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Abstract: The present paper proposes a distortion pedal modeling method using the so-called
WaveNet. A state-of-the-art method constructs a feedforward network by modifying the original
autoregressive WaveNet, and trains it so that a loss function defined by the normalized mean squared
error between the high-pass filtered outputs is minimized. This method works well for pedals with low
distortion, but not for those with high distortion. To solve this problem, the proposed method exploits
the same WaveNet, but a novel loss function, which is defined by a weighted sum of errors in time and
time-frequency (T-F) domains. The error in the time domain is defined by the mean squared error
without the high-pass filtering, while that in the T-F domain is defined by a divergence between
spectral features computed from the short-time Fourier transform. Numerical experiments using a
pedal with high distortion, the Ibanez SD9, show that the proposed method is capable of precisely
reproducing high-frequency components without attenuation of low-frequency components compared
to the state-of-the-art method.
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1. INTRODUCTION

Electric guitars are used in connection with amplifiers

through effects pedals. These devices not only produce a

loud sound, but also put various effects on guitar sound,

including distortion. Guitar players carefully choose par-

ticular ones from many different types of effects pedals and

amplifiers to create their intended tone. Note that certain

sounds can be produced only by ones so-called ‘‘vintage,’’

whose production have already finished. Those products

are in great demand and hard to obtain. To reproduce the

sounds of such devices, digital modeling is required. Once

digital modeling is completed, players do not need to carry

around many heavy devices. Digital modeling is also useful

to put favorite effects pedals into digital audio workstations

(DAWs).

Digital modeling techniques can be classified into two

types. Methods of the first type convert all electronic

circuits in the devices into mathematical models [1,2]. This

circuit-based approach is capable of generating high-

quality sounds. Such modelings, however, require not only

the circuit diagram of the target device but also character-

istic curves of all nonlinear circuit parts including

transistors, diodes, and vacuum tubes. Even worse, if the

circuit diagram is not available, huge efforts for reverse

engineering are required.

Methods of the second type exploit machine learning or

system identification [3–12]. Using pairs of clean input and

distorted output sounds of the target device, the mapping

from the input to output is acquired. The cost to collect

such data is much lower than that for the circuit-based

approach, as long as the target device is available.

Methods of the second type are further classified into

two subgroups. Those in the first subgroup are called

block-oriented models [3–7]. Electronic circuits in the

device typically consist of a linear filtering block followed

by a nonlinear clipping block. The block-oriented models

use this two-block structure. The pairs of the clean input

and distorted output sounds of the target device are used to

adjust parameters in the blocks. However, since distortion

effects modeling is a problem of a nonlinear system

identification, such a two-block structure reduces the model

flexibility and causes degradation of reproduction quality.

Methods in the second subgroup use no information

about the electronic circuits in the device. Instead, these

methods exploit deep learning [8–12] and are called black-

box modeling. Along this context, recurrent neural net-

works (RNNs) were first exploited. In particular, long

short-term memory (LSTM) networks [13], which are one
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of the RNNs, were used in [8] and [9]. Even though these

methods are capable of high-accuracy modeling, it takes

a long time to train the networks due to their recursive

structures.

For faster training, Damskägg et al. proposed a

modeling method based on a feedforward variant of

WaveNet [10–12], which was originally proposed to

synthesize audio waveforms, including human voice and

music, using a nonlinear autoregressive structure [14].

WaveNet does not use recursive structures and hence

training is fast. Further, the so-called dilated causal

convolution enables WaveNet to reproduce high-quality

sounds with low computational cost. The modified

WaveNet is trained so as to minimize the error-to-signal

ratio (ESR) loss function, defined by the normalized mean

squared error between high-pass filtered target and model-

ing sounds in the time domain. This method achieved

better results with faster training than the LSTM methods.

Nevertheless, low-frequency components are attenuated by

the side effect of the high-pass filter. In particular, pedals

with high distortion are not well modeled by this method in

our experiments.

