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Abstract—Phased array weather radar (PAWR) is capable of
spatially and temporally high resolution observation. This means
that a PAWR generates a huge amount of observation data, say
500 megabytes in every 30 seconds. To transfer this big data in
a public internet line, this paper proposes a fast 3D compressive
sensing method for PAWR. The proposed method reconstructs
the original data, from compressed data, as the minimizer of a
convex function which evaluates the local similarity in the spatial
domain and the sparsity in the frequency domain. By combining
blockwise optimization with Nesterov’s acceleration, we obtain an
approximate solution of the above convex optimization problem
at high speed. Numerical simulations show that the proposed
method outperforms conventional reconstruction methods.

I. INTRODUCTION

One of the extreme weather events is torrential rainfall
caused by quick growth of cumulonimbus clouds. Recently,
the occurrence frequency of torrential rainfall is increasing [1],
but the spatial and temporal resolution of classical parabolic
radars is not sufficient to observe such extreme weather events.
Phased array weather radar (PAWR) was developed [2], [3] for
accurate weather observation. The PAWR system developed
in Osaka University can scan atmosphere within a hemi-
sphere of a radius 60 kilometers in 30 seconds, and numbers
of sampling points in range, azimuth, and elevation directions
are 600, 300, and 110, respectively [3]. The measurements
include thirteen aspects of weather phenomena, and the total
data size for each single revolution of the PAWR is 490.9 mega-
bytes. Therefore, if all measurements were transferred with-
out any compression technique, the required transfer rate is
131 megabits per second. To this end, the current PAWR
system exploits a private internet line with some cost.

In order to use a public internet line for real time trans-
fer, the PAWR data has to be efficiently compressed. For exam-
ple, when we use a public internet line whose transfer rate is 35
megabits per second, not only the data size must be reduced
to less than about 1/4, but also the original PAWR data has to
be reconstructed from the compressed data at high speed. For
solving such issues, we can use compressive sensing [4]–
[6] which was first applied to radars for hard targets [7]–
[9] and then applied to weather radars [10]–[15]. For recon-
struction of three-dimensional (3D) tensor data from com-

pressed one, Mishra et al. used a low-rank matrix approx-
imation technique [12]. Shimamura et al. proposed a one-
dimensional (1D) reconstruction algorithm which promotes the
sparsity of 1D vector data in the frequency domain [13] where
a discrete cosine transform (DCT) or a discrete wavelet trans-
form (DWT) is used as a mapping into the frequency domain.
In [14], the present authors proposed a two-dimensional (2D)
reconstruction algorithm which promotes the local similarity
and the sparsity of 2D matrix data in the spatial and frequency
domains, respectively. Recently, we proposed a 3D recon-
struction algorithm [15] where the compressed data is created
from only the measurements in the troposphere. This algorithm
outperformed 2D algorithms [12], [14], but the computational
time is too long for real time transfer of the data.

In this paper, to reduce the computational time of the 3D
reconstruction in [15], we propose a fast blockwise algorithm.
We divide compressed data into some small blocks and then
reconstruct original data by minimizing the cost in [15] for
every block with the use of the simultaneous direction method
of multipliers (SDMM) [16].1 Since the size of the optimiza-
tion problem in each block is very small as compared to that of
the original problem, the total reconstruction time is dramat-
ically shortened with less quality degradation. Moreover, we
improve the convergence rate of SDMM by Nesterov’s accel-
eration technique [18]–[21]. In [20], it is proven that the con-
vergence rate of ADMM can be improved by using Nesterov’s
acceleration if a cost function is strongly convex. Although the
cost in [15] is not strongly convex, we apply this technique to
our algorithm. Numerical simulations show that the proposed
method, combined with blockwise optimization and Nesterov’s
acceleration, outperforms the conventional 2D reconstruction
algorithms [12], [14] with less computational time.

The rest of this paper is organized as follows. Section II
summarizes our 3D compressive sensing scheme for PAWR
[15]. Section III presents the proposed fast blockwise recon-
struction algorithm. Section IV shows the effectiveness of the
proposed reconstruction algorithm in numerical simulations.
Finally, Section V concludes this paper.

1It is a kind of the alternative direction method of multipliers (ADMM) [17].



II. 3D COMPRESSIVE SENSING FOR PAWR DATA

In this section, we summarize our 3D compressive sensing
scheme recently proposed in [15]. In the following, we focus
on the reflection intensity among thirteen parameters observed
by the PAWR because the other parameters can be handled in a
similar way. The reflection intensities are observed as a 3D ten-
sor X0 ∈ RNH×NV ×NW , and we denote by x0[nH , nV , nW ]
the (nH , nV , nW ) entry of X0, where 1 ≤ nH ≤ NH := 600,
1 ≤ nV ≤ NV := 300, and 1 ≤ nW ≤ NW := 110 (i.e., the
number of measurements is N := NHNVNW = 19,800,000).

