

𝐶𝐼𝐽𝐾𝐿𝑁

𝑁∑︁
𝑛=1

∥𝑃A𝑛
(�̂�𝑛) − 𝒙𝑛∥2

2. (13)

When we only consider a weighted sum of 𝑙C′ in (13)
and 𝑙A in (6) as the total loss function 𝑙G′ for a generator
𝐺, in fact SR results are not good since error information of
the vertical components to A𝑛 is lost. Thus, to generate SR
images as close as possible to the linear manifold A𝑛 before
the orthogonal projection, we further propose to add MSE
of the vertical components to A𝑛 as the projection loss

𝑙P =
1

𝐶𝐼𝐽𝐾𝐿𝑁

𝑁∑︁
𝑛=1

∥�̂�𝑛 − 𝑃A𝑛
(�̂�𝑛)∥2

2. (14)

Note that, under the downscaling model in (1), the projection
loss 𝑙P is also expressed as

𝑙P =
1

𝐶𝐼𝐽𝐾𝐿𝑁 (∑𝐾
𝑘=1

∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙
)2

𝑁∑︁
𝑛=1

∥𝐴T (𝐴�̂�𝑛 − 𝒚𝑛)∥2
2

=
1

𝐶𝐼𝐽𝐾𝐿𝑁
∑𝐾
𝑘=1

∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙

𝑁∑︁
𝑛=1

∥𝐴�̂�𝑛 − 𝒚𝑛∥2
2. (15)

From (15), we can see that the projection loss is essentially
the same as the downscaling loss in [21], i.e., MSE between
the re-downscaling results 𝐴�̂�𝑛 and the input LR images 𝒚𝑛.
Finally, the total loss function for the generator𝐺 is defined as

𝑙G′ = 𝑙C′ + 𝜆𝑙P + 𝜅𝑙A, (16)

where 𝜆 > 0 and 𝜅 > 0. Since the content loss 𝑙C′ in (13) is
more important than the projection loss 𝑙P in (14), we rec-
ommend to set a value smaller than 1 for 𝜆. We evaluate the
horizontal and vertical MSEs at a ratio of 1 : 𝜆 in (16) while
they have been equally evaluated at a ratio of 1 : 1 in (7).

5. Metric Projection in the Noisy Situation

5.1 Formulation of Downscaling with Gaussian Noise

In this section, we extend the proposed projection technique
in the previous section to noisy input images. Specifically, we
consider the following noisy downscaling model

𝒚 = T (𝐴𝒙 + 𝜺) = 𝐴𝒙 + �̃�, (17)

where T : R𝐶𝐼𝐽 → [0, 1]𝐶𝐼𝐽 denotes the threshold operator
that replaces negative values with 0 and values greater than 1
with 1, and 𝜺 ∈ R𝐶𝐼𝐽 is additive white Gaussian noise of
variance 𝜎2. Figure 4 shows a noisy LR color image based

(a) LR image without noise. (b) LR image with Gaussian noise.

Fig. 4 LR images without and with white Gaussian noise of 𝜎 = 5
255 .

Fig. 5 Histograms of ∥𝐴𝒙𝑛 − 𝒚𝑛 ∥2
2 and ∥𝐴�̂�𝑛 − 𝒚𝑛 ∥2

2 . Green one shows
the true distribution of the energy of noise. Blue and red ones show the distri-
butions of square errors between outputs’ re-downscaling results and noisy
input images for single-CNN-based and GAN-based methods, respectively.

on (17) with 𝜎 = 5
255 . In numerical experiments of Sect. 6,

we use the same standard deviation for each component of 𝜺.
Figure 5 shows the distribution of the energy of noise

�̃�, i.e., ∥�̃�𝑛∥2
2 = ∥𝐴𝒙𝑛 − 𝒚𝑛∥2

2 (𝑛 = 1, 2, . . . , 𝑁), as a green
histogram, where the image sizes of the LR color images 𝒚𝑛
are 48 × 48 and the number of the images is 𝑁 = 50,736.
From ( 5

255 )
2 × 48× 48× 3 ≈ 2.657, the green histogram has

a peak around 2.65. If there was no thresholding, values of
1
𝜎2 ∥�̃�𝑛∥2

2 = 1
𝜎2 ∥𝜺𝑛∥2

2 would follow the chi-square distribu-
tion with 𝐶𝐼𝐽 degrees of freedom. However, in fact there is
the threshold operator, and the absolute values of noise com-
ponents are suppressed. As a result, the distribution of ∥�̃�𝑛∥2

2
goes away from symmetry and has a long tail in the left side.

5.2 Consistent Set for the Noisy Low-Resolution Input

As stated in [31], to maximize the performance, we should
build CNNs that simultaneously perform denoising and SR.
In the noisy situation, SR images generated by single-CNN-
based methods become further over-smoothed for denoising,
while SR images generated by GAN-based methods tend to
include more artifacts. Figure 5 also shows the distributions
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Fig. 6 Consistent set A 𝜖
𝑛 in (18) and errors before/after the projection.

of square errors between outputs’ re-downscaling results and
noisy input LR images, i.e., ∥𝐴�̂�𝑛 − 𝒚𝑛∥2

2 (𝑛 = 1, 2, . . . , 𝑁),
as a blue histogram for a single-CNN-based method (EDSR)
and a red histogram for a GAN-based method (EDSR-GAN).
Note that we used the MAE content loss 𝑙C = 𝑙MAE in (4) for
both methods. From Fig. 5, we can see that both blue and red
histograms of ∥𝐴�̂�𝑛 − 𝒚𝑛∥2

2 have peaks located to the left of
the green histogram’s peak and also possess larger variances
than the green histogram of ∥𝐴𝒙𝑛 − 𝒚𝑛∥2

2. Furthermore, the
red histogram of the GAN-based method has a very long tail
in the right side, which has led to the serious artifacts.

If we directly apply the orthogonal projection in (10),
SR images having the perfect consistency ∥𝐴�̌�𝑛 − 𝒚𝑛∥2

2 = 0
are generated. However, this direct approach keeps noise �̃�𝑛
included in the input LR images 𝒚𝑛. From Fig. 5, we can see
that the energy of noise ∥�̃�𝑛∥2

2 = ∥𝐴𝒙𝑛 − 𝒚𝑛∥2
2 will be within

a certain range with high probability, e.g., from 2 to 2.8 with
98%. Based on this observation for training data, we try to
improve the image quality by making the values ∥𝐴�̌�𝑛−𝒚𝑛∥2

2
closer to a range pre-defined from the distribution of ∥�̃�𝑛∥2

2.
We define the set of all SR images whose root square

errors between downscaling results and the noisy LR image
𝒚𝑛 are within a consistent range [𝜖lb, 𝜖ub] (0 ≤ 𝜖lb ≤ 𝜖ub) by

A 𝜖
𝑛 := {𝒙 ∈ R𝐶𝐼𝐽𝐾𝐿 | 𝜖lb ≤ ∥𝐴𝒙 − 𝒚𝑛∥2 ≤ 𝜖ub}. (18)

We call this set a consistent set, where 𝜖lb and 𝜖ub are lower
and upper bounds of the root square errors and are set, e.g.,
to 𝜖lb =

√
2 and 𝜖ub =

√
2.8 from Fig. 5, so that the true HR

image 𝒙𝑛 will belong to A 𝜖
𝑛 with high probability. If we set

𝜖lb = 𝜖ub = 0, then A 𝜖
𝑛 in (18) becomes A𝑛 in (8). As long

as 𝜖lb > 0, the consistent set A 𝜖
𝑛 is nonconvex as illustrated

in Fig. 6, but we can give the exact metric projection onto
A 𝜖
𝑛 . We explain the metric projection in the next section.