To solve the above problem, we propose a novel

modeling method, in which the same modified WaveNet is

used as in [11]. On the other hand, we exploit a novel loss

function, which is defined by a weighted sum of errors in

the time and time-frequency (T-F) domains.1 The error in

the time domain is the mean squared error without the

high-pass filtering to avoid the attenuation of the low-

frequency components. The error in the T-F domain is

defined by a divergence between spectral features com-

puted from the short-time Fourier transform (STFT).

Numerical experiments using a pedal with high distortion,

the Ibanez SD9, show that the proposed method reproduces

the high-frequency components precisely without the

attenuation of the low-frequency components compared

with the conventional method [11].

The differences from the preliminary version [16] of

this paper include (i) extensive simulations on the effect

of the tuning parameter which controls the importance of

the time and T-F domain errors and (ii) examination of the

performance of the proposed approach with different

divergences employed in the T-F domain error.

2. WAVENET FOR DISTORTION
MODELING

Let x½n� and y½n� respectively be the input and the

output signals of the distortion pedal at discrete time instant

n 2 f1; 2; . . . ;Ng. As a black-box model, we adopt a state-

of-the-art deep neural network (DNN) model based on

WaveNet [10–12]. WaveNet was originally proposed in

[14] as an autoregressive model which predicts a future

sample from past samples, and was modified in [10–12] as

a feedforward model that computes an output signal from

input signals.

The network structure is shown in Fig. 1, which

consists of a pre-processing layer, K residual blocks, and

a linear mixer after a ReLU conversion. The pre-processing

layer converts the single-channel input signal x½n� to an

L-channel signal as

x0½n� ¼ w0x½n� þ b0; ð1Þ

where w0 2 RL represents a convolutional filter2 of size 1,

and b0 2 RL is a bias term.

Then, the L-channel signal x0½n� is passed to the

residual blocks connected in sequence. The structure of

each residual block is zoomed in a bottom right box in

Fig. 1. For k ¼ 1; 2; . . . ;K, the kth residual block first

computes two dilated causal (DC) convolutions, as

uk;1½n� ¼
XM
m¼0

Wk;1½m�xk�1½n� mdk� þ bk;1;

uk;2½n� ¼
XM
m¼0

Wk;2½m�xk�1½n� mdk� þ bk;2;

8>>>><
>>>>:

ð2Þ

where Wk;1½m�;Wk;2½m� 2 RL�L (m ¼ 0; 1; . . . ;M) are con-

volutional filters of size M þ 1, dk is the dilation factor, and

bk;1; bk;2 2 RL are bias terms. DC convolution is employed

to enlarge the number, denoted by R, of input signals used

by the network with keeping low computational complex-

ity. The dilation factor is doubled as k increases and reset

to 1 when it exceeds 256, i.e., ðd1; d2; . . . :d9; d10; d11; . . .Þ ¼
ð1; 2; . . . ; 256; 1; 2; . . .Þ. Since R is given by

Mð
PK

k¼1 dkÞ þ 1, we can enlarge the number R of inputs

while keeping the filter size M þ 1 small.

Fig. 1 Neural network model for distortion pedal.

1For the speech synthesis, the effectiveness of the use of time-
frequency features was presented in [15].

2In this paper, L convolutional filters are collectively represented by
a single vector or matrix.
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After the DC convolutional layers, the vector vk½n� is

computed by

vk½n� ¼ gðuk;1½n�Þ � gðuk;2½n�Þ; ð3Þ

where � denotes the component-wise multiplication, and g

is the component-wise soft-sign activation function u=ð1þ
jujÞ [11]. This part is called the gated activation unit

because one of the term in the right-hand side of (3)

denotes the flow of the signal while the other term can be

regarded as a gate that controlls the signal flow [17].

