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Abstract—The 180-degree ambiguity resolution is an estimation
problem of correct signs of discrete samples of a two-dimensional
(2D) vector field. To estimate the correct signs at 2D lattice points,
several optimization approaches are proposed. These approaches
assume that the true vector felid changes smoothly between many
neighboring lattice points, and solve a combinatorial optimization
problem on sign matrices, where the objective function is given by
the sum of costs for neighboring signs. This objective function is
non-submodular, and hence the optimization problem is NP-hard.
For this NP-hard problem, we propose a branch cut type solver
which is inspired by Goldstein’s approach for 2D phase unwrapp-
ing. In application to single-frame fringe projection profilometry,
we show the effectiveness of the proposed branch cut algorithm.

I. INTRODUCTION

Suppose that discrete samples of a vector field are observed
at two-dimensional (2D) lattice points (i, j) (i = 1, 2, . . . ,m
and j = 1, 2, . . . , n) as vi,j ∈ V , but each sample has the sign
ambiguity, i.e., the true vector value at (i, j) is vi,j or −vi,j .
Here, V is the space where vi,j is defined, and we assume that
the observation error except for the sign ambiguity is removed
in advance. Such situations sometimes arise in measurements
of wind stress [1], [2], photospheric magnetic [3]–[5], in-plane
displacement [6]–[8], unwrapped phase gradient [9]–[17], and
color line [18], [19] fields. This sign ambiguity is often called
“the 180-degree ambiguity” because −vi,j is given by the 180-
degree rotation of vi,j on the 2D plane if V ⊂ R2.

In this paper, along the optimization approaches in [4], [5],
[12]–[19], we resolve the 180-degree ambiguity via the follow-
ing combinatorial optimization problem on sign matrices.

Problem 1 (A Combinatorial Optimization Problem on Sign
Matrices for 180-Degree Ambiguity Resolution): Find a binary
sign matrix S∗ := (s∗i,j) ∈ {−1,+1}m×n which minimizes

J(S) :=

m∑
i=1

n−1∑
j=1

Jhi,j(si,j , si,j+1) +

m−1∑
i=1

n∑
j=1

Jvi,j(si,j , si+1,j),

(1)
where bivariate cost functions Jhi,j and Jvi,j are defined by{

Jhi,j(s1, s2) := whi,j d(s1vi,j , s2vi,j+1)

Jvi,j(s1, s2) := wvi,j d(s1vi,j , s2vi+1,j)
(2)

with the use of a distance d : V × V → [0,∞) satisfying

∀v1,v2 d(v1,v2) = d(−v1,−v2) (3)
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and positive weights whi,j > 0 and wvi,j > 0. After finding S∗,
the 180-degree ambiguity of vi,j is resolved by s∗i,jvi,j .

Remark 1 (On the Optimal Solutions of Problem 1): In Prob-
lem 1, there are at least two minimizers of (1) because J(S) =
J(−S) holds for any S ∈ {−1,+1}m×n from (2) and (3). As
a result, we need other information to judge which minimizer
should be used for the 180-degree ambiguity resolution.

Problem 1 is designed on the basis of the idea that the true
vector felid varies smoothly between many neighboring pairs.
In [15], [16], it is proven that the cost function J in (1) is non-
submodular. Therefore, Problem 1 cannot be solved by graph
cuts, differently from 2D phase unwrapping [20]–[24] which
resolves the integer ambiguity at 2D lattice points. As approx-
imate solvers for Problem 1, the path-following method [12],
the quadratic pseudo-Boolean optimization based method [15],
[16], and the Jacobi relaxation method [18], [19] are proposed.

In this paper, as a novel approximate solver for Problem 1,
we propose a branch cut type algorithm in Section III, which
is inspired by Goldstein’s combinatorial approach to 2D phase
unwrapping [20] in Section II. Numerical experiments in Sec-
tion IV demonstrate the effectiveness of the proposed method
in application to the single-frame fringe projection profilometry
by comparison with the existing path-following method [12].
Finally, in Section V, we conclude this paper.

Notation: Let Z and R be respectively the set of all integers
and real numbers. Boldface small letters express vectors, and
boldface capital letters express matrices. The `2 norm of x :=
(x1, x2, . . . , xn)T ∈ Rn is denoted by ‖x‖2 :=

√∑n
i=1 |xi|2.

