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Abstract—CSMRI is the high-speed magnetic resonance imag-
ing (MRI) technique using the compressed sensing (CS) theory.
Based on the fact that multiple MR images of different contrasts,
e.g., T1-weighted and T2-weighted images, are scanned in clinical
practice, Ehrhardt et al. proposed multi-contrast CSMRI utilizing
the edge information of a different contrast image obtained from
the full-sampling k-space data. In this paper, we propose to extend
the method of Ehrhardt et al. to the linearly involved generalized
Moreau enhanced (LiGME) model. Since a directional total varia-
tion based on the edge information becomes closer to a group `0
pseudo-norm by introducing the LiGME model, we will be able to
reconstruct large edges more accurately. Simulations using actual
MR images demonstrate the effectiveness of the proposed method.

Index Terms—Multi-contrast MRI, compressed sensing, direc-
tional total variation, LiGME model, convex optimization.

I. INTRODUCTION

Magnetic resonance imaging (MRI) [1]–[3] scans the inside
of the human body noninvasively using a strong magnetic field.
Compared to X-ray computed tomography (CT) imaging, MRI
has the advantage of not exposing patients to X-rays. On the
other hand, the disadvantage is that the examination time is rel-
atively long. In clinical practice, multiple types of MR images
are scanned by changing the setting of the repetition time (TR)
and the echo time (TE) in a single examination. Typical types
are T1-weighted and T2-weighted images as shown in Fig. 1.
T1-weighted images are good at depicting anatomical struc-
tures, while T2-weighted images are suitable for depicting le-
sions. By comparing such images of different characteristics, a
radiologist makes an accurate diagnosis. It takes approximately
2 to 3 minutes to acquire each type of MR image, while CT
imaging takes a few seconds. Thus, there is a need to shorten
the MRI scanning time for reduction of the burden on patients.

In MRI, the Fourier coefficients of a target slice are observed
sequentially in the k-space. Therefore, reducing the number of
the observed Fourier coefficients shortens the scanning time. If
we apply the inverse Fourier transform, which is the simplest
MR image reconstruction method, to such undersampled coef-
ficients, a blurred image containing artifacts is reconstructed.
To reconstruct an accurate MR image from the undersampled
coefficients, the compressed sensing (CS) theory is used [4]–
[12]. CS [13]–[16] is a technique to reconstruct a target signal
from a small number of measurements under the assumption
that the target signal is sparsely represented in an appropriate
space. Based on this theory, Lustig et al. proposed a fast MRI
method called CSMRI [4], [5]. In this method, a cost function
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(a) T1-weighted image (b) T2-weighted image

Fig. 1. Structural similarity between T1-weighted and T2-weighted images.

is defined as the sum of a data fidelity term, the `1 norm of the
discrete wavelet coefficients, and the isotropic total variation.
By minimizing this convex cost function with an iterative algo-
rithm, a clear image can be reconstructed from the undersam-
pled coefficients whose compression rate is about 1/3.

To improve the image quality, Ehrhardt et al. focused on the
structural similarity that can be found between different types
of MR images on the same slice [10]. As we can see in Fig. 1,
although their contrasts are different, edge structures are very
similar to each other. Therefore, they proposed a multi-contrast
CSMRI method in which the full-sampling is performed only
for a single type of MR image, while the Fourier coefficients
of other types of images are undersampled so that the entire
examination time can be shortened. They defined a directional
total variation using edges of a reference image obtained from
the full-sampling, and then reconstructed the images of differ-
ent contrasts from the undersampled data by minimizing the
sum of the data fidelity term and the directional total variation.

In this paper, to further improve the reconstruction accuracy,
we propose to extend the method of Ehrhardt et al. to the lin-
early involved generalized Moreau enhanced (LiGME) model
[17]. In recent years, Selesnick has proposed the generalized
minimax concave (GMC) function as an alternative measure of
the sparsity to the `1 norm [18]. The GMC function is contin-
uous but nonconvex, and its shape is similar to the `0 pseudo-
norm and the `p quasi-norm (s.t. p ∈ (0, 1)). Even though the
GMC function is nonconvex, the sum of the data fidelity term
(squared errors) and the GMC function can become convex if
a matrix parameter of the GMC function is appropriately set.
Thanks to the overall convexity, we can reach the global min-
imum without getting stuck in local minima. Abe et al. ex-
tended the GMC function, by changing the original cost from



the `1 norm to any symmetric convex cost, as the generalized
Moreau enhanced (GME) function [17]. In addition, they pro-
posed the LiGME model that strictly minimizes the sum of the
fidelity term and the GME function including a linear mapping.
However, it is difficult to design a matrix parameter guarantee-
ing the overall convexity, and hence the LiGME model has not
yet been introduced to relatively large-scale inverse problems.