5.3 Exact Metric Projection onto the Consistent Set

To derive the exact metric projection onto the consistent set
in (18), we further define two sets of SR images. One is the
set of all SR images whose downscaling errors are under 𝜖ub

Aub
𝑛 := {𝒙 ∈ R𝐶𝐼𝐽𝐾𝐿 | ∥𝐴𝒙 − 𝒚𝑛∥2 ≤ 𝜖ub}, (19)

and the other is the set whose downscaling errors are over 𝜖lb

Alb
𝑛 := {𝒙 ∈ R𝐶𝐼𝐽𝐾𝐿 | ∥𝐴𝒙 − 𝒚𝑛∥2 ≥ 𝜖lb}. (20)

The set Aub
𝑛 in (19) is convex, but the set Alb

𝑛 in (20) is non-
convex. Moreover, the intersection ofAub

𝑛 andAlb
𝑛 coincides

with the consistent set A 𝜖
𝑛 in (18), i.e., Aub

𝑛 ∩ Alb
𝑛 = A 𝜖

𝑛 .
Let 𝑃ub

A 𝜖
𝑛

and 𝑃lb
A 𝜖

𝑛
be the metric projections onto Aub

𝑛 and
Alb
𝑛 , respectively. Then, the metric projection 𝑃A 𝜖

𝑛
onto the

consistent set A 𝜖
𝑛 is expressed as

𝑃A 𝜖
𝑛
(�̂�𝑛) =


𝑃ub
A 𝜖

𝑛
(�̂�𝑛) if ∥𝐴�̂�𝑛 − 𝒚𝑛∥2 > 𝜖ub,

𝑃lb
A 𝜖

𝑛
(�̂�𝑛) if ∥𝐴�̂�𝑛 − 𝒚𝑛∥2 < 𝜖lb,

�̂�𝑛 if 𝜖lb ≤ ∥𝐴�̂�𝑛 − 𝒚𝑛∥2 ≤ 𝜖ub.

(21)

In general, exact computations of𝑃ub
A 𝜖

𝑛
and𝑃lb

A 𝜖
𝑛

are very
difficult [32]. Thanks to the blockwise downscaling model in
(1), we can give the exact metric projection 𝑃ub

A 𝜖
𝑛

ontoAub
𝑛 by

𝑃ub
A 𝜖

𝑛
(�̂�𝑛)

=


�̂�𝑛 −

∥𝐴�̂�𝑛 − 𝒚𝑛∥2 − 𝜖ub

∥𝐴�̂�𝑛 − 𝒚𝑛∥2
∑𝐾
𝑘=1

∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙

𝐴T (𝐴�̂�𝑛 − 𝒚𝑛)

if ∥𝐴�̂�𝑛 − 𝒚𝑛∥2 > 𝜖ub,
�̂�𝑛 if ∥𝐴�̂�𝑛 − 𝒚𝑛∥2 ≤ 𝜖ub.

(22)

If we set 𝜖ub = 0, then 𝑃ub
A 𝜖

𝑛
in (22) becomes 𝑃A𝑛

in (10). We
can also give the exact metric projection 𝑃lb

A 𝜖
𝑛

onto Alb
𝑛 by

𝑃lb
A 𝜖

𝑛
(�̂�𝑛)

=


�̂�𝑛 +

𝜖lb − ∥𝐴�̂�𝑛 − 𝒚𝑛∥2

∥𝐴�̂�𝑛 − 𝒚𝑛∥2
∑𝐾
𝑘=1

∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙

𝐴T (𝐴�̂�𝑛 − 𝒚𝑛)

if ∥𝐴�̂�𝑛 − 𝒚𝑛∥2 < 𝜖lb,
�̂�𝑛 if ∥𝐴�̂�𝑛 − 𝒚𝑛∥2 ≥ 𝜖lb.

(23)

Both metric projections in (22) and (23) move the vector �̂�𝑛
along the orientation of 𝐴T (𝐴�̂�𝑛 − 𝒚𝑛), but their moving di-
rections are opposite to each other because the sign of the co-
efficient of 𝐴T (𝐴�̂�𝑛 − 𝒚𝑛) is negative in (22) and positive in
(23). The proofs of (22) and (23) are shown in Appendices.

Note that we implicitly assume ∥𝐴�̂�𝑛−𝒚𝑛∥2 > 0 in (23)
because an SR image �̂�𝑛 exactly satisfying 𝐴�̂�𝑛 = 𝒚𝑛 is not
created by a generator 𝐺 practically. In addition, if we de-
fine a function 𝛿𝜖𝑛 : R𝐶𝐼𝐽𝐾𝐿 → R, that is well-defined and
differentiable except for the points 𝒙 satisfying 𝐴𝒙 = 𝒚𝑛, as

𝛿𝜖𝑛 (𝒙) :=



∥𝐴𝒙 − 𝒚𝑛∥2 − 𝜖ub
∥𝐴𝒙 − 𝒚𝑛∥2

if ∥𝐴𝒙 − 𝒚𝑛∥2 > 𝜖ub,

∥𝐴𝒙 − 𝒚𝑛∥2 − 𝜖lb
∥𝐴𝒙 − 𝒚𝑛∥2

if ∥𝐴𝒙 − 𝒚𝑛∥2 < 𝜖lb,

0 if 𝜖lb ≤ ∥𝐴𝒙 − 𝒚𝑛∥2 ≤ 𝜖ub,

then the metric projection 𝑃A 𝜖
𝑛
(�̂�𝑛) in (21) is also written by

𝑃A 𝜖
𝑛
(�̂�𝑛) = �̂�𝑛 −

𝛿𝜖𝑛 (�̂�𝑛)∑𝐾
𝑘=1

∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙

𝐴T (𝐴�̂�𝑛 − 𝒚𝑛). (24)
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5.4 Proposed Output Image and the Total Loss Function

Since the consistent set A 𝜖
𝑛 is nonconvex, there is a possibil-

ity that the metric projection 𝑃A 𝜖
𝑛

increases errors between
the SR image and the true HR image when ∥𝐴�̂�𝑛−𝒚𝑛∥2 < 𝜖lb.
On the other hand, when ∥𝐴�̂�𝑛 − 𝒚𝑛∥2 > 𝜖ub, the metric pro-
jection 𝑃A 𝜖

𝑛
(�̂�𝑛) = 𝑃ub

A 𝜖
𝑛
(�̂�𝑛) almost always decreases MSE

because 𝑃ub
A 𝜖

𝑛
is a nonexpansive mapping and satisfies

∥𝑃ub
A𝝐

𝑛
(�̂�𝑛) − 𝒙𝑛∥2

2 = ∥𝑃ub
A𝝐

𝑛
(�̂�𝑛) − 𝑃ub

A𝝐
𝑛
(𝒙𝑛)∥2

2 ≤ ∥�̂�𝑛 − 𝒙𝑛∥2
2

if 𝒙𝑛 ∈ Aub
𝑛 holds. Based on this, we propose to use �̌�𝑛 :=

𝑃ub
A𝝐

𝑛
(�̂�𝑛) as the final output SR image in the noisy situation,

which means that we directly use �̂�𝑛 as the final output when
∥𝐴�̂�𝑛 − 𝒚𝑛∥2 ≤ 𝜖ub including the case of ∥𝐴�̂�𝑛 − 𝒚𝑛∥2 < 𝜖lb.

