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Abstract In this paper, we present a novel convex re-
covery model for graph-structured sparse signals. While
various structured sparsities can be treated as the graph-
structured sparsity, recovery of graph-structured sparse
signals is known to be a NP-hard problem and thus ex-
isting frameworks rely on approximation algorithms, for
which global optimality cannot be ensured in general. To
resolve this difficulty, we propose a convex penalty func-
tion derived as a tight convex relaxation of a penalty
function designed as the minimum of the mixed ℓ2/ℓ1
norm over the groups defined by connected components
of the candidate subgraphs. We can obtain a global op-
timal solution of the proposed graph-structured recovery
model with use of proximal splitting techniques. Numer-
ical experiments show the effectiveness of the proposed
recovery model.

1 Introduction

Structural information of sparsity patterns is the key
for the further enhancement of sparsity-aware signal pro-
cessing and machine learning. Various structured spar-
sities such as block-sparsity and tree-structured sparsity
can be encoded as the graph-structured sparsity [1–3]
with appropriately designed underlying graphs. Besides
its generality, graph-structured sparsity has its own nu-
merous applications, which include clustering of biologi-
cal network [4] and anomaly detection [5–8] of, e.g., wa-
ter distribution pipe breakage [9], traffic congestion [10],
and disease outbreak [11].

While the graph-structured sparsity can model various
structural information of nonzero patterns of the target
signals, it is challenging to effectively exploit the graph-
structured sparsity for signal processing and machine
learning. Since graph-structured sparse signals are orig-
inally modeled by a nonconvex set, and it is known that
the projection onto this set is a NP-hard problem [1].
Due to this difficulty, the existing methods, e.g., [1–3],
rely on approximation algorithms, where the computa-
tion of a globally optimal solution is challenging. On
the other hand, existing convex regularization frame-
works [12–20] requires predefined subgraphs in prior to
the estimation, and thus cannot flexibly incorporate the
graph-structured sparsity.

In this paper, for recovery of graph-structured sparse
signals, we present a novel convex framework where the
relevant subgraph is automatically identified. We first
design a nonconvex penalty function as the minimum of

the mixed ℓ2/ℓ1 norm over the set of groups induced by
subgraphs of the underlying graph. Then, the proposed
convex penalty function is derived as its tight convex
relaxation by utilizing the variational representation of
the ℓ2 norm [21, Lemma 1] and the introduction of la-
tent variables characterized by a difference operator on
the underlying graph. We design a graph-structured re-
covery model with the proposed penalty, whose globally
optimal solution can be obtained by applying proximal
splitting techniques. Numerical experiments for recov-
ery of graph-structured sparse signals from linear mea-
surements demonstrate the effectiveness of the proposed
method.

2 Preliminaries

2.1 Mathematical Notions

R, R+, and R++ respectively denote the sets of all real
numbers, all nonnegative real numbers, and all positive
real numbers. For matrices or vectors, we denote the
transpose by (·)⊤. For x = (x1, . . . , xN )⊤ ∈ RN and an
index set I ⊂ {1, . . . , N}, xI := (xn)n∈I denotes the
subvector of x indexed by I. We define the support of
x ∈ RN by supp(x) := {n ∈ {1, . . . , N} |xn ̸= 0}. For
a set A, |A| denotes the cardinality of A. The ℓ2 norm
and the ℓ1 norm of x ∈ RN are respectively defined by
∥x∥2 :=

√
x⊤x and ∥x∥1 :=

∑N
n=1 |xn|. The weighted ℓ0

pseudo-norm with the weight vector w ∈ RN
++ is defined

by ∥x∥0,w :=
∑N

n=1 wn1(xn), where 1(x) = 0 if x = 0
and 1(x) = 1 otherwise.
We denote an undirected graph by G = (V, E), where

V is a set of vertices and E ⊂ V × V is a set of edges.
Any nonempty graph G can be uniquely decomposed into
connected components, that is, maximal connected sub-
graphs [22] which form a partition of V. We denote the
connected components of G by

ck(G) ⊂ V for k = 1, . . . , κ(G),

where κ(G) is the number of connected components.