In the proposed image reconstruction, we first express the
directional total variation in [10] as a group `1 norm including
a linear mapping that is the composition of the difference ma-
trix, a rotation matrix and a weight matrix. Second, we replace
the group `1 norm with the GME function while appropriately
setting its matrix parameter to guarantee the overall convexity.
Third, we modify a proximal splitting algorithm of the LiGME
model in [17] so that the constraint set whose projection is easy
to compute can be added. Since the directional total variation
gets closer to a group `0 pseudo-norm by the LiGME model,
we can reconstruct large edges more accurately. Simulations
using the same T1-weighted and T2-weighted images as in [10]
demonstrate that the proposed method reconstructs MR images
more accurately and quickly than the original method [10].

II. PRELIMINARIES

Let R, R+, and C be the sets of all real, nonnegative real,
and complex numbers, respectively. The imaginary unit is de-
noted by ı ∈ C. For any c ∈ C, c̄ stands for its complex conju-
gate. We write vectors with boldface small letters and matrices
with capital letters. We express the identity matrix of order N
as IN . The transpose and Hermitian transpose of a vector or a
matrix are denoted by (·)T and (·)H. The positive definiteness
and semidefiniteness of a Hermitian matrix A ∈ CN×N are de-
noted by A � ON and A � ON . For p > 0 and a vector x =
(x1, x2, . . . , xN )T ∈ CN , the `p (quasi-)norm1 of x is defined

as ‖x‖p :=
p
√∑N

i=1 |xi|p. For integers G and Q s.t. GQ = N ,

define a group `1 norm as ‖x‖G,Q2,1 :=
∑Q
i=1

√∑G−1
j=0 |xi+jQ|2.

A. Basic MRI

Among various MRI sequences [1], the two most basic are
spin echo (SE) sequences and gradient echo (GRE) sequences.
Although MR images are generally complex-valued, the phases
greatly vary in the GRE sequences, while there are few phase
fluctuations in the SE sequences. This paper uses the model of
the ideal SE sequences in [10] for simplicity, where each MR
image can be modeled as a nonnegative real vector x ∈ RN+ .

In the k-space, lattice sampling of the Fourier coefficients is

y[k1, k2] =
1√
N

N1
2 −1∑

n1=−N1
2

N2
2 −1∑

n2=−N2
2

x[n1, n2]e−ı2π
(
k1n1
N1

+
k2n2
N2

)
,

(1)
where2 even numbers N1 and N2 s.t. N1N2 = N denote the

1Note that the function ‖·‖p satisfies the condition of the norm in CN if
p ≥ 1, and the `0 pseudo-norm of x is defined as ‖x‖0 := limp→+0‖x‖pp.
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numbers of vertical and horizontal pixels of an image x, k1 =
−N1

2 ,−
N1
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2 ,−
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2 −1,
and x[n1, n2] is the pixel value of x. The observation model
in (1) is the discretization of an integral [3], and the actual k-
space data y[k1, k2] ∈ C includes both model and observation
errors. By concatenating all the observed k-space data y[k1, k2]
as yfull ∈ CN , the observation model in (1) is expressed as

yfull = Fx+ εfull, (2)

where F ∈ CN×N is the normalized discrete Fourier transform
matrix and a noise vector εfull ∈ CN includes the two errors.

When the energy ‖εfull‖22 of noise is small, the MR image x
can be easily reconstructed with high accuracy by projecting
the result FHyfull of the inverse discrete Fourier transform, for
the observed data yfull, onto RN+ as PRN+ (FHyfull).3 Here the
projection PRN+ : CN → RN+ onto RN+ can be computed for any
input complex vector by truncating the imaginary parts and re-
placing negative values of the remaining real parts with zeros.