Similar to (13), we change, e.g., the MAE content loss to

𝑙C′ =
1

𝐶𝐼𝐽𝐾𝐿𝑁

𝑁∑︁
𝑛=1

∥𝑃ub
A 𝜖

𝑛
(�̂�𝑛) − 𝒙𝑛∥1. (25)

Further, to generate SR images as close as possible to the con-
sistent set A 𝜖

𝑛 before the projection, we propose to add two
projection losses. One is the mean square distance to Alb

𝑛 :

𝑙 lbP =
1

𝐶𝐼𝐽𝐾𝐿𝑁

𝑁∑︁
𝑛=1

∥�̂�𝑛 − 𝑃lb
A 𝜖

𝑛
(�̂�𝑛)∥2

2, (26)

and the other is the mean square distance to Aub
𝑛 :

𝑙ub
P =

1
𝐶𝐼𝐽𝐾𝐿𝑁

𝑁∑︁
𝑛=1

∥�̂�𝑛 − 𝑃ub
A 𝜖

𝑛
(�̂�𝑛)∥2

2. (27)

Finally, the proposed total loss function for a generator 𝐺 is

𝑙G′ = 𝑙C′ + 𝜆lb𝑙
lb
P + 𝜆ub𝑙

ub
P + 𝜅𝑙A, (28)

where 𝜆lb > 0 and 𝜆ub > 0. From Fig. 5, we find that root
square errors between re-downscaling results and noisy in-
put images are often under the lower bound 𝜖lb but seldom
over the upper bound 𝜖ub. Since the latter cases are consid-
ered to cause serious artifacts in GAN-based SR methods,
we recommend to set 𝜆lb and 𝜆ub so that 𝜆lb < 𝜆ub can hold.

6. Numerical Experiments

In this section, we compare SR images generated by EDSR,
EDSR-Projection, EDSR-GAN and EDSR-GAN-Projection.
Here, ‘Projection’ means that proposed projection is added in
the output layer of the generator (EDSR) as shown in Fig. 1.
‘GAN’ means that the discriminator of SRGAN in Fig. 2 is
also trained by maximizing the discrimination loss 𝑙D in (5).

6.1 Datasets and Experimental Settings

We create training image patches from 800 images in DIV2K
dataset [33]. We set the sizes of HR color patches to 96× 96

for ×2 scale (i.e., 𝐾 = 𝐿 = 2) and to 144 × 144 for ×3 scale
(i.e., 𝐾 = 𝐿 = 3). In each case, all LR color patches of size
48×48 are given by downscaling of the HR patches with the
arithmetic mean matrix 𝐴, i.e., 𝑤𝑘,𝑙 = 1

𝐾𝐿
for all 𝑘 and 𝑙 in

(1). For the noisy situation, we add white Gaussian noise of
standard deviation 𝜎 = 5

255 to the LR patches and then apply
the thresholding T . The number of the training patch pairs
is 𝑁 = 59,296 for ×2 scale and 𝑁 = 50,736 for ×3 scale.

We use Adam [34] as the optimizer, where we set 𝛼 =

10−4 in the training of all the generators, 𝛼 = 10−5 only in the
training of the discriminators, and (𝛽1, 𝛽2) = (0.9, 0.999) in
every training. We set the minibatch size to 96 for the single-
CNN-based methods and to 64 for the GAN-based methods,
where each training patch pair is used either as it is, rotated
90 degrees, flipped vertically, or flipped horizontally when
creating minibatches. For stable GAN training, pre-trained
EDSR and EDSR-Projection are used as the initial values of
the generators of EDSR-GAN and EDSR-GAN-Projection,
respectively, and we alternately update each generator and
each discriminator using the same minibatch. It takes about
1 day to train each single-CNN-based method and 2 days to
train each GAN-based method by PyTorch 1.3.1 on Windows
10 Home (Core i7-7700K, 64 GB, GeForce GTX 1080 Ti).

We evaluate SR images generated by each method for
four different datasets, Set5 [35], Set14 [36], BSD100 [37],
and Urban100 [38]. We prepare two kinds of test LR images.
One is downscaled by the same mean matrix 𝐴, and the other
by the bicubic interpolation of Pillow [39]. We use PSNR†

and FSIM𝐶 [40] as objective indices for the image quality.

6.2 Results in the Noise-Free Situation

We use the MSE content loss 𝑙C = 𝑙MSE in (3) for EDSR and
EDSR-GAN and 𝑙C′ in (13) for EDSR-Projection and EDSR-
GAN-Projection. In (16), we set the weight of the adversarial
loss 𝑙A in (6) to 𝜅 = 10−3 for EDSR-GAN and EDSR-GAN-
Projection and the weight of the projection loss 𝑙P in (14) to
𝜆 = 10−3 for EDSR-Projection and EDSR-GAN-Projection.

Tables 1 and 2 summarize SR results for the two kind of
LR images, in which red numbers indicate better objective
index values on the single-CNN-based methods (EDSR and
EDSR-Projection), and blue numbers indicate better values
on the GAN-based methods (EDSR-GAN and EDSR-GAN-
Projection). For the single-CNN-based methods, there exist
slight improvements of the objective indices due to the pro-
posed projection, but which has little effect on human eyes.
This is because MSE-based CNNs almost satisfy 𝐴�̂�𝑛 = 𝒚𝑛
without the orthogonal projection in the noise-free situation
if the networks are appropriately trained. On the other hand,
for the GAN-based methods, we can see that the proposed
projection technique improved PSNR in all cases and FSIM𝐶

mainly for ×3 scale in Tables 1 and 2. As shown in Table 2,
the proposed projection was also effective even in the case
that the downscaling process is different from training data,

†Without using the YCbCr transform, we compute PSNR values
from MSE between HR and SR images in the RGB color space.
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Table 1 Averages of the objective indices (PSNR / FSIM𝐶 ) of SR results for Set5, Set14, BSD100,
and Urban100 in the noise-free situation. Test images are downscaled by the matrix 𝐴 used in training.

Dataset Scale EDSR EDSR- EDSR-GAN EDSR-GAN-
Projection Projection

Set5 ×2 36.54 / 0.9738 36.55 / 0.9739 34.65 / 0.9618 34.66 / 0.9576
×3 34.45 / 0.9436 34.48 / 0.9441 33.12 / 0.9290 33.30 / 0.9315

Set14 ×2 34.10 / 0.9577 34.14 / 0.9581 32.74 / 0.9390 32.82 / 0.9387
×3 32.73 / 0.9098 32.73 / 0.9097 31.79 / 0.8967 31.97 / 0.8987

BSD100 ×2 33.91 / 0.9426 33.91 / 0.9428 32.61 / 0.9243 32.62 / 0.9217
×3 32.57 / 0.8838 32.58 / 0.8835 31.68 / 0.8761 31.91 / 0.8783

Urban100 ×2 34.08 / 0.9522 34.10 / 0.9525 32.38 / 0.9257 32.63 / 0.9272
×3 32.52 / 0.8958 32.58 / 0.8959 31.54 / 0.8760 31.66 / 0.8792

Table 2 Averages of the objective indices (PSNR / FSIM𝐶 ) of SR results for Set5, Set14, BSD100,
and Urban100 in the noise-free situation. Test images are downscaled by the bicubic interpolation.