2.2 Problem Formulation

We consider the estimation of x⋆ ∈ RN supposed to be
graph-structured sparse with an underlying graph G0 =
(V0, E0) where V0 := {1, . . . , N}. Namely, nonzero en-
tries of x⋆ are clustered in several connected subgraphs
of G0. In other words, x⋆ is group-sparse by setting the
groups to the connected components of G⋆ = (V0, E⋆),
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where E⋆ ⊂ E0 is defined by eliminating irrelevant edges
from E0. More precisely, we suppose that

x⋆
ck(G⋆) ≈ 0 for many k ∈ {1, . . . , κ(G⋆)}.

To evaluate the cost of edges eliminated from E0, we
also consider weights of edges, which are represented by
a function w0 : E → R++. Note that, if such weights
are not available, we can simply set w0(e) = 1 for every
e ∈ E .

3 Proposed Graph-Structured Sparse Recovery

3.1 Design of Penalty Function

We focus on the observation that the graph-structured
sparsity can be evaluated as the group-sparsity by set-
ting the groups to the connected components of an ap-
propriate subgraph of the underlying graph G0. The
group-sparsity can be effectively promoted by the mixed
ℓ2/ℓ1 norm, i.e., the sum of the ℓ2 norm of subvectors of
the groups. However, it is not suitable to directly apply
the mixed ℓ2/ℓ1 norm to graph-structured sparse signals
because the appropriate subgraph is unknown a priori.
Thus, we newly introduce a penalty function as the min-
imum of the mixed ℓ2/ℓ1 norm over candidate subgraphs
of G0. Although the introduced penalty function is non-
convex, we derive its tight convex relaxation by using the
variational representation of the ℓ2 norm [21, Lemma 1]
and introducing latent variables.

Concretely, we begin by defining the mixed ℓ2/ℓ1 norm
induced by a graph G:

∥x∥G2,1 :=

κ(G)∑
k=1

√
|ck(G)| ∥xck(G)∥2, (1)

where xck(G) is the subvector indexed by the connected

component ck(G), and
√

|ck(G)| is the weight introduced
based on the suggestions in, e.g., [14–17], for group-
sparse recovery. To automatically identify the appro-
priate subgraph, we design the penalty function ψG0

d (x)
by

ψG0

d (x) := min
G∈Sd

∥x∥G2,1, (2)

where Sd consists of all candidate subgraphs of G0 de-
fined by eliminating edges whose total weights are less
than or equal to d ∈ R+, i.e.,

Sd :=

G = (V0, E)

∣∣∣∣∣∣ E ⊂ E0 and
∑

e∈E0\E

w0(e) ≤ d

 .

(3)

To derive the convex relaxation of ψG0

d (x), we exploit
the following lemma, from [21], which shows a varia-
tional representation of the ℓ2 norm.

Lemma 1. Define a coercive lower semicontinuous con-
vex function ϕ : R× R → R+ ∪ {∞} by

ϕ(x, τ) :=


|x|2

2τ
+
τ

2
, if τ > 0;

0, if x = 0 and τ = 0;

∞, otherwise.

(4)

Then, the group-wise ℓ2 norm is variationally repre-
sented as √

|I| ∥xI∥2 = min
τ∈R

∑
n∈I

ϕ(xn, τ), (5)

for any index set I ⊂ {1, . . . , N}.
By applying Lemma 1 for each

√
|ck(G)| ∥xck(G)∥2 in

the definition of ∥x∥G2,1 in (1), we can rewrite ψG0

d (x) in
(2) as

ψG0

d (x) = min
G∈Sd

 min
τ∈Rκ(G)

κ(G)∑
k=1

∑
n∈ck(G)

ϕ(xn, τk)

 .
Let us introduce a latent vector σ = (σ1, . . . , σN )⊤ ∈
RN by

σn = τk (n ∈ ck(G)) for k = 1, . . . , κ(G).