B. Compressed Sensing MRI (CSMRI)
In MRI, the k-space data y[k1, k2] is observed sequentially,

not simultaneously. Hence, reducing the number of the obser-
vations shortens the scanning time. We observe only M (< N )
Fourier coefficients y[k1, k2] and concatenate them as a vector
y ∈ CM . The observation model in CSMRI is expressed as

y = Fux+ ε, (3)

where Fu ∈ CM×N is the undersampled Fourier transform ma-
trix, ε ∈ CM is a noise vector, and M

N is the compression ratio.
If we represent the sampling points in the k-space as a binary
matrix S := (si,j) ∈ {0, 1}M×N s.t.

∑N
j=1 si,j = 1 for all i

and
∑M
i=1 si,j ≤ 1 for all j, then Fu is expressed as Fu = SF .

Let ypad ∈ CN be the padded k-space data, where the un-
observed coefficients y[k′1, k

′
2] are filled with y[−k′1,−k′2] or

0.4 Then, PRN+ (FHypad) is the simplest reconstruction result,5

but this cannot be used for diagnosis because of blurring and
wrap-around artifacts. In [4], [5], to reconstruct a clear image
from the undersampled data y, Lustig et al. proposed to solve

minimize
x∈RN+

1

2
‖Fux− y‖22 + λ‖Φx‖1 + µTV(x). (4)

In (4), the first term is the data fidelity, i.e., squared errors for
y, and the second and third terms mean the regularizations. In
the ideal SE sequences, since x is real-valued, we can use reg-
ularization terms similar to those in standard image processing
techniques. The matrix Φ ∈ RN×N denotes a discrete wavelet
transform, and TV : RN → R+ is the isotropic total variation
computed by TV(x) :=

∑N
n=1

√
∆x2

h,n + ∆x2
v,n = ‖Dx‖2,N2,1

with the two-dimensional difference matrixD := [DT
h DT

v ]T.6

3In the GRE sequences, the reconstructed image is FHyfull. Moreover, in
the SE sequences, x can be reconstructed with high accuracy even from almost
half yhalf of y if we utilize the complex conjugate relations in Footnote 2.

4This padding is called the partial Fourier method or half Fourier method.
5In the GRE sequences, the simplest reconstruction is FHypad := FH

u y.
6Note that Dh ∈ {−1, 0, 1}N×N also computes the differences between

the left-end and the right-end pixel values. Similarly, Dv ∈ {−1, 0, 1}N×N

computes the differences between the top-end and the bottom-end pixel values.



The parameters λ > 0 and µ > 0 are weights for the regular-
ization terms. This method gives a good reconstruction result
from the observed data whose compression rate is about 1/3.

C. Multi-Contrast CSMRI Using Common Edge Structures

In clinical practice, a certain part of the body is scanned re-
peatedly with different settings. Thus, multiple MR images of
different contrasts, e.g., T1-weighted and T2-weighted images,
on the same slice are given, and a radiologist makes an accu-
rate diagnosis by comparing them. Ehrhardt et al. focused on
this diagnostic process, and proposed to use the full-sampling
in (2) for a single setting and the undersampling in (3) for other
settings, in order to shorten the overall examination time while
preserving the image quality [10]. For simplicity, here we ac-
quire a T1-weighted image from the full-sampling yref

full ∈ CN
while a T2-weighted image from the undersampling y ∈ CM .
If noise is small, the T1-weighted image can be easily recon-
structed with high accuracy as u := PRN+ (FHyref

full). By using
the reconstructed T1-weighted image u as a reference, we esti-
mate the T2-weighted image x from its undersampled data y.

Ehrhardt et al. proposed a multi-contrast CSMRI method as

minimize
x∈RN+

1

2
‖Fux− y‖22 + µdTV(x), (5)

where dTV : RN → R+ is the directional total variation that
evaluates the similarity of edges of x and u, and is defined by

dTV(x) :=

N∑
n=1

∥∥∥∥∥(I2 − ξnξT
n )

[
∆xh,n

∆xv,n

]∥∥∥∥∥
2

=

N∑
n=1

√
∆x2

h,n + ∆x2
v,n − (2− ‖ξn‖22)(ξT

n∆xn)2 (6)

with the horizontal and vertical normalized differences of u:

ξn :=

[
ξn,1

ξn,2

]
:=

1√
∆u2

h,n + ∆u2
v,n + η2

[
∆uh,n

∆uv,n

]
. (7)

In (7), a small positive value η > 0 is added to avoid numerical
instabilities. The vector ξn ∈ R2 is the nth edge information of
u, which is parallel to ∆un := (∆uh,n,∆uv,n)T ∈ R2 and
satisfies 0 ≤ ‖ξn‖22 < 1. When ‖∆xn‖22 = ∆x2

h,n + ∆x2
v,n is

kept constant, dTV(x) takes the minimum if each ∆xn is par-
allel to ξn and takes the maximum if ∆xn is orthogonal to ξn.
Hence, the T2-weighted image, having common edges with the
T1-weighted image, is reconstructed more accurately than (4).