A. Data Compression by Random Sampling in Troposphere

The PAWR observes the reflection intensities within a hemi-
sphere of a radius 60 kilometers. This hemisphere includes the
out of the troposphere and x0[nH , nV , nW ] should be 0 there.
We use this knowledge for both sampling and reconstruction.
Let Htro be the height of the troposphere, where the curvature
of the earth is not taken into account. In order to compress the
original data X0, we randomly select M (< N ) measurements
within areas whose height is lower than Htro and then convert
(N−M) non-selected measurements into 0. This compression
process is denoted by A : RNH×NV ×NW → RNH×NV ×NW ,
the compressed data is expressed as Y := A(X0), and the
compression ratio is defined by α :=M/N ∈ (0, 1).

An example of a pair of the original observed data X0 and
the compressed data Y is shown in Fig. 1, where slices of the
10th elevation angle are extracted from the entire 3D tensors.
The original data X0 was acquired on May 10th, 2013 by the
PAWR equipped at Osaka University in Suita Campus, Japan,
and the compressed data Y retains only 25% measurements
among X0. We recover the missing measurements from the
remaining ones via convex optimization in the next section.

B. 3D Reconstruction from Compressed Data

To reconstruct the complete measurements X0 from the
randomly selected ones Y , we exploit four characteristics
of X0. First, measurements outside of the troposphere are
0 as mentioned before. Let us denote the set of all X ∈
RNH×NV ×NW satisfying this condition by S. Second, obser-
vation of X should be consistent with Y . Third, the reflection
intensities are locally similar because rain falling areas exist
continuously. Fourth, we suppose that X0 can be sparsely
described by some appropriate transformation, e.g., DCT.

On the basis of the above characterizations, we define

J(X) :=
1

2
‖A(X)− Y ‖22 + λ1TV1(X) + λ2‖C(X)‖1,

where ‖X‖22 :=
∑NH

nH=1

∑NV

nV =1

∑NW

nW=1 |x[nH , nV , nW ]|2,

‖X‖1 :=
∑NH

nH=1

∑NV

nV =1

∑NW

nW=1 |x[nH , nV , nW ]|,

TV1(X) :=

NH−1∑
nH=1

NV∑
nV =1

NW∑
nW=1

|x[nH + 1, nV , nW ]− x[nH , nV , nW ]|

+

NH∑
nH=1

NV −1∑
nV =1

NW∑
nW=1

|x[nH , nV + 1, nW ]− x[nH , nV , nW ]|

+

NH∑
nH=1

NV∑
nV =1

NW−1∑
nW=1

|x[nH , nV , nW + 1]− x[nH , nV , nW ]| ,

(a) Original observed data (b) Compressed data

Fig. 1. Original and compressed data.

C : RNH×NV ×NW → RNH×NV ×NW is the 3D DCT, λ1 > 0,
and λ2 > 0. We recover the entire reflection intensity X0 by

X∗ := argmin
X∈S

J(X). (1)

In (1), J is a convex function and S is a convex set. Hence, this
minimization problem is a convex optimization problem and
can be solved by the simultaneous direction method of multi-
pliers (SDMM), which is a special version of the alternative
direction method of multipliers (ADMM), as follows.

Let x := vec(X) ∈ RN be a vectorized version of a 3D
tensor X ∈ RNH×NV ×NW , and the inverse mapping of vec
is denoted by ten (i.e., X = ten(x)). Let A ∈ RN×N be
a diagonal matrix which converts the values of non-selected
components of x into 0 while retaining the other values. Define

DNH
:=


−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 −1 1

 ∈ R(NH−1)×NH ,

and define DNV
∈ R(NV −1)×NV and DNW

∈ R(NW−1)×NW

in the same way. The identity matrix and the 1D DCT matrix
of size K ×K are denoted by IK and CK , respectively. By
defining matrices, with the use of the Kronecker product ⊗, as
L1 := INW

⊗ INV
⊗ INH

, L2 := INW
⊗ INV

⊗DNH
,

L3 := INW
⊗DNV

⊗ INH
, L4 := DNW

⊗ INV
⊗ INH

,
L5 := CNW

⊗ CNV
⊗ CNH

, L6 := INW
⊗ INV

⊗ INH
,

and defining g1(y1) :=
1
2‖Ay1−vec(Y )‖22, gi(yi) := λ1‖yi‖1

(i = 2, 3, 4), g5(y5) := λ2‖y5‖1, g6(y6) := 0 if ten(y6) ∈ S,
and g6(y6) :=∞ if ten(y6) 6∈ S, a vectorized version of X∗

in (1) is expressed as

x∗ = argmin
x∈RN

6∑
i=1

gi(Lix). (2)

