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ABSTRACT

We propose a novel convex penalty for block-sparse signals whose
block partitions are unknown a priori. We first introduce a noncon-
vex penalty function, where the block partition is adjusted for the
signal of interest by minimizing the mixed `2/`1 norm over all possi-
ble block partitions. Then, by exploiting a variational representation
of the `2 norm, we derive the proposed penalty function as a suitable
convex relaxation of the nonconvex penalty. For the resulting reg-
ularization model, we provide a proximal splitting-based algorithm
which is guaranteed to converge to an optimal solution. Numerical
experiments show the effectiveness of the proposed penalty.

Index Terms— Block-sparsity, unknown partition, convex reg-
ularization, proximal splitting algorithm.

1. INTRODUCTION

Many natural signals exhibit block-sparsity, i.e., a special type of
sparsity where nonzero components are clustered in blocks. For re-
covery of a block-sparse signal whose block partition is known a
priori, extensive researches, e.g., [1–5], demonstrate the effective-
ness of the mixed `2/`1 norm using the block partition. However,
the information of the block partition is not available in many ap-
plications, e.g., recovery of acoustic [6, 7], image [8, 9], and radar
signals [10–12]. For instance, the target signal of the phased ar-
ray weather radar [11–14] is block-sparse in the Fourier domain due
to the narrow bandwidth of power spectral density, but the block
partition is unknown because it depends on the unknown mean and
standard deviation of the Doppler frequency. In such situations, the
recovery performance by the mixed `2/`1 norm often degrades due
to a pre-fixed block partition, which is substituted for an ideal one.

Several attempts have been made to cope with the unknown
block partitions. A commonly used modification is to use potentially
overlapping blocks, e.g., [15, 16]. Among them, the latent group
lasso (LGL) penalty [15] presents a clever approach where suitable
blocks are selected from pre-defined potentially overlapping blocks.
The LGL penalty is defined as the minimum of a convex function,
and thus the corresponding regularization model can be solved as
a convex optimization problem. However, since the problem size
grows with the number of candidate blocks, the LGL penalty has a
restriction on the size of candidate set, which restricts the recovery
performance. Meanwhile, the greedy approach [17] has a similar re-
striction on the candidate set of blocks. Bayesian approaches [18,19]
have also been presented, but they have to solve challenging noncon-
vex optimization problems. Thus, it is important to realize a convex
method which can flexibly cope with various block partitions.

In this paper, we propose a novel convex penalty function,
named latent optimally partitioned `2/`1 (LOP-`2/`1) penalty,
where the block partition is automatically adapted for the signal
of interest. First, we introduce a nonconvex penalty function as the

minimum of the mixed `2/`1 norm over all possible block partitions.
Then, as a suitable convex relaxation of the nonconvex penalty func-
tion, we derive the LOP-`2/`1 penalty. More precisely, by utilizing
a variational representation of the `2 norm, we represent the noncon-
vex penalty function as the minimization of a convex function over
the `0 pseudo-norm constraint on latent variables. The LOP-`2/`1
penalty is derived by replacing the `0 pseudo-norm constraint with
its convex envelope, i.e., the `1 norm. Moreover, with the aid of the
computation of a proximity operator shown in [20,21], we provide a
proximal splitting algorithm which converges to an optimal solution
of the regularization model using the LOP-`2/`1 penalty.

To show the effectiveness of the LOP-`2/`1 penalty, we conduct
numerical experiments on synthetic examples and real-world data.
The results show that the LOP-`2/`1 penalty achieves better estima-
tion accuracy than existing penalties including the LGL penalty.

Notations: R, R+, and C respectively denote the sets of all
real numbers, all nonnegative real numbers, and all complex num-
bers. For matrices or vectors, we denote the simple transpose and
the complex conjugate transpose respectively by (·)> and (·)H. For
x = (x1, . . . , xN )> ∈ CN and an index set I ⊂ {1, . . . , N},
xI := (xn)n∈I denotes the subvector of x indexed by I. We define
the support of x ∈ CN by supp(x) := {n ∈ {1, . . . , N} |xn 6=
0}. The cardinality of a set S is denoted by |S|. The `2 norm, the `1
norm, and the `0 pseudo-norm of x ∈ CN are respectively denoted
by ‖x‖2 :=

√
xHx, ‖x‖1 :=

∑N
n=1 |xn|, and ‖x‖0 := |supp(x)|.