The output xk½n� of the kth residual block is obtained

by mixing the output of the activation unit vk½n� and the

input xk�1½n� to this block, as

xk½n� ¼ Wk;3vk½n� þ bk;3 þ xk�1½n�; ð4Þ

where Wk;3 2 RL�L is a convolutional filter of size 1, and

bk;3 2 RL is a bias term. Another output sk½n� is computed

by

sk½n� ¼ Wk;4vk½n� þ bk;4; ð5Þ

where Wk;4 2 RL�L and bk;4 2 RL. Note that the Kth

residual block computes only sK½n�, but not xK½n�.
The outputs s1½n�; s2½n�; . . . ; sK½n� of the residual blocks

are merged through the skip connections, and converted by

rectified linear unit (ReLU), as

z½n� ¼ ReLU
XK
k¼1

sk½n�

 !
; ð6Þ

where ReLUðsÞ computes maxð0; sÞ with s the component

of s. Finally, a single-channel modeling sound ŷ½n� is

obtained by

ŷ½n� ¼ w>Kþ1z½n�; ð7Þ

where wKþ1 2 RL. Equation (7) completes the network

computation for a time instance n.

The network has totally 2KðL2ðM þ 2Þ þ 2LÞ � L2 þ
2L parameters. These parameters are adjusted so that ŷ½n�
approximates y½n� well under some loss function. The

existing methods [10–12] use the error-to-signal ratio

(ESR) for high-pass filtered target and modeling sounds,

defined by

ESR ¼
PN

n¼1ð ŷf½n� � yf½n�Þ2PN
n¼1 yf½n�2

; ð8Þ

where ŷf½n� and yf½n� are filtered modeling sounds and

target sounds with a high-pass filter HðzÞ ¼ 1� 0:95z�1

(see Fig. 2 for the frequency response of HðzÞ). Because of

the high-pass filtering, the network trained by this strategy

tends to disregard low-frequency components.

3. LOSS FUNCTION USING
SPECTRAL FEATURES

To reproduce the high-frequency components faithfully

without sacrificing the accuracy for the low-frequency

components, we propose to combine the time-frequency

(T-F) domain error with the time domain error. As spectral

features, we use the power spectrogram or the mel-

frequency power spectrogram. The mel-frequency power

spectrogram is employed because it is known to be

effective in the related fields, e.g., speech processing

[18], due to the hearing characteristics.

The power spectrograms Ypow 2 RI�J
þ and Ŷpow 2 RI�J

þ
are computed from the target sound y½n� and the modeling

sound ŷ½n� by the short-time Fourier transform (STFT),

respectively, where Rþ denotes the set of all nonnegative

real numbers, I is the number of frequency bins, and J is

the number of time frames. Specifically, we compute the

target power spectrogram Ypow ¼ ðY pow
i; j Þ 2 R

I�J
þ from the

target sounds y½1�; y½2�; . . . ; y½N� with the STFT, as

Y
pow
i; j ¼

XNf

n¼1

 ½n�y½ð j� 1Þ� þ n�e�2
ffiffiffiffiffi
�1
p

�
ði�1Þðn�1Þ

Nf

�����
�����
2

; ð9Þ

for i ¼ 1; 2; . . . ; I and j ¼ 1; 2; . . . ; J, where  ½n� is a

window function, � is the frame shift, and Nf is the frame

length. Note that the number of frequencies is given as

I ¼ dðNf þ 1Þ=2e and the number of time frames is given

as J ¼ dN=�e, where d�e is the ceiling function, and zero

padding is used for the outside parts y½N þ 1�; y½N þ
2�; . . . ; y½ðJ � 1Þ� þ Nf�. The modeling power spectrogram

Ŷpow is also computed from the modeling sounds

ŷ½1�; ŷ½2�; . . . ; ŷ½N� in the same way.