Notice that ck(G) (k = 1, . . . , κ(G)) are the connected
components of G, and the sum of the weights of edges
eliminated from G0 is less than or equal to d as shown
in (3). Thus, σ is characterized by the condition that

∥Dσ∥0,w ≤ d,

where D ∈ R|E0|×N is the difference operator on the
graph G0, i.e.,

Dσ = (σn − σn′)(n,n′)∈E0
,

and w = (w(e))e∈E0
∈ R|E0|. Moreover, since the

connected components form a partition of V0, i.e.,⋃κ(G)
k=1 ck(G) = V0 = {1, . . . , N} and ck(G) ∩ ck′(G) =

∅ (k ̸= k′), we have

κ(G)∑
k=1

∑
n∈ck(G)

ϕ(xn, τk) =

N∑
n=1

ϕ(xn, σn).

Thus, we finally have

ψG0

d (x) = min
σ∈RN

∥Dσ∥0,w≤d

N∑
n=1

ϕ(xn, σn).

By replacing the weighted ℓ0 pseudo-norm in the con-
straint with its convex envelope, i.e., the weighted ℓ1
norm, we derive the proposed convex penalty as

ΨG0
α (x) := min

σ∈RN

∥WDσ∥1≤α

N∑
n=1

ϕ(xn, σn), (6)

where α ∈ R+ is a tuning parameter related to the the
sum of the weights of edges eliminated from G0, and
W = diag(w).
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3.2 Optimization Algorithm

We present a graph-structured sparse recovery model
using the proposed penalty (6). Specifically, we consider
the following regularization model:

minimize
x∈RN

f(Lx) + λΨG0
α (x), (7)

where f(Lx) is some convex data-fidelity function with
f : RJ → R+ and L ∈ RJ×N , and λ ∈ R++ is the regu-
larization parameter. We suppose that f ∈ Γ0(RJ), and
its proximity operator can be computed efficiently. Such
examples include the square error f(u) = 1

2∥y − u∥22
and the absolute error f(u) = ∥y − u∥1, where y
is the known observation vector and L is set to the
known measurement matrix. We can also apply (7) to
classification problems by using, e.g., the logistic loss
f(u) =

∑J
j=1 log(1 + exp(yjuj)) and the hinge loss

f(u) =
∑J

j=1 max{1 − yjuj , 0}, where yj ∈ {−1,+1}
is a label for the j-th training data aj ∈ RN , and
L = (a1, . . . ,aJ)

⊤.
Plugging the definition of Ψα(x) in (6) into (7), we

can solve the optimization problem (7) as

minimize
(x,σ)∈RN×RN

f(Lx) + λ

N∑
n=1

ϕ(xn, σn)

subject to ∥WDσ∥1 ≤ α

 , (8)

We obtain Algorithm 1 by applying the primal-dual al-
gorithm [23–28] to the reformulated problem (8) with
further slight reformulations. Based on [29, Example
2.4], we can compute the proximity operator of γλφ in
Algorithm 1 by

proxγλφ(x,σ) =
(
proxγλϕ(xn, σn)

)N
n=1

, (9)

with

proxγλϕ(x, σ)

=


(0, 0), if 2γλσ + |x|2 ≤ γ2λ2;

(0, σ − γλ
2 ), if x = 0 and 2σ > γλ;(

x− γλs x
|x| , σ + γλ s2−1

2

)
, otherwise,

(10)

where s ∈ R++ is the unique positive root of

s3 +
(

2
γλσ + 1

)
s− 2

γλ |x| = 0,

and can be explicitly given via Cardano’s formula as

follows. Let p = 2
γλσ+1, q = − 2

γλ |x|, andD = − q2

4 − p3

27 .
Then,

s =



3

√
− q

2 +
√
−D + 3

√
− q

2 −
√
−D, if D < 0;

2 3

√
− q

2 , if D = 0;

2
3

√√
q2

4 +D cos
(

arctan(−2
√
D/q)

3

)
, if D > 0,

Algorithm 1: Solver for the proposed model (7)