In what follows, we define (xi, yj) := (i, j) (i = 1, 2, . . . ,m
and j = 1, 2, . . . , n), and for any function f define on Ω :=
[x1, xm]× [y1, yn], we use the notation fi,j := f(xi, yj).

II. GOLDSTEIN’S BRANCH CUT FOR PHASE UNWRAPPING

2D phase unwrapping [20]–[24] is a reconstruction problem
of an unknown continuous phase function φ : Ω→ R from its
wrapped samples

φWi,j := W (φi,j) ∈ (−π, π], (4)

where W : R→ (−π, π] is the wrapping operator defined by

∀ϕ ∈ R ∃z ∈ Z ϕ = W (ϕ) + 2πz and W (ϕ) ∈ (−π, π].

The continuous phase φi,j and the wrapped sample φWi,j are re-
spectively called the unwrapped phase and the wrapped phase.
2D phase unwrapping is important for signal and image pro-
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Fig. 1. Illustration of the idea of Goldstein’s branch cut [20] for 2D phase unwrapping: (a) detection of every closed loop having a nonzero residue ri,j = ±1
in (7) from given normalized wrapped phase φWi,j/π (i = 1, 2, . . . , 5 and j = 1, 2, . . . , 6) and (b) construction of branches and the corresponding normalize
unwrapped phase φi,j/π (i = 1, 2, . . . , 5 and j = 1, 2, . . . , 6).

cessing applications, e.g., terrain height estimation and land-
slide identification by interferometric synthetic aperture radar
(InSAR) [25]–[30], seafloor depth estimation by interferometric
synthetic aperture sonar (InSAS) [31]–[34], three-dimensional
(3D) shape measurement by fringe projection [35]–[38] or X-
ray [39]–[42], and water/fat separation in magnetic resonance
imaging (MRI) [43]–[46].

In noise-free situations, we only have to resolve the integer
ambiguity zi,j ∈ Z of the wrapped phase φWi,j in (4) such that

φi,j = φWi,j + 2πzi,j (5)

at each lattice point. All commonly used 2D phase unwrapping
algorithms assume φi,j+1 − φi,j = W (φWi,j+1 − φWi,j) ∈ (π, π]
and φi+1,j −φi,j = W (φWi+1,j −φWi,j) ∈ (π, π] for most (i, j),
and (approximately) solve the following optimization problem.

Problem 2 (A Combinatorial Optimization Problem on Inte-
ger Matrices for 2D Phase Unwrapping): Find a integer matrix
Z∗ := (z∗i,j) ∈ Zm×n which minimizes

Λ(Z) :=

m∑
i=1

n−1∑
j=1

w̃hi,j
∣∣φi,j+1 − φi,j −W

(
φWi,j+1 − φWi,j

)∣∣p
+

m−1∑
i=1

n∑
j=1

w̃vi,j
∣∣φi+1,j − φi,j −W

(
φWi+1,j − φWi,j

)∣∣p (6)

subject to (5), where p ≥ 0 and w̃hi,j , w̃
v
i,j > 0. After finding

Z∗, the unwrapped phase is given by φi,j = φWi,j + 2πz∗i,j .
If p ≥ 1, then the cost function Λ in (6) is submodular, and

hence Problem 2 can be solved by graph cuts [23]. In case of
p ∈ [0, 1], Goldstein et al. proposed the following branch cut
algorithm [20] as an approximate solver for Problem 2. This
algorithm is known as one of the path-following methods [22].

1. First, on Ω, detect every closed loop CLi,j := ((xi, yj)→
(xi, yj+1)→ (xi+1, yj+1)→ (xi+1, yj)→ (xi, yj)) hav-

ing a nonzero residue by discretized contour integrals

ri,j :=
1

2π

(
W
(
φWi,j+1 − φWi,j

)
+W

(
φWi+1,j+1 − φWi,j+1

)
−W

(
φWi+1,j+1 − φWi+1,j

)
−W

(
φWi+1,j − φWi,j

))
=

{
0 (CLi,j has no residue),
±1 (CLi,j has a positive/negative residue).