III. MULTI-CONTRAST CSMRI WITH LIGME MODEL

A. Signal Recovery Based on LiGME Model

In signal recovery based on convex optimization, we esti-
mate a signal x ∈ RN from an observation y ∈ RM by solving

minimize
x∈RN

1

2
‖Ax− y‖22 + µΨ(Lx), (8)

where A ∈ RM×N is an observation matrix, L ∈ RK×N is a
linear mapping, and Ψ : RK → R is a lower semicontinuous
convex function. In standard CS-based signal recovery meth-
ods [13]–[16], the function Ψ is typically set to the `1 norm.

While CS aims to reconstruct an unknown sparse signal x
from a small number of observations y (s.t. M < N ), the `0
pseudo-norm and the `p quasi-norm (s.t. p ∈ (0, 1)) can more
precisely promote the sparsity than the `1 norm. However, the
problem in (8) becomes nonconvex when we substitute the `0
pseudo-norm or the `p quasi-norm to the regularization term Ψ,
and thus finding a global minimizer is challenging.

For the case when the linear mapping L is the identity ma-
trix IN and the function Ψ is the `1 norm, Selesnick proposed
to use the generalized minimax concave (GMC) function [18]:

ΨB(w) := Ψ(w)− min
v∈RK

[
Ψ(v) +

1

2
‖B(w − v)‖22

]
, (9)

as an alternative regularization to the `1 norm, in the form of
(8), where a matrix parameter B ∈ RJ×K controls the shape of
the GMC function. The GMC function ΨB is continuous and
better approximates the `0 pseudo-norm than the `1 norm [18].
Even though the GMC function in (9) is nonconvex, the overall
problem in the form of (8) is convex if the matrix B is appro-
priately set, and it is possible to find a global minimizer.

Abe et al. [17] generalized (9) for any coercive convex func-
tion Ψ satisfying Ψ(−w) = Ψ(w) for all w ∈ RK , and call it
the generalized Moreau enhanced (GME) function. Moreover,
they proposed the linearly involved GME (LiGME) model:7

minimize
x∈RN

1

2
‖Ax− y‖22 + µΨB(Lx). (10)

Note that L is an arbitrary matrix in (10). Abe et al. clarified a
sufficient condition of B for the overall convexity of (10) as

ATA− µLTBTBL � ON , (11)

and provided a proximal splitting algorithm that successfully
obtains a global optimal solution under the condition in (11).

B. Extension of Multi-Contrast CSMRI in (5) to LiGME Model
In this paper, we propose to extend the optimization problem

in (5) to the LiGME model for further improvement of the re-
construction accuracy. First, we show that the problem in (5)
can be represented in the form of (8). When ξn 6= 0 holds for
every n, the directional total variation dTV in (6) is written by

dTV(x) =

N∑
n=1

∥∥∥∥∥
[
wn 0

0 1

][
ξn,1
‖ξn‖2

ξn,2
‖ξn‖2

− ξn,2
‖ξn‖2

ξn,1
‖ξn‖2

][
∆xh,n

∆xv,n

]∥∥∥∥∥
2

. (12)

Note that (12) is a generalized form of dTV in [20] with small
positive weights wn ∈ (0, 1], and (6) is reproduced by letting
wn := 1−‖ξn‖22. From (12), it can be seen that dTV decom-
poses the horizontal and vertical differences into components
parallel and orthogonal to ξn, and computes the `2 norm after
multiplying each parallel component by the small weight wn.
Furthermore, the condition ξn 6= 0 is not restrictive since we
only have to directly compute the `2 norm of ∆xn for n s.t.
ξn = 0. Therefore, with the horizontal and vertical difference
matrices Dh ∈ {−1, 0, 1}N×N and Dv ∈ {−1, 0, 1}N×N , an