Input: γ > 0, µ1 ∈
(
0, 1√

∥L∥2op+1

]
, µ2 ∈

(
0, 1√

∥WD∥2op+1

]
for i = 0, 1, 2, . . . do

x̃(i+1) = x(i) + µ1L⊤(r
(i)
1 − µ1(Lx(i) − u(i)))

σ̃(i+1) = σ(i) +µ2D⊤W (r
(i)
2 −µ2(WDσ(i) −η(i)))

ũ(i+1) = u(i) − µ1(r
(i)
1 − µ1(Lx(i) − u(i)))

η̃(i+1) = η(i) − µ2(r
(i)
2 − µ2(WDσ(i) − η(i)))

(x(i+1),σ(i+1)) = proxγλφ(x̃
(i+1), σ̃(i+1))

// see (9) and (10)

u(i+1) = proxγf (ũ
(i+1))

η(i+1) = PBα
1
(η̃(i+1)) // see (11) and (12)

r
(i+1)
1 = r

(i)
1 − µ1(Lx(i+1) − u(i+1))

r
(i+1)
2 = r

(i)
2 − µ2(WDσ(i+1) − η(i+1))

where 3
√
· denotes the real cubic root. The proximity

operator of γf depends on the employed data-fidelity
function. The proximity operator of γιBα

1
reduces to the

ℓ1 ball projection PBα
1
, which can be computed as

PBα
1
(η) =

{
η, if ∥η∥1 ≤ α;

(ansign(ηn))
N−1
n=1 , otherwise,

(11)

with

an :=max

{
|ηn| −

T∑
t=1

ρt − α

T
, 0

}
, (12)

where ρ1, . . . , ρN−1 are obtained by sorting
|η1|, . . . , |ηN−1| in descending order, and

T :=max

{
t ∈ {1, . . . , N − 1}

∣∣∣∣∣
t∑

n=1

ρn − α

t
< ρt

}
.

4 Numerical Experiments

We consider the estimation of a graph-structured
sparse signal x⋆ ∈ RN from noisy compressive measure-
ments. The underlying graph G0 is randomly generated
under the condition that each node has 3 edges. Then,
2 subgraphs of G0 are randomly chosen for 150 nonzero
entries of x⋆, where N is set to 500. Amplitudes of
the nonzero entries are drawn from i.i.d. Gaussian dis-
tribution N (0, 1). The selection scheme of subgraphs
are as follows. First, the numbers of nodes of subgraphs
are randomly chosen from {1, 2, . . . , 149} under the con-
straint that their sum equals to 150. Each subgraph
is initialized with a node from G0. Then, for a node
randomly chosen from the subgraph, adjacent nodes are
added into the subgraph until the number of nodes be-
comes the prescribed number. If some nodes are shared
by the subgraphs chosen by this process, we reject these
subgraphs, and repeat the process until the prescribed
condition supp(x⋆) = 150 is met. The measurements
are generated by y := Ax⋆ + ε, where the entries of
A ∈ Rd×N (d < N) are drawn from i.i.d. N (0, 1), and
ε ∈ Rd is the white Gaussian noise.
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Table 1: Normalized mean square error between x⋆ and x̂ aver-
aged over 100 trials.

Number of measurements Proposed ℓ1

250 −8.27 −6.89

300 −17.24 −14.75

350 −30.11 −29.16

We compare the proposed regularization model (7)
against the ℓ1 norm regularization model. In the pro-
posed regularization model (7), we use the square error
by setting f(u) = 1

2∥y − u∥22 and L = A. The ℓ1 norm
is also combined with the square error in similar ways.
Note that the regularization parameter is tuned inde-
pendently for each model to obtain the best results. We
terminate the iteration when the norm of the differences
between the variables of successive iterates is below the
threshold 10−4. In Table 1, we show the normalized
mean square error (NMSE) ∥x⋆ − x̂∥22/∥x⋆∥22 against
the number of measurements, where x̂ is the solution
of each model and the results are averaged over 100 in-
dependent trials. The results show that the proposed
penalty function yields better estimation accuracy than
the ℓ1 regularization model.
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