The vector x∗ in (2) can be computed by SDMM as shown in
Algorithm 1, and the entire reflection intensity is reconstructed
as X∗ = ten(x∗). In Algorithm 1, Q :=

∑6
i=1 L

>
i Li ∈

RN×N is invertible and the closed form of Q−1 can be derived
in a similar way as in [14] without any product of huge
matrices of size N ×N . Moreover, every proximity operator
proxγgi (i = 1, 2, . . . , 6) can be easily derived (see, e.g., [22]).



Algorithm 1: 3D Reconstruction Method for PAWR Data
Input: Y ∈ RNH×NV ×NW and γ ∈ (0,∞)
1: yi,0 ← Livec(Y ) and zi,0 ← 0 (i = 1, 2, . . . , 6)
2: k ← 1
3: while a stopping condition is not met do
4: xk ← Q−1

∑6
i=1 L

>
i (yi,k−1 − zi,k−1)

5: yi,k ← proxγgi(Lixk + zi,k−1) (i = 1, 2, . . . , 6)
6: zi,k ← zi,k−1 + Lixk − yi,k (i = 1, 2, . . . , 6)
7: k ← k + 1
8: end while

III. ACCELERATION OF 3D RECONSTRUCTION BY
BLOCKWISE OPTIMIZATION AND NESTEROV’S TECHNIQUE

In this section, we accelerate the 3D reconstruction algo-
rithm (Algorithm 1) in consideration of the data acquisition
process of the PAWR. In the PAWR, a matrix X0[ : , nV , : ] ∈
RNH×NW is acquired at the same time, and hence by acquiring
X0[ : , nV , : ] (nV = 1, 2, . . . , NV ) in sequence and combining
them, a 3D tensor X0 ∈ RNH×NV ×NW is generated.

In order to accelerate Algorithm 1 in consideration of the
above data acquisition process, we divide the original data
X0 and the compressed data Y into NV /s blocks X0,l :=
(X0[ : , (l−1)s+1, : ], X0[ : , (l−1)s+2, : ], . . . , X0[ : , ls, : ]) ∈
RNH×s×NW and Y l := Al(X0,l) (l = 1, 2, . . . , NV /s). The
compression processes Al : RNH×s×NW → RNH×s×NW have
the same compression ratio, i.e., we randomly select sM/NV
measurements from each block X0,l within areas whose height
is lower than Htro. Then we approximate the desired tensor
X∗ in (1) with (X∗1,X

∗
2, . . . ,X

∗
NV /s) ∈ RNH×NV ×NW by

solving blockwise optimization problems:

X∗l := argmin
Xl∈Ŝ

Jl(X l) (l = 1, 2, . . . , Nv/s), (3)

where

Jl(X l) :=
1

2
‖Al(X l)− Y l‖22 + λ1TV1(X l) + λ2‖C(X l)‖1

and Ŝ denotes the set of X l ∈ RNH×s×NW whose all mea-
surements outside of the troposphere are 0. Each small opti-
mization problem in (3) is solved by SDMM in the same way
as in Algorithm 1, and X∗l is reconstructed as X∗l = ten(x∗l ).

Moreover, we improve the convergence rate of Algorithm 1
by Nesterov’s acceleration technique [18]–[21]. In [20], Gold-
stein et al. proposed Fast ADMM as an accelerated variant of
ADMM, and the convergence rate is improved from O(1/k)
to O(1/k2) for a strongly convex optimization problem, where
the convergence is defined for the cost of the dual problem.
Fortunately SDMM is just a special version of ADMM,
and hence we apply Nesterov’s acceleration technique to
dual variables in accordance with [20] (see Algorithm 2).
Although the cost function Jl is not strongly convex, we can
confirm the notable improvement of the reconstruction time
in numerical simulations (see Section IV). Note that since
Algorithm 2 can be implemented for several blocks in parallel,
graphics processing unit (GPU) is suitable for incorporation of
the proposed 3D reconstruction into the PAWR system.