7In [19], (Ψ◦L)B(x) := Ψ(Lx)−minv∈RN [Ψ(Lv)+ 1
2
‖B(x−v)‖22],

similar to ΨB(Lx) := Ψ(Lx)−minv∈RK [Ψ(v) + 1
2
‖B(Lx− v)‖22], is

also proposed. However, in [19], the authors consider only the denoising, i.e.,
A = IN , and Ψ ◦ L is also restricted to the one-dimensional total variation.



orthogonal matrix R ∈ R2N×2N corresponding to rotations of
∆xn, and a diagonal matrix W ∈ (0, 1]2N×2N consisting of
wn, the directional total variation dTV can be expressed as

dTV(x) =

∥∥∥∥∥WR

[
Dh

Dv

]
x

∥∥∥∥∥
2,N

2,1

=: Ψ

(
WR

[
Dh

Dv

]
x

)
,

which implies that the problem in (5) is represented by

minimize
x∈RN+

1

2
‖Fux− y‖22 + µΨ

(
WR

[
Dh

Dv

]
x

)
.

Based on the above representation in the form of (8) and the
discussion in Section III.A, we propose to solve the following
optimization problem introducing the LiGME model:

minimize
x∈RN+

1

2
‖Fux− y‖22 + µΨB

(
WR

[
Dh

Dv

]
x

)
. (13)

From (11), to guarantee the overall convexity of the problem
in (13), we have to design the matrix B in (9) satisfying

FHSTSF −µ
[
DT

h DT
v

]
RTWBHBWR

[
Dh

Dv

]
� ON . (14)

This condition is derived by substituting A := Fu = SF and
L := WRD = WR[DT

h DT
v ]T in (11). The matrices Dh and

Dv are block circulant with circulant blocks (BCCB) and thus
diagonalizable with the discrete Fourier transform F as Dh =
FHD̂hF and Dv = FHD̂vF , where D̂h ∈ CN×N and D̂v ∈
CN×N are complex diagonal matrices [6]. Although design of
B is difficult especially for a non-full row rank L [17], we can
design8 the matrix B satisfying (14), with these expressions, as

B =

√
θ

2µ

[
SD̂†hF OM×N

OM×N SD̂†vF

]
RTW−1 ∈ C2M×2N , (15)

where θ ∈ (0, 1], and two diagonal matrices D̂†h ∈ CN×N and
D̂†v ∈ CN×N are the pseudoinverses of D̂h and D̂v. Here B in
(15) not only satisfies (14) but also can be computed quickly.

C. MR Image Reconstruction Algorithm
The proposed convex optimization problem in (13) is differ-

ent from the original LiGME model in (10) because the non-
negative constraint x ∈ RN+ is newly imposed. In fact, for such
a constrained LiGME model, we can also develop an iterative
algorithm that guarantees the convergence to a global optimal
solution by slightly modifying the splitting algorithm in [17].

Let g : CN → R ∪ {∞} be a convex function whose prox-
imity operator is easily computed, and we consider a problem:

minimize
x∈CN

1

2
‖Ax− y‖22 + µΨB(Lx) + g(x).

From [17], [21], [22], we can prove that if ∀x Ψ(Lx) <∞ or
∀x g(x) <∞ holds, a global optimal solution is obtained by
only adding the computation of prox 1

σ g
after the update of x

of the original algorithm in [17]. Since the proposed optimiza-
tion problem in (13) corresponds to the case where A := Fu,

8We can fortunately design the matrix B in (15), since not only FH
u Fu and

the difference matrices Dh and Dv can be diagonalized by the discrete Fourier
transform F , but also the inverse matrices of R and W are both easily given.

L := WRD, Ψ := ‖·‖2,N2,1 and g is the indicator function of
RN+ , the image reconstruction algorithm9 is given as
xk+1 = PRN+ [xk − 1

σ (AHA− µLTBHBL)xk

− µ
σL

TBHBvk − µ
σL

Twk + 1
σA

Hy]

vk+1 = proxµ
τ Ψ[µτ B

HBL(2xk+1 − xk) + vk − µ
τ B

HBvk]

wk+1 = proxΨ∗ [L(2xk+1 − xk) +wk]
(16)

with σ > 0 and τ > 0 which satisfy, for some κ > 0, σIN −
κ
2A

HA− µLTL � ON and τ I2N − µ(κ2 + 2
κ )BHB � O2N .