Dataset Scale EDSR EDSR- EDSR-GAN EDSR-GAN-
Projection Projection

Set5 ×2 36.10 / 0.9701 36.15 / 0.9707 34.85 / 0.9640 35.20 / 0.9636
×3 33.97 / 0.9351 33.98 / 0.9346 33.19 / 0.9284 33.35 / 0.9308

Set14 ×2 33.55 / 0.9437 33.57 / 0.9442 32.85 / 0.9351 33.01 / 0.9366
×3 32.47 / 0.8979 32.46 / 0.8978 31.95 / 0.8949 32.08 / 0.8961

BSD100 ×2 33.67 / 0.9373 33.68 / 0.9379 33.02 / 0.9295 33.07 / 0.9295
×3 32.38 / 0.8726 32.39 / 0.8724 31.88 / 0.8735 32.05 / 0.8737

Urban100 ×2 33.20 / 0.9340 33.22 / 0.9345 32.53 / 0.9246 32.74 / 0.9262
×3 32.00 / 0.8679 32.01 / 0.8668 31.61 / 0.8647 31.66 / 0.8676

(a) Target HR image. (b) Enlarged HR image.

(c) EDSR
(32.41 / 0.9088).

(d) EDSR-Projection
(32.42 / 0.9087).

(e) EDSR-GAN
(31.76 / 0.9009).

(f) EDSR-GAN-Projection
(32.00 / 0.9049).

Fig. 7 Results of ‘head’ in Set5 for ×3 scale (PSNR / FSIM𝐶 ).

(a) Target HR image. (b) Enlarged HR image.

(c) EDSR
(30.70 / 0.8716).

(d) EDSR-Projection
(30.72 / 0.8713).

(e) EDSR-GAN
(29.98 / 0.8507).

(f) EDSR-GAN-Projection
(30.01 / 0.8525).

Fig. 8 Results of ‘img003’ in Urban100 for ×3 scale (PSNR / FSIM𝐶 ).
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Table 3 Averages of the objective indices (PSNR / FSIM𝐶 ) of SR results for Set5, Set14, BSD100,
and Urban100 in the noisy situation. Test images are downscaled by the matrix 𝐴 used in training.

Dataset Scale EDSR EDSR- EDSR-GAN EDSR-GAN-
Projection Projection

Set5 ×2 34.80 / 0.9579 34.80 / 0.9580 33.78 / 0.9492 33.79 / 0.9493
×3 33.39 / 0.9282 33.40 / 0.9288 32.63 / 0.9222 32.76 / 0.9233

Set14 ×2 33.28 / 0.9402 33.27 / 0.9402 32.35 / 0.9294 32.39 / 0.9304
×3 32.21 / 0.8915 32.23 / 0.8921 31.56 / 0.8884 31.64 / 0.8911

BSD100 ×2 33.14 / 0.9270 33.14 / 0.9271 32.19 / 0.9133 32.28 / 0.9128
×3 32.08 / 0.8639 32.09 / 0.8644 31.50 / 0.8671 31.44 / 0.8672

Urban100 ×2 33.36 / 0.9375 33.37 / 0.9377 32.32 / 0.9215 32.35 / 0.9206
×3 32.14 / 0.8780 32.15 / 0.8780 31.52 / 0.8713 31.53 / 0.8724

Table 4 Averages of the objective indices (PSNR / FSIM𝐶 ) of SR results for Set5, Set14, BSD100,
and Urban100 in the noisy situation. Test images are downscaled by the bicubic interpolation.

Dataset Scale EDSR EDSR- EDSR-GAN EDSR-GAN-
Projection Projection

Set5 ×2 34.54 / 0.9546 34.53 / 0.9542 33.98 / 0.9505 34.04 / 0.9514
×3 33.07 / 0.9215 33.06 / 0.9213 32.60 / 0.9196 32.71 / 0.9199

Set14 ×2 32.87 / 0.9273 32.86 / 0.9264 32.45 / 0.9242 32.44 / 0.9240
×3 32.02 / 0.8816 32.03 / 0.8824 31.64 / 0.8849 31.71 / 0.8864

BSD100 ×2 32.95 / 0.9211 32.94 / 0.9205 32.50 / 0.9159 32.54 / 0.9148
×3 31.95 / 0.8541 31.95 / 0.8542 31.64 / 0.8637 31.63 / 0.8635

Urban100 ×2 32.72 / 0.9210 32.72 / 0.9202 32.36 / 0.9173 32.38 / 0.9153
×3 31.76 / 0.8540 31.77 / 0.8547 31.45 / 0.8569 31.49 / 0.8577

(a) Target HR image. (b) Enlarged HR image.

(c) EDSR
(34.34 / 0.9509).

(d) EDSR-Projection
(34.25 / 0.9500).

(e) EDSR-GAN
(33.30 / 0.9370).

(f) EDSR-GAN-Projection
(33.55 / 0.9406).

Fig. 9 Results of ‘bird’ in Set5 for ×3 scale (PSNR / FSIM𝐶 ).

(a) Target HR image. (b) Enlarged HR image.

(c) EDSR
(29.76 / 0.8435).

(d) EDSR-Projection
(29.77 / 0.8412).

(e) EDSR-GAN
(29.58 / 0.8502).

(f) EDSR-GAN-Projection
(29.58 / 0.8521).

Fig. 10 Results of ‘img063’ in Urban100 for ×3 scale (PSNR / FSIM𝐶 ).
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i.e., the proposed technique had a certain robustness against
the different downscaling. Interestingly, the objective index
values of the single-CNN-based methods in Table 2 are lower
than those in Table 1, while some values of the GAN-based
methods in Table 2 are better than those in Table 1. In addi-
tion, on FSIM𝐶 for ×3 scale of BSD100 in Table 2, EDSR-
GAN-Projection gave the best value among all the methods.

Figures 7 and 8 show examples of SR results for the test
images. In EDSR and EDSR-Projection, there are almost no
differences and both SR results are over-smoothed. In EDSR-
GAN, the SR results are more clear but have some artifacts.
The proposed GAN-based method (EDSR-GAN-Projection)
generates images including realistic high-frequency compo-
nents while reducing artifacts in Fig. 7(f) and creating clear
straight lines in Fig. 8(f) compared with Figs. 7(e) and 8(e).

6.3 Results in the Noisy Situation

We use the MAE content loss 𝑙C = 𝑙MAE in (4) for EDSR and
EDSR-GAN and 𝑙C′ in (25) for EDSR-Projection and EDSR-
GAN-Projection because we confirmed that MAE leads to
more clear SR images than MSE by preliminary experiments.
In (28), we set the weight of the adversarial loss 𝑙A in (6) to
𝜅 = 10−3 for EDSR-GAN and EDSR-GAN-Projection, and
the weights of the projection losses 𝑙 lbP in (26) and 𝑙ub

P in (27)
to 𝜆lb = 1 and 𝜆ub = 5 for ×2 scale of EDSR-Projection and
EDSR-GAN-Projection and to 𝜆lb = 0.2 and 𝜆ub = 0.8 for
×3 scale, from objective and subjective perspectives. In each
scale, we set the bounds in (18) to 𝜖lb =

√
2 and 𝜖ub =

√
2.8.