2. PRELIMINARIES

2.1. Block-Sparsity with Unknown Block Partition

We suppose that x? ∈ CN to be estimated is block-sparse over
an unknown block partition B?1 , . . . ,B?K? . Namely, the subvector
x?B?

k
contains only (approximately) zero components for many k ∈

{1, . . . ,K?}. We use the term block-sparse in a strict sense, i.e., B?k
consists of consecutive indices as B?k = {n?k, n?k + 1, . . . ,m?

k}.

2.2. Existing Penalties for Block-Sparse Signals

To enhance the block-sparsity of x ∈ CN over the known non-
overlapping blocks B1, . . . ,BK ⊂ {1, . . . , N}, a commonly used
penalty function is the mixed `2/`1 norm defined as the sum (i.e. the
`1 norm) of the blockwise `2 norms:

‖x‖2,1 :=

K∑
k=1

√
|Bk| ‖xBk‖2, (1)

where we use the weight
√
|Bk| by following the suggestions in,

e.g., [1, 2]. The mixed `2/`1 norm promotes the block sparsity by
pushing components in Bk toward zeros together. However, the per-
formance of the mixed `2/`1 norm degrades when B1, . . . ,BK do
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not match with the ground-truth B?1 , . . . ,B?K? . To cope with such
difficulty, several extensions, e.g., [15, 16] have been designed by
using potentially overlapping blocks B̄1, . . . , B̄K̄ ⊂ {1, . . . , N}.
Among them, the latent group lasso (LGL) penalty [15] is a more
adequate extension for major applications, and defined as1

LGL(x) := min
(v1,...,vK̄)∈CN×K̄

K̄∑
k=1

√
|B̄k| ‖vk‖2

s.t.
K̄∑
k=1

vk = x and supp(vk) ⊂ B̄k (k = 1, . . . , K̄).


(2)

Although the LGL penalty can be used via convex optimization, it is
intractable to use all possible blocks as B̄1, . . . , B̄K̄ since K̄ is too
large in this case. Due to this computational issue, B̄1, . . . , B̄K̄ are
typically restricted to blocks of a fixed size.

3. PROPOSED METHOD

3.1. Derivation of Proposed Penalty Function

We first introduce a nonconvex penalty function ψnc(x), where the
block partition is optimized for the signal of interest. Then, as a
suitable convex relaxation of ψnc(x), we derive the proposed latent
optimally partitioned `2/`1 (LOP-`2/`1) penalty ψ(x).

We define ψnc(x) by taking the minimum of the mixed `2/`1
norm over at-most K block partitions:

ψnc(x) := min
j∈{1,...,K}

min
(B1,...,Bj)∈Pj

j∑
k=1

√
|Bk| ‖xBk‖2, (3)

where Pj contains all j block partitions of {1, . . . , N}, i.e.,

(B1, . . . ,Bj) ∈ Pj

⇔


⋃j
k=1Bk = {1, . . . , N},
Bk ∩ Bk′ = ∅ (k 6= k′),

∃nk,mk ∈ {1, . . . , N} s.t. Bk = {nk, nk + 1, . . . ,mk}.

Note that K can be set to an upper bound of the ground-truth K?.
Note also that, since the sizes of B1, . . . ,Bj can also be adjusted,
the non-overlappping condition Bk ∩ Bk′ = ∅ is not restrictive.
To derive the convex relaxation of ψnc(x), we exploit the following
lemma which shows a variational representation of the `2 norm.

Lemma 1. Let φ : C×R+ → R+∪{∞} be a lower semicontinuous
convex function defined as

φ(x, ρ) :=


|x|2

2ρ
+
ρ

2
, if ρ > 0;

0, if x = 0 and ρ = 0;

∞, otherwise.

Then, the `2 norm can be represented in the variational form using
φ as √

|Bk| ‖xBk‖2 = min
ρ∈R+

∑
n∈Bk

φ(xn, ρ). (4)

1By setting B̄k to other than blocks, the LGL penalty is applicable to
other structural sparsity, while this paper focuses on the block-sparsity.