The target mel-frequency power spectrogram Ymel ¼
ðYmel

b; j Þ 2 R
~I�J
þ is computed from Ypow by using a mel filter

bank as

Ymel
b; j ¼

XI
i¼1

Hb½i�Y pow
i; j ; ð10Þ

for b ¼ 1; 2; . . . ; ~I and j ¼ 1; 2; . . . ; J, where Hb½i� is the
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Fig. 2 Frequency response of HðzÞ (sampling frequency
44.1 kHz).
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mel-scale band-pass filter [18, Section 6.5.2]. In the same

way, the modeling mel-frequency power spectrogram Ŷmel

is computed from Ŷpow with the same mel filter bank. In

simulations of Sect. 4, we use the frequency band from

60 Hz to 22 kHz, which is divided into ~I ¼ 300 bins.

The error between two spectrograms Y ¼ ðYi; jÞ and

Ŷ ¼ ðŶi; jÞ is normally measured by the Euclidean distance,

generalized Kullback–Leibler (KL) divergence, or Itakura–

Saito (IS) divergence, which are defined by

EUCðYkŶÞ ¼
1

IJ

XI
i¼1

XJ
j¼1

ðŶi; j � Yi; jÞ2; ð11Þ

KLðYkŶÞ ¼
1

IJ

XI
i¼1

XJ
j¼1

Yi; j log
Yi; j

Ŷi; j
� Yi; j þ Ŷi; j

 !
; ð12Þ

or

ISðYkŶÞ ¼
1

IJ

XI
i¼1

XJ
j¼1

Yi; j

Ŷi; j
� log

Yi; j

Ŷi; j
� 1

 !
; ð13Þ

respectively. For the case of I ¼ J ¼ 1, the values of these

functions in terms of Ŷ > 0 with Y ¼ 1 are shown in

Fig. 3. The Euclidean distance is symmetric with respect

to Y ¼ 1. On the other hand, the generalized KL and IS

divergences are asymmetric and penalize more for Ŷ < 0:3

and less for Ŷ > 1 than the Euclidean distance. Using one

of these metrics, we are going to define the following loss

function:

Lossð#Þ ¼ ltimeð#Þ þ �lfreqð#Þ; ð14Þ

where # denotes the adjustable parameters of the network,

ltimeð#Þ ¼
1

N

XN
n¼1

ð ŷ½n� � y½n�Þ2; ð15Þ

and lfreqð#Þ is one of Eqs. (11)–(13). The parameter � > 0

controls the relative importance of the time domain

waveform and the spectral features. In the loss function,

the time-frequency (T-F) domain term lfreqð#Þ evaluates

only the power of the spectrogram, but not the phase, while

the time domain term ltimeð#Þ compensates it. Taking the

balance between them by � , the proposed loss function

appropriately evaluates the errors between the network

outputs and the target sounds. The proposed approach uses

the spectral features in the loss function for the training,

but the network is kept in the time domain. Since the low

latency is important for real-time playing, this approach is

suitable for the distortion pedal modeling, while methods

completely in the T-F domain, e.g., [19], have a delay due

to the T-F conversion.

4. NUMERICAL EXPERIMENTS

4.1. Experimental Setup

We used a high distortion pedal, the Ibanez SD9, in

this experiment. In our preliminary experiment, we judged

the Ibanez SD9 as the high distortion pedal through the

comparison with the Ibanez Tube Screamer. The Ibanez

SD9 has three knobs, each of which controls level of

distortion, tone, and volume. They were set to the direction

of 12 o’clock, or the middle position.

The modified WaveNet structure was set as follows:

channel number L ¼ 16, residual block number K ¼ 18,

and filter size M þ 1 ¼ 3, thus M ¼ 2. Hence, we have

2KðL2ðM þ 2Þ þ 2LÞ � L2 þ 2L ¼ 37;792 adjustable pa-

rameters. Further, R is given by Mð
PK

k¼1 dkÞ þ 1 ¼
2;045, which approximately corresponds to 46.4 ms when

the sampling frequency is 44.1 kHz.

The training process was implemented with Tensorflow

2.3.0 in Python 3.8.5 on Windows 10 Pro, Intel Core i9-

7980X, 128 GB main memory, GeForce GTX1080Ti GPU.

4.2. Training and Test Data

For training data, we exploited the IDMT dataset

[20,21], where the sampling frequency is 44.1 kHz and the

bit depth is 16 bits. A total of 300 s of data (150 s of guitar

sounds and 150 s of bass sounds) were randomly selected

from the dataset. They were used as clean input signals and

sent to the pedal through a reamper (Radial ProRMP [22])

to generate the corresponding distorted output signals.