(7)

Mark the centers of such loops with ±1 (see Fig. 1(a)).
2. Second, create branches by connecting the positive and

negative residues (see Fig. 1(b)). Each branch is defined
as a path connecting the same number of positive residues
and negative residues, or connecting the residues and the
outside of Ω.

3. Third, construct the unwrapped phase φi,j based on the
branches by satisfying φ1,1 = φW1,1 + 2πz1,1 (z1,1 ∈ Z),

φi,j+1 − φi,j = W
(
φWi,j+1 − φWi,j

)
∈ (π, π]

if there is no branch between (xi, yj) and (xi, yj+1), and

φi+1,j − φi,j = W
(
φWi+1,j − φWi,j

)
∈ (π, π]

if there is no branch between (xi, yj) and (xi+1, yj). This
algorithm guarantees W (φi,j) = φWi,j at all lattice points
(xi, yj) (see Fig. 1(b)).

III. A BRANCH CUT TYPE ALGORITHM FOR PROBLEM 1
A. Reformulation of Problem 1

In (1), the values of Jhi,j and Jvi,j depend only sign changes
between neighboring pairs (si,j , si,j+1) and (si,j , si+1,j), re-
spectively, from (2) and (3). For each sign matrix S = (si,j) ∈
{−1,+1}m×n, we define sign change matrices Ch = (chi,j) ∈
{0, 1}m×(n−1) and Cv = (cvi,j) ∈ {0, 1}(m−1)×n by

chi,j :=

{
0 if si,j+1 = si,j ,
1 if si,j+1 = −si,j ,

(8)
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Fig. 2. Illustration of the idea of the proposed branch cut type sign estimator: (a) detection of every closed loop satisfying (12) by using the locally ideal sign
changes ch,min

i,j and ch,min
i,j computed from vi,j (i = 1, 2, . . . , 5 and j = 1, 2, . . . , 6) and (b) constructions of branches, sign changes chi,j and cvi,j , and the

corresponding signs si,j (i = 1, 2, . . . , 5 and j = 1, 2, . . . , 6).

and

cvi,j :=

{
0 if si+1,j = si,j ,
1 if si+1,j = −si,j .

(9)

Moreover, define univariate functions Ĵhi,j : {0, 1} → [0,∞)

and Ĵvi,j : {0, 1} → [0,∞) by{
Ĵhi,j(0) := Jhi,j(1, 1)−min {Jhi,j(1, 1), Jhi,j(1,−1)},
Ĵhi,j(1) := Jhi,j(1,−1)−min {Jhi,j(1, 1), Jhi,j(1,−1)},

and{
Ĵvi,j(0) := Jvi,j(1, 1)−min {Jvi,j(1, 1), Jvi,j(1,−1)},
Ĵvi,j(1) := Jvi,j(1,−1)−min {Jvi,j(1, 1), Jvi,j(1,−1)}.

Then, we can reformulate Problem 1 into Problem 3 below.
Problem 3 (A Combinatorial Optimization Problem on Sign

Change Matrices for 180-Degree Ambiguity Resolution): Find
(C∗h,C

∗
v) ∈ {0, 1}m×(n−1)×{0, 1}(m−1)×n which minimizes

Ĵ(Ch,Cv) :=

m∑
i=1

n−1∑
j=1

Ĵhi,j(c
h
i,j) +

m−1∑
i=1

n∑
j=1

Ĵvi,j(c
v
i,j) (10)

subject to
chi,j ⊕ cvi,j+1 ⊕ chi+1,j ⊕ cvi,j = 0 (11)

for all i = 1, 2, . . . ,m − 1 and j = 1, 2, . . . , n − 1, where ⊕
denotes the exclusive disjunction, i.e., 0⊕ 0 = 1⊕ 1 = 0 and
0 ⊕ 1 = 1 ⊕ 0 = 1 hold. After finding (C∗h,C

∗
v), the corre-

sponding sign matrix S∗ can be computed (see Section III-B).
The 180-degree ambiguity of vi,j is resolved by s∗i,jvi,j .

Remark 2 (On the Costs and the Constraint of Problem 3):
In (10), the original costs Jhi,j and Jvi,j in (1) are replaced with
the new ones Ĵhi,j and Ĵvi,j . The constraint in (11) is necessary
to guarantee the existence of the corresponding sign matrix S
which satisfies (8) and (9).