This lemma implies a variational representation of ψnc(x) in (3) as

ψnc(x) = min
j∈{1,...,K}

min
(B1,...,Bj)∈Pj ,ρ∈R

j
+

j∑
k=1

∑
n∈Bk

φ(xn, ρk).

By letting a latent vector σ = (σ1, . . . , σN )> ∈ RN+ as

σn = ρk (n ∈ Bk) for k = 1, . . . , j,

we see that σ is characterized by the condition that

‖Dσ‖0 ≤ j − 1,

whereD is the first discrete difference operator defined by

D :=


−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . .

...
...

0 0 · · · −1 1

 ∈ R(N−1)×N .

Thus, we can represent ψnc(x) as

ψnc(x) = min
j∈{1,...,K}

min
σ∈RN+

N∑
n=1

φ(xn, σn) s.t. ‖Dσ‖0 ≤ j − 1

= min
σ∈RN+

N∑
n=1

φ(xn, σn) s.t. ‖Dσ‖0 ≤ K − 1.

Based on the fact that the `1 norm is the convex envelope of the
`0 pseudo-norm in the constraint, we finally derive the LOP-`2/`1
penalty as

ψ(x) = min
σ∈RN+

N∑
n=1

φ(xn, σn) s.t. ‖Dσ‖1 ≤ α, (5)

where α ≥ 0 is a tuning parameter related to the number of blocks.

Remark 1 (Generalization for matrices). For a matrixX ∈ CN×M ,
the LOP-`2/`1 penalty can be naturally extended by replacing the
1D discrete difference operator with a 2D one:

ψ2d(X) = min
Σ∈RN×M+

N∑
n=1

M∑
m=1

φ(Xn,m,Σn,m)

s.t. ‖D2d(Σ)‖1 ≤ α,

 (6)

where D2d : RN×M → RN(M−1)+(N−1)M computes discrete dif-
ferences in row and column directions. Note that we do not focus
on rectangular blocks, and ψ2d can manage blocks of various shapes
thanks to the flexibility of the 2D discrete difference operator D2d.

3.2. Regularization with Proposed Penalty

We show an application of the LOP-`2/`1 penalty (5) for the regu-
larization model, and provide its efficient solver. For simplicity, we
consider the following regularized least-squares model:

minimize
x∈CN

1
2
‖y −Ax‖22 + λψ(x),

which can be tackled as

minimize
(x,σ)∈CN×RN+

1
2
‖y −Ax‖22 + λ

N∑
n=1

φ(xn, σn) s.t. ‖Dσ‖1 ≤ α,

(7)
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Algorithm 1: Solver for the proposed model (7)

Input: γ > 0, µ ∈ (0, 1/
√

2], τ ∈ (0, 1/
√

5], and
x(0),σ(0), ξ(0),u(0),η(0), ζ(0).

while a stopping criterion is not satisfied do
x̃(j+1) = x(j) − µ(µ(x(j) − ξ(j))− η(j));
σ̃(j+1) = σ(j) − τD>(τ(Dσ(j) − u(j))− ζ(j));
ξ̃(j+1) = ξ(j) + µ(µ(x(j) − ξ(j))− η(j));
ũ(j+1) = u(j) + τ(τ(Dσ(j) − u(j))− ζ(j));
for n = 1, . . . , N do

(x
(j+1)
n , σ

(j+1)
n ) = proxγλφ(x̃

(j+1)
n , σ̃

(j+1)
n ) by (8);

ξ(j+1) =
(
γAHA+ I

)−1 (
γAHy + ξ̃(j+1)

)
;

u(j+1) = PBα1 (ũ(j+1)) by (9);

η(j+1) = η(j) − µ(x(j+1) − ξ(j+1));
ζ(j+1) = ζ(j) − τ(Dσ(j+1) − u(j+1));
j ← j + 1

where y ∈ Cd is the known observation vector, A ∈ Cd×N is
the known measurement matrix, and λ > 0 is the regularization
parameter.