These data were trimmed at every 100 ms so that D ¼
3;000 subgroups ftð1Þtrain; t

ð2Þ
train; . . . ; t

ðDÞ
traing of N ¼ 4;410 input

and output sequences were obtained. Each subgroup tðdÞtrain

consists of N elements ftðd;1Þtrain ; t
ðd;2Þ
train ; . . . ; t

ðd;NÞ
train g, where tðd;nÞtrain

consists of a single output value y½n� and R input values

x½n� Rþ 1�; x½n� Rþ 2�; . . . ; x½n�, from which ŷ½n� is

computed. For n < R, zeros were filled into x½n� Rþ
1�; x½n� Rþ 2�; . . . ; x½0�.

For each subgroup tðdÞtrain, we compute the spectral

features used in the proposed loss function as follows.

From the target sounds y½1�; y½2�; . . . ; y½N� in tðdÞtrain, we

Fig. 3 Three error measures for spectrograms.
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compute the target power spectrogram Ypow 2 RI�J
þ as (9),

where we set the frame shift to � ¼ 256, and the frame

length to Nf ¼ 1;024. Note that this setting implies that the

number I of frequency bins is 513 and the number J of time

frames is 18. In (9), we use the hann window

 ½n� ¼
1

2
�

1

2
cos 2�

n� 1

Nf � 1

� �
ðn ¼ 1; 2; . . . ;NfÞ: ð16Þ

Similarly, we obtain the modeling power spectrogram Ŷpow

from the modeling sounds ŷ½1�; ŷ½2�; . . . ; ŷ½N� computed

from the input values in tðdÞtrain. The mel-frequency power

spectrograms Ymel and Ŷmel are computed as (10).

Since the amount of data is huge (DN � 1:3� 107), it

is not appropriate to compute the gradient of the loss

function for the overall training data ftð1Þtrain; t
ð2Þ
train; . . . ; t

ðDÞ
traing.

Thus, we utilize the so-called mini-batch training. The

overall training data is randomly divided into P ¼ 16 mini-

batch data ftðdp½1�Þtrain ; t
ðdp½2�Þ
train ; . . . ; t

ðdp½Dp�Þ
train g (p ¼ 1; 2; . . . ;P),

where dp½1�; . . . ; dp½Dp� indicate the randomly selected

subgroups in the pth mini-batch data, and Dp ¼ D=P. The

gradient of the loss function is computed for each mini-

batch data. We say that an ‘‘epoch’’ is completed when all

of P mini-batch data are used for training. An iterative

optimization algorithm, Adam [23], is exploited to mini-

mize the loss function. The iteration is repeated for 1,000

epochs, or until an early stopping condition is met. The

early stopping condition is checked for other two 300

subgroups of guitar and bass sounds randomly selected

from the IDMT dataset.

To validate whether the trained model can accurately

reproduce the sounds which have characteristics different

from the IDMT dataset used for the training, we prepared

original four sound sources for evaluation.3 We recorded

the sound sources played on the guitar, Fender JM66, using

the audio interface, Focusrite scarlett 6i6. In sound

source 1 (S1), a B[add9 chord was played with strong

attacks. In sound source 2 (S2), a Dsus2 chord was played

with weak attacks. In sound source 3 (S3), a chromatic

scale from E2 to A[3 was played with strong attacks. In

sound source 4 (S4), two tones of D3 and D4 were played

with weak attacks.

4.3. Experimental Results

The proposed methods using the power spectrogram

with the Euclidean distance, generalized KL divergence,

and IS divergence are referred to as PS-EUC, PS-KL, and

PS-IS, respectively. Further, the proposed methods using

the mel-frequency power spectrogram with the Euclidean

distance, generalized KL divergence, and IS divergence are

called MFS-EUC, MFS-KL, and MFS-IS, respectively. The

conventional method that uses only the mean square error

in the time domain without the high-pass filter HðzÞ is

called Method MSE. Table 1 shows the averages of quality

measures including ESRs with and without high-pass filter

HðzÞ and the normalized mean square error (NMSE) of the

power spectrogram obtained by the method MFS-KL for

various values of � . We can see that the two ESRs are the

best when � is 10�3 while NMSE is so when � is 10�1.