B. The Proposed Branch Cut Algorithm for Problem 3

To approximately solve Problem 3, we propose the follow-
ing branch cut type algorithm, which consists of steps similar
to residue detection, branch construction, and path integration
steps of Goldstein’s branch cut [20] in Section II. In the fol-
lowing, we suppose Ĵhi,j(0) 6= Ĵhi,j(1) and Ĵvi,j(0) 6= Ĵvi,j(1)
for all (i, j). Then, we define the locally ideal sign changes by

ch,min
i,j := argmin

c∈{0,1}
Ĵhi,j(c) and cv,min

i,j := argmin
c∈{0,1}

Ĵvi,j(c).

The proposed branch cut type algorithm is based on the idea
that ch,∗i,j = ch,min

i,j and cv,∗i,j = cv,min
i,j may hold for most (i, j).

1. First, on Ω, detect every closed loop CLi,j satisfying

ch,min
i,j ⊕ cv,min

i,j+1 ⊕ c
h,min
i+1,j ⊕ c

v,min
i,j = 1. (12)

Mark the centers of such closed loops (see Fig. 2(a)).
2. Second, create branches (see Fig. 2(b)). Each branch is

defined as a path connecting two centers marked in the
first step, or connecting one center and the outside of Ω.

3. Third, construct sign change matrices Ch and Cv satis-
fying condition (11) by defining

chi,j :=


ch,min
i,j if

{
there is no branch between
(xi, yj) and (xi, yj+1),

ch,min
i,j ⊕ 1 otherwise,

and

cvi,j :=


cv,min
i,j if

{
there is no branch between
(xi, yj) and (xi+1, yj),

cv,min
i,j ⊕ 1 otherwise.

Construct a sign matrix S corresponding to sign change
matrices Ch and Cv by using (8) and (9) (see Fig. 2(b)).



Remark 3 (On the Optimal Branches for Solving Problem 3):
From the definitions of Ĵhi,j and Ĵvi,j , we have Ĵhi,j(c

h,min
i,j ) = 0,

Ĵhi,j(c
h,min
i,j ⊕ 1) = |Jhi,j(1, 1)− Jhi,j(1,−1)|, Ĵvi,j(c

v,min
i,j ) = 0,

and Ĵvi,j(c
v,min
i,j ⊕ 1) = |Jvi,j(1, 1) − Jvi,j(1,−1)|. Therefore,

we can find optimal sign changes in Problem 3 by trying to
construct branches which minimize∑
(i,j)∈Eh

|Jhi,j(1, 1)−Jhi,j(1,−1)|+
∑

(i,j)∈Ev

|Jvi,j(1, 1)−Jvi,j(1,−1)|,

where

Eh := {(i, j) | branch exists between (xi, yj) and (xi, yj+1)}

and

Ev := {(i, j) | branch exists between (xi, yj) and (xi+1, yj)}

are the sets which indicate the edges straddling branches.

IV. APPLICATION TO SINGLE-FRAME
FRINGE PROJECTION PROFILOMETRY

A. 3D Measurement from a Single Fringe Image

Fringe projection is a major technique to obtain 3D surface
information of fixed objects in a non-contact manner [47]–[49],
and widely used in biomedical [50]–[52], industrial [53]–[55],
kinematics [56], [57], and biometric [58], [59] applications. A
typical fringe projection profilometry system is illustrated in
Fig. 3. It consists of a projector, a camera and a digital com-
puter. First, the projector projects sinusoidal fringe patterns
generated by the digital computer, onto the object. Second, the
camera records intensity images of the fringe patterns which
are distorted due to the 3D surface profile of the object. Third,
from the recorded images, the digital computer estimates the
continuous phase distribution, i.e., the unwrapped phase which
corresponds to the horizontal projector pixels by using some
fringe analysis composed of wrapped phase detection and 2D
phase unwrapping steps. Finally, the 3D surface of the object
is computed from the camera pixels and the projector pixels
on the basis of triangulation.