Tables 3 and 4 summarize SR results for the two kind of
LR images in the noisy situation. For the single-CNN-based
methods, as in the noise-free situation, there are slight im-
provements of the objective indices mainly in Table 3, but
which has little effect on human eyes in most images. For the
GAN-based methods, the trend of improvement of the objec-
tive indices, excluding FSIM𝐶 for×2 scale, can be seen. The
objective index values of the single-CNN-based methods in
Table 4 are lower than those in Table 3, while some values of
the GAN-based methods in Table 4 are better than those in
Table 3. On FSIM𝐶 for ×3 scale of BSD100 in Table 3 and
of Set14, BSD100, and Urban100 in Table 4, the GAN-based
methods were better than the single-CNN-based methods.

Figures 9 and 10 show examples of SR results for the test
images. In Fig. 9, the results of EDSR and EDSR-Projection
are over-smoothed and almost the same as each other. The re-
sult of EDSR-GAN is clear but includes large artifacts in the
lower left part of Fig. 9(e). On the other hand, the proposed
GAN-based method (EDSR-GAN-Projection) generates the
clear image as shown in Fig. 9(f) without the large artifacts.
Although the averaged improvements in Tables 3 and 4 are
small, from these figures, it can be found that the proposed
metric projection can suppress serious artifacts. In Fig. 10,
there are significant differences between the results of EDSR
and EDSR-Projection. Comparing Figs. 10(c) and 10(d), we
can see that the diagonal parallel lines in the roof are more
accurately reconstructed. The same matter is seen between
the SR images of EDSR-GAN and EDSR-GAN-Projection

in Figs. 10(e) and 10(f). We found that straight lines in other
images could also be clearly seen by adding the projection.

6.4 Results for Inputs of Mismatched Noise Level

Although the proposed method assumes that the noise level
is known, we verify SR results when the noise level of input
LR images differs from that of training data. Specifically, we
input noisy LR images into the networks in Sect. 6.2, and
noise-free LR images into the networks in Sect. 6.3, where
all the test LR images are downscaled by the mean matrix 𝐴
used in training. The results and an example of the former
experiments are shown in Table 5 and Fig. 11, and those of
the latter experiments are shown in Table 6 and Fig. 12.

Comparing Tables 1 and 5, we see that all the values of
PSNR and FSIM𝐶 are significantly decreased due to noise.
Comparing Tables 3 and 5, the values of PSNR and FSIM𝐶

in Table 5 are lower than those in Table 3 since the networks
in Sect. 6.2 do not perform denoising as shown in Fig. 11,
whether the proposed projection technique is applied or not.
Though noise cannot be removed, the proposed GAN-based
method (EDSR-GAN-Projection) generated high-frequency
components with fewer artifacts in Fig. 11(f) than Fig. 11(e).

Comparing Tables 3 and 6, for PSNR, all the values in
Table 6 are better than those in Table 3 since the LR images
in Table 6 are noise-free. On the other hand, for FSIM𝐶 , all
the values of the single-CNN-based methods in Table 6 are
lower than those in Table 3, while most values of the GAN-
based methods in Table 6 are better than those in Table 3.
This implies that the single-CNN-based methods are more
likely to fail in recover of high-frequency components due
to excessive denoising than the GAN-based methods.

Comparing Tables 1 and 6, we see that all the values of
PSNR and FSIM𝐶 significantly decrease for the single-CNN-
based methods. On the other hand, for the GAN-based meth-
ods, most values of PSNR increase, and the decrease in the
values of FSIM𝐶 is smaller. Thus, the GAN-based methods
were relatively robust to reduction of the noise level in the
test images. Moreover, as shown in Fig. 12(f), the property
that straight lines become clearly visible by adding the pro-
jection was retained even when the noise level was reduced.

To summarize, although it is desired to know how much
noise LR images contain, GAN-based SR methods with the
proposed projection technique work reasonably well even if
the noise level is smaller than expected. On the other hand,
if the noise level is much larger than when training CNNs,
good results are not obtained as with conventional methods.

7. Conclusion

In this paper, for single image SR using CNNs, we proposed
to use the metric projection in the output layer for generating
SR images having the appropriate consistency with the input
LR images. In the noise-free situation, we considered a linear
manifold having the perfect consistency with the input image,
and applied the orthogonal projection onto this set just before
the output. In the noisy situation, we defined a consistent set,
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Table 5 Averages of the objective indices (PSNR / FSIM𝐶 ) of SR results when noisy images are inputs
to networks for the noise-free situation. Test images are downscaled by the matrix 𝐴 used in training.

Dataset Scale EDSR EDSR- EDSR-GAN EDSR-GAN-
Projection Projection

Set5 ×2 32.34 / 0.9343 32.29 / 0.9341 31.07 / 0.8990 30.86 / 0.8908
×3 31.59 / 0.9119 31.56 / 0.9120 30.47 / 0.8551 30.79 / 0.8801

Set14 ×2 31.52 / 0.9209 31.52 / 0.9210 30.35 / 0.8778 30.31 / 0.8786
×3 30.87 / 0.8807 30.86 / 0.8804 29.96 / 0.8358 30.30 / 0.8546

BSD100 ×2 31.35 / 0.9077 31.32 / 0.9080 29.87 / 0.8540 30.09 / 0.8653
×3 30.72 / 0.8568 30.71 / 0.8567 29.79 / 0.8150 30.14 / 0.8360

Urban100 ×2 31.38 / 0.9109 31.36 / 0.9116 30.13 / 0.8639 30.22 / 0.8706
×3 30.68 / 0.8572 30.68 / 0.8576 29.80 / 0.8093 30.02 / 0.8256

Table 6 Averages of the objective indices (PSNR / FSIM𝐶 ) of SR results when noise-free images are
inputs to networks for the noisy situation. Test images are downscaled by the matrix 𝐴 used in training.

Dataset Scale EDSR EDSR- EDSR-GAN EDSR-GAN-
Projection Projection

Set5 ×2 35.30 / 0.9567 35.27 / 0.9564 34.78 / 0.9543 34.84 / 0.9557
×3 33.76 / 0.9255 33.80 / 0.9264 33.32 / 0.9271 33.38 / 0.9258

Set14 ×2 33.58 / 0.9377 33.56 / 0.9369 33.04 / 0.9319 33.05 / 0.9325
×3 32.43 / 0.8880 32.45 / 0.8887 32.02 / 0.8897 32.04 / 0.8909

BSD100 ×2 33.42 / 0.9242 33.41 / 0.9239 32.88 / 0.9166 32.87 / 0.9152
×3 32.26 / 0.8576 32.28 / 0.8579 31.90 / 0.8668 31.86 / 0.8669

Urban100 ×2 33.61 / 0.9355 33.62 / 0.9354 32.95 / 0.9273 32.86 / 0.9253
×3 32.30 / 0.8761 32.32 / 0.8768 31.83 / 0.8751 31.84 / 0.8754

(a) Target HR image. (b) Enlarged HR image.