IV. NUMERICAL SIMULATIONS

We show the effectiveness of the proposed method by nu-
merical experiments using the T1-weighted and T2-weighted
images in Figs. 1(a) and 1(b), which were also used in the sim-
ulations of [10]. The number of pixels is 242×242 = 58,564 =
N . We used the pixel values after division by 255 and used the
sampling mask ‘cartesianX random 0 32’ in [10, Fig. 14] that
acquires M = 8,480 Fourier coefficients. Thus, the compres-
sion rate is M/N = 0.1448, approximately 1/7. Simulations
were conducted on an m-Book T510XN-M2SH5 (Windows 10,
Intel Core i7-8750H, 2.20 GHz, 32 GB) by MATLAB R2019a.
We compared the proposed method of (13) with the conven-
tional method of (5) in terms of both reconstruction accuracy
and computation time. We exploited the code provided in [10]
to reproduce the original results of the conventional method.

We first reconstructed the T2-weighted image from the ob-
served data y by using the T1-weighed image as the reference.
An initial MR image for both the proposed and conventional
methods is generated by the inverse Fourier transform for the
padded k-space data ypad with the partial Fourier method, as
PRN+ (FHypad). Each parameter of the conventional method is
well tuned by the code of [10]. For the proposed method, we
set the parameters to η = 0.035 in (7), wn :=

√
1− ‖ξn‖22 in

(12), µ = 0.003 in (13), and θ = min(diag(W 2)) in (15). The
step-size parameters σ and τ of the algorithm in (16) are set to

σ = (κ− 1) + max
(

diag
(
κ
2 S

TS + µD̂H
h D̂h + µD̂H

v D̂v

))
τ = (κ− 1) + 0.01

(
κ
2 + 2

κ

)
max

([
νT

h νT
v

]T)
,

where κ = 1.001, diag gives diagonal components of a square
matrix, νh = diag(D̂†Hh STSD̂†h) and νv = diag(D̂†Hv STSD̂†v).

Figures 2(a), 2(b), 2(c), and 2(d) respectively show the target
image, the initial image, the result of the conventional method
[10], and that of the proposed method, along with an enlarged
image of the red boxed area. We can find that the contrast of
the reconstructed image by the proposed method in Fig. 2(d) is
more clear than that by the conventional method in Fig. 2(c).
PSNR and SSIM values are also denoted in the captions. The
proposed method improved PSNR by about 1.3 dB and SSIM
by 0.02. The computation times for the proposed and conven-
tional methods were 4.22 and 7.85 seconds, respectively. Thus,
the proposed method could reconstruct the better image about
twice as fast as the conventional method in this simulation.

9For the non-ideal SE sequences where each MR image is a complex vector
x ∈ CN having few phase fluctuations, we only have to remove PRN+

in (16).



(a) Target image (b) Initial image [22.81 / 0.6027]

(c) Conventional [26.78 / 0.8648] (d) Proposed [28.09 /0.8842]

Fig. 2. T1-weighted reference & T2-weighted target simulation [PSNR/SSIM].

We also reconstructed the T1-weighted image by using the
T2-weighed image as the reference. We used the same values
for the parameters of the proposed method. PSNRs of the pro-
posed and conventional methods were 24.43 dB and 23.63 dB,
and thus we confirmed that the proposed method was effective
in both CSMRI scenarios. Since T1-weighted images describe
anatomical structures better than T2-weighed images, the pro-
posed method is suitable for the scenario in which T2-weighted
images are reconstructed with T1-weighed reference images.

V. CONCLUSION AND FUTURE WORK

This paper extended the multi-contrast CSMRI method of
Ehrhardt et al. to the LiGME model for improvement of the
reconstruction accuracy. By the LiGME model, the directional
total variation based on the edge information of a different con-
trast image gets closer to a group `0 pseudo-norm, and the pro-
posed method reconstructs edges more accurately in less com-
putation time, which was shown by simulations. To the best of
the authors’ knowledge, this work is the first application of the
LiGME model to a large-scale underdetermined inverse prob-
lem. As future work, we plan to integrate the proposed method
with parallel imaging techniques [23]–[25] and adapt the pro-
posed method to MR images having large phase fluctuations.
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