A most popular fringe projection technique is the phase-
shifting method (PSM) [60] because it can obtain 3D informa-
tion stably from at least three simple fringe images as follows.
Three fringe images Ik (k = 1, 2, 3), whose phases are shifted
by 2π/3 from each other, are given on the 2D plane Ω as

I1(x, y) = a(x, y) + b(x, y) cos(φ(x, y)),
I2(x, y) = a(x, y) + b(x, y) cos(φ(x, y)− 2π

3 ),
I3(x, y) = a(x, y) + b(x, y) cos(φ(x, y) + 2π

3 ),
(13)

where a is a slowly varying background illumination, b is the
fringe amplitude that is also a low-frequency signal, and φ is
the unwrapped phase to be estimated. The wrapped phase φW

in (4) can be computed from
cos(φW ) = cos(φ) =

2I1 − I2 − I3√
(2I1 − I2 − I3)2 + 3(I2 − I3)2

,

sin(φW ) = sin(φ) =

√
3(I2 − I3)√

(2I1 − I2 − I3)2 + 3(I2 − I3)2
.

Object

Fringe Pattern Recorded Image

Camera

Fringe Analysis

Digital Computer

Reference Plane

Camera

Pixel

Projector

Pixel

Projector

Fig. 3. Typical fringe projection profilometry system.

However, PSM requires that the physical quantities a, b and
φ remain constant during the time needed to record the images
Ik (k = 1, 2, 3), i.e., a, b and φ must be common for all indices
k = 1, 2, 3 in (13). This condition is hardly satisfied when the
measurement is for transient phenomena or the environment is
hostile [15]–[17]. To deal with such situations, reconstruction
of φ from a single fringe image I1 in (13) has been challenged,
and several phase recovery algorithms have been proposed [9]–
[17]. These methods usually use a high pass filter [9] to remove
the background illumination a, and use Hilbert transform [61]
to normalize the fringe amplitude b. As a result, the normalized
fringe image is generated from I1 as

I(x, y) = cos(φ(x, y)) = cos(φW (x, y)) ∈ [−1, 1]. (14)

From (14), we obtain the absolute value of the wrapped phase

|φW (x, y)| = arccos(I(x, y)) ∈ [0, π].

Therefore, the key of the single-frame fringe projection pro-
filometry is estimation of the sign function in

φW (x, y) = sgn(φW (x, y))|φW (x, y)|,

where sgn(t) := +1 for t ≥ 0 and sgn(t) := −1 for t < 0.
In the following, on the basis of the discussions in [15]–[17],

we newly formulate a minimization problem for a certain en-
ergy of local change of φ. This energy minimization problem
is a special case of Problem 1, and the optimal sign matrix
S∗ = (s∗i,j) is directly used as an estimate of sgn(φWi,j).

B. Energy Minimization for Sign Ambiguity Resolution

From (14), the fringe image gradient vector ∇I(x, y) :=
( ∂I∂x (x, y), ∂I∂y (x, y))T and the unwrapped phase gradient vec-
tor ∇φ(x, y) := (∂φ∂x (x, y), ∂φ∂y (x, y))T satisfy

∇I(x, y) = −sgn
(
sin(φW (x, y))

)
·
∣∣sin(φW (x, y))

∣∣∇φ(x, y).

Therefore, the orientation of ∇φ(x, y) is opposite to or the
same as that of ∇I(x, y) in accordance with the sign function
s(x, y) := sgn(φW (x, y)) = sgn(sin(φW (x, y))). Based on
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Fig. 4. Experimental results I: (a) object, (b) normalized fringe image Ii,j ,
(c) true signs si,j = sgn(φWi,j) (to be estimated), (d) signs estimated by [12],
(e) signs estimated by the proposed branch cut, (f) true wrapped phase φwi,j ,
(g) wrapped phase based on (d), and (h) wrapped phase based on (e).

the idea of functional data analysis [24], [62] i.e., minimiza-
tion of the energy of local change of φ:∫∫

Ω

[∣∣∣∣∂2φ

∂x2

∣∣∣∣2 + 2

∣∣∣∣ ∂2φ

∂x∂y

∣∣∣∣2 +

∣∣∣∣∂2φ

∂y2

∣∣∣∣2
]

dxdy

≈
m∑
i=1

n−1∑
j=1

‖∇φ(xi, yj+1)−∇φ(xi, yj)‖22

+

m−1∑
i=1

n∑
j=1

‖∇φ(xi+1, yj)−∇φ(xi, yj)‖22 ,

to estimate si,j , we newly introduce Problem 4 below, which is
a special case of Problem 1 in Section I. Problem 4 is similar
to the optimization problem in [15]–[17] for estimation of si,j .