(c) EDSR
(31.02 / 0.8896).

(d) EDSR-Projection
(31.00 / 0.8896).

(e) EDSR-GAN
(30.32 / 0.8495).

(f) EDSR-GAN-Projection
(30.56 / 0.8670).

Fig. 11 Outputs from the noisy ‘head’ input for ×3 scale.

(a) Target HR image. (b) Enlarged HR image.

(c) EDSR
(29.80 / 0.8346).

(d) EDSR-Projection
(29.79 / 0.8323).

(e) EDSR-GAN
(29.63 / 0.8431).

(f) EDSR-GAN-Projection
(29.63 / 0.8439).

Fig. 12 Outputs from the noise-free ‘img063’ input for ×3 scale.
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which includes the true HR image with high probability, and
applied the metric projection onto this set. Furthermore, to
generate SR images as close as possible to the consistent sets
before the projections, we added the total distance moved by
the projections to the loss function. The proposed technique
can be integrated into most SR methods without contradic-
tion and especially effective for GAN-based methods. This
is because generators can learn high-frequency components
while maintaining low-frequency ones appropriately and SR
images having realistic high-frequency components with few
artifacts are generated. In addition, since the true HR image
belongs to the consistent set with high probability, the pro-
posed projection can decrease MSE with high probability.

In numerical experiments, we confirmed the effective-
ness of the proposed technique in both noise-free and noisy
situations. In each situation, the proposed technique reduced
artifacts in a GAN-based method while generating realistic
high-frequency components with better values of PSNR and
FSIM𝐶 , and we found that straight lines could be clearly re-
constructed by adding the projection. Moreover, we verified
the results for the inputs whose noise level is different from
training data, and it was shown that the performance of the
GAN-based method with the proposed technique was hardly
degraded when the noise level was smaller than training data.

Acknowledgments

This work was supported by JSPS KAKENHI (19K20361).

References

[1] H. Yamamoto, D. Kitahara, and A. Hirabayashi, “Image super-
resolution via generative adversarial network using an orthogonal
projection,” Proc. Eur. Signal Process. Conf. (EUSIPCO), Amster-
dam, The Netherlands, pp.660–664, Oct. 2020.

[2] J. Yang, J. Wright, T.S. Huang, and Y. Ma, “Image super-resolution
via sparse representation,” IEEE Trans. Image Process., vol.19,
no.11, pp.2861–2873, Nov. 2010.

[3] M. Elad, Sparse and Redundant Representations: From Theory to
Applications in Signal and Image Processing, Springer, New York,
NY, USA, 2010.

[4] C. Dong, C.C. Loy, K. He, and X. Tang, “Image super-resolution us-
ing deep convolutional networks,” IEEE Trans. Pattern Anal. Mach.
Intell., vol.38, no.2, pp.295–307, Feb. 2016.

[5] C. Dong, C.C. Loy, and X. Tang, “Accelerating the super-resolution
convolutional neural network,” Proc. Eur. Conf. Comput. Vis.
(ECCV), Amsterdam, The Netherlands, pp.391–407, Oct. 2016.

[6] J. Kim, J.K. Lee, and K.M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, pp.1646–1654,
June 2016.

[7] W. Shi, J. Caballero, F. Huszár, J. Totz, A.P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,”
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Las Ve-
gas, NV, USA, pp.1874–1883, June 2016.

[8] B. Lim, S. Son, H. Kim, S. Nah, and K.M. Lee, “Enhanced deep resid-
ual networks for single image super-resolution,” Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. Work. (CVPRW), Honolulu, HI,
USA, pp.136–144, July 2017.

[9] J.H. Kim and J.S. Lee, “Deep residual network with enhanced upscal-
ing module for super-resolution,” Proc. IEEE/CVF Conf. Comput.

Vis. Pattern Recognit. Work. (CVPRW), Salt Lake City, UT, USA,
pp.913–921, June 2018.

[10] M. Haris, G. Shakhnarovich, and N. Ukita, “Deep back-projection
networks for super-resolution,” Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Salt Lake City, UT, USA, pp.1664–1673,
June 2018.

[11] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,”
Proc. Eur. Conf. Comput. Vis. (ECCV), Munich, Germany, pp.286–
301, Sept. 2018.

[12] T. Dai, J. Cai, Y. Zhang, S.T. Xia, and L. Zhang, “Second-order at-
tention network for single image super-resolution,” Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Long Beach, CA,
USA, pp.11065–11074, June 2019.

[13] J. Liu, W. Zhang, Y. Tang, J. Tang, and G. Wu, “Residual feature
aggregation network for image super-resolution,” Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Seattle, WA, USA,
pp.2359–2368, June 2020.

[14] K. Zhang, L.V. Gool, and R. Timofte, “Deep unfolding network for
image super-resolution,” Proc. IEEE/CVF Conf. Comput. Vis. Pat-
tern Recognit. (CVPR), Seattle, WA, USA, pp.3217–3226, June
2020.

[15] Y. Guo, J. Chen, J. Wang, Q. Chen, J. Cao, Z. Deng, Y. Xu, and
M. Tan, “Closed-loop matters: Dual regression networks for single
image super-resolution,” Proc. IEEE/CVF Conf. Comput. Vis. Pat-
tern Recognit. (CVPR), Seattle, WA, USA, pp.5407–5416, June
2020.

[16] R. Lan, L. Sun, Z. Liu, H. Lu, C. Pang, and X. Luo, “MADNet:
A fast and lightweight network for single-image super resolution,”
IEEE Trans. Cybern., vol.51, no.3, pp.1443–1453, Mar. 2021.

[17] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,
A. Acosta, A.P. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi,
“Photo-realistic single image super-resolution using a generative ad-
versarial network,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Honolulu, HI, USA, pp.105–114, July 2017.

[18] M. Cheon, J.H. Kim, J.H. Choi, and J.S. Lee, “Generative adversar-
ial network-based image super-resolution using perceptual content
losses,” Proc. Eur. Conf. Comput. Vis. (ECCV), Munich, Germany,
pp.51–62, Sept. 2018.

[19] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and
C.C. Loy, “ESRGAN: Enhanced super-resolution generative adver-
sarial networks,” Proc. Eur. Conf. Comput. Vis. (ECCV), Munich,
Germany, pp.63–79, Sept. 2018.

[20] J. Cai, Z. Meng, and C.M. Ho, “Residual channel attention genera-
tive adversarial network for image super-resolution and noise reduc-
tion,” Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Work.
(CVPRW), Seattle, WA, USA, pp.1852–1861, June 2020.

[21] S. Menon, A. Damian, S. Hu, N. Ravi, and C. Rudin, “PULSE:
Self-supervised photo upsampling via latent space exploration of
generative models,” Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Seattle, WA, USA, pp.2434–2442, June 2020.

[22] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS), Montreal, Canada,
pp.2672–2680, Dec. 2014.

[23] L. Condat and A. Montanvert, “A framework for image magnifi-
cation: Induction revisited,” Proc. IEEE Int. Conf. Acoust. Speech
Signal Process. (ICASSP), Philadelphia, PA, USA, vol. 2, pp. 845–
848, Mar. 2005.