The proposed model (7) can be decomposed into lower semi-
continuous convex functions whose proximity operators are easily
computed. Thus, by applying proximal splitting algorithms [22–27],
we can develop an efficient iterative solver for (7). As an instance,
by applying the primal-dual type method [24–27], we obtain Algo-
rithm 1, where (x(j),σ(j))∞j=1 converges to an optimal solution of
(7). Thanks to [20, 21], we can compute the proximity operator of φ
of index κ > 0 used in Algorithm 1 as

proxκφ(x, σ)=


(0, 0), if 2κσ + |x|2 ≤ κ2;

(0, σ − κ
2

), else if x = 0;(
x− κt x|x| , σ + κ t

2−1
2

)
, otherwise,

(8)

where t > 0 is the unique positive root of

t3 +
(

2
κ
σ + 1

)
t− 2

κ
|x| = 0,

and can be explicitly given via Cardano’s formula as follows. Let
p = 2

κ
σ + 1, q = − 2

κ
|x|, and D = − q

2

4
− p3

27
. Then,

t =



3

√
− q

2
+
√
−D + 3

√
− q

2
−
√
−D, if D < 0;

2 3

√
− q

2
, if D = 0;

2
3

√√
q2

4
+D cos

(
arctan(−2

√
D/q)

3

)
, if D > 0,

where 3
√
· denotes the real cubic root. In Algorithm 1, we also use

the `1 ball projection, which can be computed as

PBα1 (u) =

{
u, if ‖u‖1 ≤ α;

(sign(un)an)N−1
n=1 , otherwise,

(9)

an := max{|un| − (
∑I
i=1 ri − α)/I, 0},

I := max{j ∈ {1, . . . , N − 1} | (
∑j
i=1ri − α)/j < rj},

where r1, . . . , rN−1 are obtained by sorting |u1|, . . . , |uN−1| in de-
scending order. Note that sophisticated `1 ball projection algorithms
withO(N) expected complexity, e.g., [28], are also available. Thus,
in Algorithm 1, computations regarding the LOP-`2/`1 penalty can
be implemented with O(N) arithmetic operations.
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Fig. 1: Comparison of the penalties for synthetic examples, where the results
are averaged over 100 independent trials.

4. NUMERICAL EXPERIMENTS

To demonstrate the effectiveness of the LOP-`2/`1 penalty (5), we
conduct numerical experiments on synthetic and real-world data. We
compare the LOP-`2/`1 penalty with the existing convex penalties:
the `1 norm, the mixed `2/`1 norm (1), and the LGL penalty (2).

Synthetic Examples: We consider the estimation of a block-
sparse signal x? ∈ RN from noisy compressive measurements.
More precisely, we apply (7) for y := Ax?+ε, where the entries of
A ∈ Rd×N are drawn from i.i.d. Gaussian distributionN (0, 1), and
ε ∈ Rd is the white Gaussian noise. The block-sparse signal x? is
randomly generated by the following scheme. We set N = 250,
and x? has 80 nonzero components which are randomly divided
into 4 blocks. The blocks are randomly located under the condition
|supp(x?)| = 80. Amplitudes of nonzero components are drawn
from i.i.d.N (0, 1).

We compare the penalties in terms of the normalized mean
square error (NMSE) ‖x? − x̂‖22/‖x?‖22, where x̂ is the solution of
(7) for the LOP-`2/`1 penalty. The existing penalties are also com-
bined with the square errors, where the regularization parameters
are tuned independently to yield the best results. All regularization
models are solved by proximal splitting-based iterative algorithms,
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(a) Ground-truth                                          (b) Estimate by LGL penalty                                (c) Estimate by LOP- penalty           

Fig. 2: Power spectrums of ground-truth and estimates of the scatter signal shown in dB for a trial of phased array weather radar simulation.

where the iteration is terminated when the norm of the difference
between successive iterates is below the threshold 10−4.

In Figs. 1(a) and (b), we show the NMSE respectively against
the number of measurements d and the SNR ‖Ax?‖22/‖ε‖22, where
the results are averaged over 100 independent trials. Note that the
mixed `2/`1 norm are tested with block sizes 2 and 5, and the LGL
penalty uses overlapping blocks of size 2 in (2). In Figs. 1(a) and (b),
the LOP-`2/`1 penalty with several choices of α outperforms the
existing penalties. In addition, the performance of the LOP-`2/`1
penalty is fairly robust against the tuning parameter α.