Since the ESRs change more than NMSE, we adopt � ¼
10�3 for MFS-KL. Through similar experiments, we

determined � for MFS-EUC, MFS-IS, PS-EUC, PS-KL,

Table 1 Averages of quality measures [%] for four
sound sources obtained by MFS-KL.

� 10�1 10�2 10�3 10�4 0

ESR 0.91 0.93 0.84 0.95 1.14
ESR (high-pass) 10.33 10.29 9.32 10.74 12.13

NMSE (PS) 0.11 0.13 0.14 0.15 0.17

Table 2 ESR [%] without the high-pass filter.

Method (�) S1 S2 S3 S4 Ave.

PS-EUC (10�6) 1.98 0.55 0.45 0.27 0.81
PS-KL (10�5) 2.23 0.63 0.54 0.30 0.92
PS-IS (10�7) 2.39 0.59 0.48 0.29 0.94

MFS-EUC (10�7) 2.51 0.74 0.60 0.35 1.05
MFS-KL (10�3) 2.07 0.58 0.46 0.27 0.84
MFS-IS (10�4) 2.11 0.57 0.49 0.29 0.87

MSE (0) 2.90 0.75 0.50 0.40 1.14
Conv. [11] 2.52 1.19 1.58 0.87 1.54

Table 3 ESR [%] with the high-pass filter.

Method (�) S1 S2 S3 S4 Ave.

PS-EUC (10�6) 18.40 7.38 4.31 7.33 9.36
PS-KL (10�5) 18.79 7.84 4.08 7.63 9.59
PS-IS (10�7) 21.08 8.37 4.17 7.29 10.23

MFS-EUC (10�7) 22.96 8.84 4.97 8.24 11.25
MFS-KL (10�3) 18.68 7.65 4.03 6.91 9.32
MFS-IS (10�4) 18.52 7.70 4.38 7.35 9.49

MSE (0) 26.06 9.57 4.49 8.40 12.13
Conv. [11] 16.86 7.29 5.03 7.15 9.08

Table 4 NMSE of the power spectrogram.

Method (�) S1 S2 S3 S4 Ave.

PS-EUC (10�6) 0.23 0.10 0.15 0.07 0.14
PS-KL (10�5) 0.27 0.12 0.17 0.04 0.15
PS-IS (10�7) 0.30 0.10 0.15 0.06 0.15

MFS-EUC (10�7) 0.36 0.17 0.19 0.10 0.20
MFS-KL (10�3) 0.22 0.09 0.18 0.05 0.14
MFS-IS (10�4) 0.24 0.10 0.16 0.06 0.14

MSE (0) 0.35 0.14 0.16 0.06 0.17
Conv. [11] 0.77 0.50 1.01 0.42 0.68

3You have access to the sound sources from our web site [24].
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(a) Power spectrogram of the input sound x[n]. (b) Power spectrogram of the target sound y[n].

(c) Waveform generated by the proposed method MFS-KL. (d) Power spectrogram of the waveform in (c).

(e) Waveform generated by Method MSE. (f) Power spectrogram of the waveform in (e).

(g) Waveform generated by the conventional method [11]. (h) Power spectrogram of the waveform in (g).

Fig. 4 Simulation results for the Ibanez SD9 with sound source 1.

Acoust. Sci. & Tech. 42, 6 (2021)

310



and PS-IS as 10�7, 10�4, 10�6, 10�5, and 10�7, respec-

tively, as shown in Tables 2, 3 and 4. Note that when

� ¼ 0, all the proposed methods reduce to Method MSE.

The average of each quality measure is always better when

� is not equal to zero than when � is zero, as shown in

Table 1. This confirms the effectiveness of the addition of

the spectral features to the loss function in the proposed

methods.