[24] Z. Wang, J. Chen, and S.C.H. Hoi, “Deep learning for image super-
resolution: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. (Early
Access), 24 pages, Mar. 2020.

[25] R. Chen, Y. Qu, K. Zeng, J. Guo, C. Li, and Y. Xie, “Persistent
memory residual network for single image super resolution,” Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Work. (CVPRW),
Salt Lake City, UT, USA, pp.922–929, June 2018.

[26] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” Proc.



716
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.4 APRIL 2022

IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Salt Lake
City, UT, pp.9446–9454, June 2018.

[27] P.J. Burt and E.H. Adelson, “The Laplacian pyramid as a compact im-
age code,” IEEE Trans. Commun., vol.31, no.4, pp.532–540, Apr.
1983.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Las Vegas, NV, USA, pp. 770–778, June 2016.

[29] R. Timofte, E. Agustsson, L. V. Gool, M.H. Yang, L. Zhang, B. Lim,
S. Son, H. Kim, S. Nah, K.M. Lee, X. Wang, Y. Tian, K. Yu, Y. Zhang,
S. Wu, C. Dong, L. Lin, Y. Qiao, C.C. Loy, W. Bae, J. Yoo, Y. Han,
J.C. Ye, J.S. Choi, M. Kim, Y. Fan, J. Yu, W. Han, D. Liu, H. Yu,
Z. Wang, H. Shi, X. Wang, T.S. Huang, Y. Chen, K. Zhang, W. Zuo,
Z. Tang, L. Luo, S. Li, M. Fu, L. Cao, W. Heng, G. Bui, T. Le,
Y. Duan, D. Tao, R. Wang, X. Lin, J. Pang, J. Xu, Y. Zhao, X. Xu,
J. Pan, D. Sun, Y. Zhang, X. Song, Y. Dai, X. Qin, X.P. Huynh,
T. Guo, H.S. Mousavi, T.H. Vu, V. Monga, C. Cruz, K. Egiazarian,
V. Katkovnik, R. Mehta, A.K. Jain, A. Agarwalla, C.V.S. Praveen,
R. Zhou, H. Wen, C. Zhu, Z. Xia, Z. Wang, and Q. Guo, “NTIRE 2017
challenge on single image super-resolution: methods and results,”
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Work. (CVPRW),
Honolulu, HI, USA, pp.1110–1121, July 2017.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” Proc. Int. Conf. Learn. Represent.
(ICLR), San Diego, CA, USA, 14 pages, May 2015.

[31] L.W. Kang, C.C. Hsu, B. Zhuang, C.W. Lin, and C.H. Yeh,
“Learning-based joint super-resolution and deblocking for a highly
compressed image,” IEEE Trans. Multimedia, vol.17, no.7, pp. 921–
934, July 2015.

[32] I. Yamada, K. Slavakis, and K. Yamada, “An efficient robust adap-
tive filtering algorithm based on parallel subgradient projection tech-
niques,” IEEE Trans. Signal Process., vol.50, no.5, pp.1091–1101,
May 2002.

[33] E. Agustsson and R. Timofte, “NTIRE 2017 challenge on single
image super-resolution: dataset and study,” Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. Work. (CVPRW), Honolulu, HI, USA,
pp.1122–1131, July 2017.

[34] D.P. Kingma and J.L. Ba, “Adam: A method for stochastic optimiza-
tion,” Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA,
USA, 15 pages, May 2015.

[35] M. Bevilacqua, A. Roumy, C. Guillemot, and M.L.A. Morel, “Low-
complexity single-image super-resolution based on nonnegative
neighbor embedding,” Proc. Brit. Mach. Vis. Conf. (BMVC), Surrey,
UK, 10 pages, Sept. 2012.

[36] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up us-
ing sparse-representations,” Int. Conf. Curves Surfaces, Avignon,
France, pp.711–730, June 2010.

[37] D. Martin, C. Fowlkes, D. Tal, and J. Malik. “A database of human
segmented natural images and its application to evaluating segmenta-
tion algorithms and measuring ecological statistics,” Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Vancouver, Canada, vol. 2, pp.416–423,
July 2001.

[38] J.B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution
from transformed self-exemplars,” Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Boston, MA, USA, pp.5197–5206, June
2015.

[39] F. Lundh and A. Clark, Pillow: The Friendly Python Imaging Library
Fork, https://pillow.readthedocs.io/en/stable, accessed Apr. 24, 2021.

[40] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature
similarity index for image quality assessment,” IEEE Trans. Image
Process., vol.20, no.8, pp.2378–2386, Aug. 2011.

[41] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Space, 2nd ed., Springer, New York, NY,
USA, 2017.

[42] D. Salas and L. Thibault, “Quantitative characterizations of noncon-
vex bodies with smooth boundaries in Hilbert spaces via the metric
projection,” J. Math. Anal. Appl., vol.494, no.2, 21 pages, Feb. 2021.

Appendix A: Proof of (22)

It is obvious that 𝑃ub
A 𝜖

𝑛
(�̂�𝑛) = �̂�𝑛 holds when �̂�𝑛 ∈ Aub

𝑛 , i.e.,
∥𝐴�̂�𝑛 − 𝒚𝑛∥2 ≤ 𝜖ub holds. Hence, we consider only the case
when ∥𝐴�̂�𝑛 − 𝒚𝑛∥2 > 𝜖ub holds. In this case, computation of
𝑃ub
A 𝜖

𝑛
(�̂�𝑛) can be seen as the following optimization problem

minimize
𝒙

𝑓 (𝒙) := ∥�̂�𝑛 − 𝒙∥2
2

subject to 𝑔(𝒙) := ∥𝐴𝒙 − 𝒚𝑛∥2
2 − 𝜖

2
ub ≤ 0

}
. (A· 1)

The unique optimal solution to this problem corresponds to
𝑃ub
A 𝜖

𝑛
(�̂�𝑛). Here, we define a vector 𝒙∗ ∈ R𝐶𝐼𝐽𝐾𝐿 as

𝒙∗ := �̂�𝑛 −
∥𝐴�̂�𝑛 − 𝒚𝑛∥2 − 𝜖ub

∥𝐴�̂�𝑛 − 𝒚𝑛∥2
∑𝐾
𝑘=1

∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙

𝐴T (𝐴�̂�𝑛 − 𝒚𝑛)

= �̂�𝑛 −
∥𝐴�̂�𝑛 − 𝒚𝑛∥2 − 𝜖ub

∥𝐴�̂�𝑛 − 𝒚𝑛∥2
𝐴T (𝐴𝐴T)−1 (𝐴�̂�𝑛 − 𝒚𝑛).