Application to Phased Array Weather Radar: A major goal
of the phased array weather radar (PAWR) [13, 14] is to estimate
the scatter signal X? ∈ CN×M from degraded observations Y :=
SX? + E ∈ Cd×M , where S ∈ Cd×N is a certain array manifold
matrix, and E ∈ Cd×M is the observation noise. Note that N is the
number of elevation angles, M is the number of pulses, and d is the
number of array elements. We conduct a numerical simulation in a
setting similar to [12]. The scatter signalX? ∈ CN×M is generated
based on the reflection intensity measured by the PAWR at Osaka
University, where the elevation angles are chosen uniformly from
−15° to 30° degrees with N = 110. We set M = 50 and d = 128,
and E as the white Gaussian noise with the standard deviation

√
5.

As shown in [12], the scatter signal X? exhibits block-sparsity in
the Fourier domain for each elevation angle, but block partitions are
unknown a priori. Thus, we apply the LOP-`2/`1 penalty as

X̂ ∈ arg min
X∈CN×M

‖Y − SX‖2fro + λψ̃2d(FX>),

where ‖ · ‖fro denotes the Frobenius norm, F ∈ CM×M is the dis-
crete Fourier transform matrix, and ψ̃2d is slightly modified from (6)
by omitting horizontal differences to exploit the column-wise block-
sparsity of V = FX>. Existing penalties are also combined with
the square errors, and the regularization parameters are tuned inde-
pendently so that the performances become best.

In Table 1, we show the NMSE ‖X? − X̂‖2fro/‖X?‖2fro aver-
aged over 50 independent trails, where the LOP-`2/`1 penalty uses
α = 130N , the LGL penalty uses overlapping blocks of size 2, and
`2/`1 (a) and (b) respectively use block sizes 2 and 4. The result
shows that the LOP-`2/`1 penalty achieves the best performance.
Moreover, as shown in Fig. 2 where we show the power spectrum
of the estimate, i.e. squared magnitudes of FX̂>, the LOP-`2/`1
penalty successfully reduces the artifacts caused in the second-best
LGL penalty.

Application to Speech Denoising: To show the effectiveness of
the proposed 2D extension (6), we conduct experiments on speech
denosing using block-sparsity of the spectrogram. We generate noisy

Table 1: Comparison of the penalties for simulation of phased array weather
radar in terms of the NMSE in dB averaged over 50 independent trials.

LOP-`2/`1 `2/`1 (a) `2/`1 (b) `1 LGL

−15.72 −14.78 −14.03 −13.39 −14.83

Table 2: Comparison of the penalties for speech denoising in terms of the
NMSE in dB averaged over 20 independent trials.

LOP-`2/`1 `2/`1 (a) `2/`1 (b) `1

Male −15.73 −15.56 −15.41 −15.28

Female −17.43 −17.04 −16.90 −16.85

speech as y = s? + ε ∈ Rd, where s? is a 2-second clip of speech
taken from [29] with 16kHz sampling rate (i.e. d = 32000), and ε is
the white Gaussian noise with 10dB SNR. We use the 2D LOP-`2/`1
penalty to enforce the block-sparsity of the spectrogram as

X̂ ∈ arg min
X∈CN×M

‖y − S−1(X)‖22 + λψ2d(X),

where S−1 denotes the inverse short-time Fourier transform with
the hann window of 32ms with 75% overlap, and N = 512 and
M = 253. The existing penalties are also used in similar ways,
where the regularization parameters are tuned independently.

In Table 2, we show the NMSE ‖s? − S−1(X̂)‖22/‖s?‖22 av-
eraged over 20 independent trials respectively for male and female
speech, where the LOP-`2/`1 penalty uses α = 0.007NM , and
`2/`1 (a) and (b) respectively use block sizes 2×4 and 2×2, which
perform best among block sizes {1, 2, 4, 8} × {1, 2, 4, 8}. It can
be seen that the LOP-`2/`1 penalty improves the NMSE over the
existing penalties.

5. CONCLUSION

We proposed the latent optimally partitioned `2/`1 (LOP-`2/`1)
penalty (5) for block-sparse signals whose block partitions are not
available a priori. We first introduce a nonconvex penalty function
(3), where the block partition is optimized for the signal of interest
based on the minimization of the mixed `2/`1 norm. Then, the
LOP-`2/`1 penalty is derived as its suitable convex relaxation. We
also provided a proximal splitting-based solver for the correspond-
ing regularization model (7). Numerical experiments illustrate the
effectiveness of the LOP-`2/`1 penalty.
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