We compare the ESR in (8) for each method and each

sound source. ESR without the high-pass filter is shown in

Table 2. We can see that PS-EUC and MFS-KL improved

the ESR of the conventional method in [11] by 47.4% and

45.4% in average. ESR with the high-pass filter is shown in

Table 3. Since the conventional method minimizes this

measure, it shows the best value in average. Nevertheless,

the measure obtained by PS-EUC and MFS-KL indicated

mostly same value as the conventional method. Table 4

shows NMSE of each method. We can see that all of PS-

EUC, MFS-KL and MFS-IS improved NMSE by 79.4%.

These results confirm the effectiveness of the proposed

methods.

Figure 4 shows simulation results for sound source 1.

Figures 4(a) and 4(b) are the power spectrograms of the

clean input sound and the distorted target sound. The

waveform generated by the proposed method MFS-KL is

indicated in Fig. 4(c) by a red dotted line with the target

waveform indicated by a blue solid line. Figure 4(d) shows

the corresponding power spectrogram. Figure 4(e) shows

the waveform generated by Method MSE with red as well

as the target waveform with blue. Figure 4(f) shows the

corresponding power spectrogram. Figures 4(g) and 4(h)

indicates the waveform generated by the conventional

method in [11] and the corresponding power spectrogram,

respectively. By comparing the parts indicated by the

circles in Figs. 4(c), 4(e) and 4(g), we can see that the

proposed method MFS-KL reproduced the target sound

more accurately than Method MSE and the method in [11].

Even though the differences of the overall spectrograms in

Figs. 4(d), 4(f) and 4(h) are not clear, from the power

spectra shown in Figs. 5(a), 5(b) and 5(c) which corre-

spond to the waveforms shown in Figs. 4(c), 4(e) and 4(g)

respectively, we can see that the proposed method MFS-

KL improved the modeling accuracy of low-frequency

components while keeping the accuracy of high-frequency

components. We also noticed by listening to the results that

MFS-KL reproduces the original sound more accurately

than the conventional method [11] and Method MSE in

particular for the attack parts, i.e., the beginnings of the

sounds.

For the real-time performances, we implemented the

trained model using Tensorflow 2.3.0 in Python 3.8.5 on an

Apple MacBook Pro with Intel Core i7 3.5 GHz processor.

We used a processing buffer of 512 samples, where the

sampling frequency is 44.1 kHz. This setting implies that

the 512 samples should be processed approximately within

11.6 ms. We confirmed that our model satisfied this

condition, as the average processing time is 10.5 ms for

10,000 trials of processing sounds.

5. CONCLUSIONS

This paper proposed a method for distortion pedal

modeling based on the modified WaveNet. We adopted the

same network structure as the conventional method [11].

To train the network, we proposed a novel loss function,

(a) Power spectrum generated by the proposed method MFS-KL.

(b) Power spectrum generated by Method MSE.

(c) Power spectrum generated by the conventional method [11].

Fig. 5 Simulation results for the Ibanez SD9 with the
power spectra of sound source 1.
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which is defined by a weighted sum of errors in the time

and time-frequency (T-F) domains. The error in time

domain is the mean squared error without high-pass

filtering. The error in the T-F domain is defined by a

divergence between spectral features computed from the

short-time Fourier transform of target and modeling

sounds. Numerical experiments using a pedal with high

distortion, the Ibanez SD9, showed that the proposed

method reproduced high-quality sounds more than the

conventional method.
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complexity modeling of high-order nonlinear audio systems
using swept-sine and principal component analysis,’’ Proc.
AES Int. Conf. Appl. Time-Freq. Process. Audio, Helsinki,
Finland, 10 pages (2012).

[5] F. Eichas and U. Zölzer, ‘‘Black-box modeling of distortion
circuits with block-oriented models,’’ Proc. Int. Conf. Digital
Audio Effects (DAFx), Brno, Czech Republic, pp. 39–45
(2016).
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