Problem 4 (Approximated Energy Minimization Problem):
Find S∗ := (s∗i,j) ∈ {−1,+1}m×n minimizing

J(S) :=

m∑
i=1

n−1∑
j=1

‖si,j+1vi,j+1 − si,jvi,j‖22

+

m−1∑
i=1

n∑
j=1

‖si+1,jvi+1,j − si,jvi,j‖22 , (15)

where vi,j :=
∇I(xi,yj)
‖∇I(xi,yj)‖2 ∈ R2 is the normalized image gra-

dient at (xi, yj), and ∇I(xi, yj) are approximately computed
by applying, e.g., the Prewitt or the Sobel operator, to I . We
solve Problem 4 by using the proposed branch cut algorithm.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 5. Experimental results II: (a) object, (b) normalized fringe image Ii,j ,
(c) true signs si,j = sgn(φWi,j) (to be estimated), (d) signs estimated by [12],
(e) signs estimated by the proposed branch cut, (f) true wrapped phase φwi,j ,
(g) wrapped phase based on (d), and (h) wrapped phase based on (e).

C. Numerical Experiments

We compare the effectiveness of the proposed sign estimator
with that of an existing path-following sign estimator [12] for
two objects shown in Figs. 4(a) and 5(a). In both experiments,
we set m = n = 256, a(x, y) = 2 and b(x, y) = 1 for all
(x, y) ∈ Ω. We generate the normalized fringe image I(x, y)
by subtracting 1

65536

∑256
i=1

∑256
j=1 I1(xi, yj) from I1(x, y) fol-

lowed by the normalization into [−1, 1].
Figure 4(b) shows1 the normalized fringe image Ii,j based

on the object in Fig. 4(a). Figure 4(c) shows the true signs
si,j = sgn(φWi,j), to be estimated, of the wrapped phase φwi,j
in Fig. 4(f). Figures 4(d) and 4(g) respectively depict the signs
and the wrapped phase estimated by the existing method [12]
using the parameters µ = 1 and Γ = 11. Figures 4(e) and 4(h)
respectively depict the signs and the wrapped phase estimated
by the proposed branch cut, where we construct branches by
repeatedly connecting the closest pair of the centers of closed
loops satisfying (12). From these figures, we observe that the
proposed branch cut type sign estimator achieves lower error
rate ( 190

65536 ≈ 0.29%) compared with the existing method [12]
( 1053

65536 ≈ 1.61%) especially around the edges of the object.
Figure 5(b) shows Ii,j for the other object (“teapot” pro-

vided in MATLAB R©) in Fig. 5(a). Figure 5(c) shows the true
signs si,j of the wrapped phase φwi,j in Fig. 5(f). Figures 5(d)

1For each image in Figs. 4(b)–4(h) and 5(b)–5(h), the sample values in
[Min,Max] at lattice points are rescaled into [0 (black), 255 (white)].



and 5(g) depict the signs and the wrapped phase estimated by
the existing method [12]. Figures 5(e) and 5(h) depict the signs
and the wrapped phase estimated by the proposed branch cut.
In this experiment, the proposed sign estimator achieves again
lower error rate ( 141

65536 ≈ 0.22%) compared with the existing
method ( 1167

65536 ≈ 1.78%).

V. CONCLUSION

In this paper, for the 180-degree ambiguity resolution in 2D
vector fields, we have proposed a branch cut algorithm which
approximately solves Problem 1. We reformulated this combi-
natorial optimization problem on sign matrices into an equiva-
lent constrained optimization problem on sign change matrices
(Problem 2). Based on the idea that the optimal sign changes
is the same as the locally ideal sign changes for many neigh-
boring lattice points, we designed a branch cut type algorithm
which consists of steps similar to those of Goldstein’s branch
cut for 2D phase unwrapping. The proposed branch cut effi-
ciently constructs an approximate solution of the original NP-
hard problem. Numerical experiments, in application to single-
frame fringe projection profilometry, showed that the proposed
method provides a remarkable improvement over the existing
path-following method especially around the edges of objects.
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