We only have to show that 𝒙∗ is the optimal solution to the
convex optimization problem in (A· 1). Since this problem
satisfies the Slater condition [41, Proposition 27.21], 𝒙∗ is
the optimal solution if and only if 𝒙∗ satisfies the following
Karush–Kuhn–Tucker (KKT) conditions

−∇ 𝑓 (𝒙∗) = 𝜇∇𝑔(𝒙∗),
𝑔(𝒙∗) ≤ 0,

𝜇 ≥ 0,
𝜇𝑔(𝒙∗) = 0,

(A· 2)
(A· 3)
(A· 4)
(A· 5)

where 𝜇 ∈ R denotes the dual variable. First, from

𝑔(𝒙∗) = ∥𝐴𝒙∗ − 𝒚𝑛∥2
2 − 𝜖

2
ub

=





𝐴�̂�𝑛 − ∥𝐴�̂�𝑛 − 𝒚𝑛∥2 − 𝜖ub
∥𝐴�̂�𝑛 − 𝒚𝑛∥2

(𝐴�̂�𝑛 − 𝒚𝑛) − 𝒚𝑛





2

2
− 𝜖2

ub

=





 𝜖ub
∥𝐴�̂�𝑛 − 𝒚𝑛∥2

(𝐴�̂�𝑛 − 𝒚𝑛)




2

2
− 𝜖2

ub = 𝜖2
ub − 𝜖

2
ub = 0,

the conditions in (A· 3) and (A· 5) are satisfied. Next, from

−∇ 𝑓 (𝒙∗) = 2(�̂�𝑛 − 𝒙∗)

=
2(∥𝐴�̂�𝑛 − 𝒚𝑛∥2 − 𝜖ub)

∥𝐴�̂�𝑛 − 𝒚𝑛∥2
∑𝐾
𝑘=1

∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙

𝐴T (𝐴�̂�𝑛 − 𝒚𝑛)

and

𝜇∇𝑔(𝒙∗) = 2𝜇𝐴T (𝐴𝒙∗−𝒚𝑛) =
2𝜇𝜖ub

∥𝐴�̂�𝑛 − 𝒚𝑛∥2
𝐴T (𝐴�̂�𝑛−𝒚𝑛),

by setting the dual valuable 𝜇 to

𝜇 =
∥𝐴�̂�𝑛 − 𝒚𝑛∥2 − 𝜖ub

𝜖ub
∑𝐾
𝑘=1

∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙

> 0,

the conditions in (A· 2) and (A· 4) are satisfied. Since all the
KKT conditions hold, we have proven that 𝒙∗ is the solution
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to the problem in (A· 1) and 𝑃ub
A 𝜖

𝑛
(�̂�𝑛) is expressed as (22).

Appendix B: Proof of (23)

It is obvious that 𝑃lb
A 𝜖

𝑛
(�̂�𝑛) = �̂�𝑛 holds when �̂�𝑛 ∈ Alb

𝑛 , i.e.,
∥𝐴�̂�𝑛 − 𝒚𝑛∥2 ≥ 𝜖lb holds. Hence, we consider only the case
when ∥𝐴�̂�𝑛−𝒚𝑛∥2 < 𝜖lb holds. In this case, 𝑃lb

A 𝜖
𝑛
(�̂�𝑛) can be

seen as the solution to the following optimization problem

minimize
𝒙

𝑓 (𝒙) := ∥�̂�𝑛 − 𝒙∥2
2

subject to 𝑔(𝒙) := −∥𝐴𝒙 − 𝒚𝑛∥2
2 + 𝜖

2
lb ≤ 0

}
. (A· 6)

Differently from (A· 1), the problem in (A· 6) is nonconvex,
and it is difficult to utilize the KKT conditions to prove (23).
In the following, we directly solve the the problem in (A· 6).

Let 𝒙∗ ∈ R𝐶𝐼𝐽𝐾𝐿 be the solution to the the problem in
(A· 6) and define 𝒚∗ := 𝑨𝒙∗ ∈ R𝐶𝐼𝐽 . Then, from 𝑔(𝒙∗) ≤ 0,
we have ∥𝒚∗ − 𝒚𝑛∥2 ≥ 𝜖lb. Moreover, 𝒙∗ is also given from
�̂�𝑛 by applying the metric projection onto a linear manifold

A∗ := {𝒙 ∈ R𝐶𝐼𝐽𝐾𝐿 | 𝐴𝒙 = 𝒚∗}.

Therefore, from (10), 𝒙∗ can be expressed as

𝒙∗ = 𝑃A∗ (�̂�𝑛) = �̂�𝑛 −
1∑𝐾

𝑘=1
∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙

𝐴T (𝐴�̂�𝑛 − 𝒚∗). (A· 7)

From (A· 7) and (15), we have

𝑓 (𝒙∗) = ∥�̂�𝑛 − 𝒙∗∥2
2 =

1
(∑𝐾

𝑘=1
∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙
)2

∥𝐴T (𝐴�̂�𝑛 − 𝒚∗)∥2
2

=
1∑𝐾

𝑘=1
∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙

∥𝐴�̂�𝑛 − 𝒚∗∥2
2.

As a result, the optimization problem on 𝒙 in (A· 6) can be
reduced to an optimization problem on 𝒚 as

minimize
𝒚

∥𝐴�̂�𝑛 − 𝒚∥2 subject to ∥𝒚 − 𝒚𝑛∥2 ≥ 𝜖lb, (A· 8)

and 𝒚∗ coincides with the optimal solution to the problem in
(A· 8). By shifting the metric projection onto a spherical sur-
face [42], the unique solution 𝒚∗ is easily computed as

𝒚∗ = 𝒚𝑛 +
𝜖lb

∥𝐴�̂�𝑛 − 𝒚𝑛∥2
(𝐴�̂�𝑛 − 𝒚𝑛) (A· 9)

if 0 < ∥𝐴�̂�𝑛 − 𝒚𝑛∥2 < 𝜖lb. From (A· 9), we have

𝐴�̂�𝑛 − 𝒚∗ = − 𝜖lb − ∥𝐴�̂�𝑛 − 𝒚𝑛∥2
∥𝐴�̂�𝑛 − 𝒚𝑛∥2

(𝐴�̂�𝑛 − 𝒚𝑛). (A· 10)

By substituting (A· 10) into (A· 7), we finally have the unique
optimal solution 𝒙∗ to the problem in (A· 6) as

𝒙∗ = �̂�𝑛 +
𝜖lb − ∥𝐴�̂�𝑛 − 𝒚𝑛∥2

∥𝐴�̂�𝑛 − 𝒚𝑛∥2
∑𝐾
𝑘=1

∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙

𝐴T (𝐴�̂�𝑛 − 𝒚𝑛),

and it has been proven that 𝑃lb
A 𝜖

𝑛
(�̂�𝑛) is expressed as (23).

Note that when ∥𝐴�̂�𝑛 − 𝒚𝑛∥2 = 0, i.e., 𝐴�̂�𝑛 = 𝒚𝑛 holds,
the optimization problem in (A· 8) has infinite solutions as

𝒚∗ = 𝒚𝑛 + 𝜖lb𝒖,

where 𝒖 ∈ R𝐶𝐼𝐽 is any unit vector s.t. ∥𝒖∥2 = 1. In this case,
the optimization problem in (A· 6) also has infinite solutions,
and the metric projection becomes a set-valued mapping as

𝑃lb
A 𝜖

𝑛
(�̂�𝑛) =

{
�̂�𝑛 +

𝜖lb∑𝐾
𝑘=1

∑𝐿
𝑙=1 𝑤

2
𝑘,𝑙

𝐴T𝒖

����� ∥𝒖∥2 = 1

}
.

In practice, the condition 𝐴�̂�𝑛 = 𝒚𝑛 does not hold, and even
if it holds, the proposed projection technique works correctly
by selecting an appropriate unit vector 𝒖, e.g., as 𝒖 = 1√
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