Algorithm 2: Fast Blockwise 3D Reconstruction Method
Input: Y l ∈ RNH×s×NW and γ ∈ (0,∞)
1: yi,0 ← Livec(Y l) and zi,0 ← 0 (i = 1, 2, . . . , 6)
2: yi, 12 ← yi,0 and zi, 12 ← zi,0 (i = 1, 2, . . . , 6)
3: α0 ← 1 and k ← 1
4: while a stopping condition is not met do
5: xk ← Q−1

∑6
i=1 L

>
i (yi,k− 1

2
− zi,k− 1

2
)

6: yi,k ← proxγgi(Lixk + zi,k− 1
2
) (i = 1, 2, . . . , 6)

7: zi,k ← zi,k− 1
2
+ Lixk − yi,k (i = 1, 2, . . . , 6)

8: αk ←
1+
√

1+4α2
k−1

2

9: yi,k+ 1
2
← yi,k +

αk−1−1
αk

(yi,k − yi,k−1)

(i = 1, 2, . . . , 6)
10: zi,k+ 1

2
← zi,k +

αk−1−1
αk

(zi,k − zi,k−1)

(i = 1, 2, . . . , 6)
11: k ← k + 1
12: end while

IV. SIMULATIONS

To show the effectiveness of the proposed method, we
conducted simulations using the data shown in Figs. 2 and 3.
The simulations were conducted using Matlab on iMac (OS
10.10, Intel Core i5, 2.7GHz, 8GB). The compressed data Y is
generated with compression ratio α = 0.25, where the parame-
ter Htro was set as 15 kilometers. Each block Y l is constructed
by s = 4 slices.2 Algorithm 2 reconstructed the entire 3D data
from Y with the use of γ = 2, λ1 = 0.05 and λ2 = 0.2. The
normalized errors, computed by ‖X∗ −X0‖2/‖X0‖2, were
10.14% for Data 1 and 10.15% for Data 2. Figs. 2(d) and 3(d)
show slices of the 10th elevation angle extracted from the re-
constructed data X∗. Figs. 2(g) and 3(g) show their magnifi-
cations. The normalized errors of these slices were 10.14% for
Data 1 and 9.07% for Data 2, as described in the captions too.

For comparison, we also reconstructed the entire measure-
ments by the authors’ method in [14] and Mishra’s method
in [12], which are called Conventional 1 and Conventional 2,
respectively. Since these methods are for 2D sampling and
reconstruction, simulations were done slice-by-slice for each
elevation angle. Even though measurements are not the same
as those for the proposed method, the compression rate was
fixed by α = 0.25. The normalized errors of the reconstructed
entire 3D data by Conventional 1 were 13.34% for Data 1 and
13.61% for Data 2. Those by Conventional 2 were 16.65% for
Data 1 and 16.43% for Data 2. The reconstruction results of
the 10th elevation angle and their magnifications are shown in
Figs. 2(e), (f), (h), (i) and 3(e), (f), (h), (i). For Data 1, the nor-
malized errors of these slices were 13.64% by Conventional 1
and 17.58% by Conventional 2. For Data 2, the normalized
errors of these slices were 11.88% by Conventional 1 and
16.36% by Conventional 2. These results show that the pro-
posed method outperforms the conventional methods.

Next, we measured the computational times of the while
loops in Algorithms 1 and 2 in cases that Nesterov’s technique

2s = 4 achieved the highest reconstruction accuracy among {2, 3, 4, 5, 6}.



TABLE I
COMPUTATIONAL TIME OF THE PROPOSED METHOD FOR DATA 1

No block 3D 
and Nesterov Only block 3D Only Nesterov Block 3D 

and Nesterov

Computational time 
(sec) 43,111 7,241 3,828 1,392

(782)

Error (%) 9.81 9.92 9.99 10.14

is used and not used. Table I shows each computational time
for Data 1, where the value in the bracket is the computational
time implemented by Python (Cython). We can observe that
the method applying both the block 3D reconstruction and
Nesterov’s technique is the fastest. This method is approx-
imately 30.8 times faster than the method applying neither
accelerating technique. In addition, the method implemented
by Python is further 1.8 times faster. Table I also shows the
reconstruction accuracy of each method. Although the re-
construction accuracy slightly goes down by applying the
accelerating techniques, this deterioration is within permissible
range. Thus, the block 3D reconstruction and Nesterov’s
technique are very effective for accelerating our method. The
computational times of Conventional 1 and Conventional 2
were 13,581 and 6,707 seconds, respectively. Therefore, the
proposed method reconstructs the data with approximately 5.0
times less computational time than 2D methods.

Yet, to complete the reconstruction for thirteen parameters
of the PAWR, the proposed method requires approximately
10,000 seconds. Since the reconstruction should be completed
within 30 seconds, 333 times acceleration is required approx-
imately. Note that since reconstruction for each block can be
performed in a parallel way, such a computation using graphics
processing unit (GPU) is very effective for further acceleration
of the proposed method. In this simulation, the number of
slice s is set as 4, which means that 3D data is divided into
75 blocks. Hence, the reconstruction time of one block is
approximately 10.4 seconds. If the each block is reconstructed
by separate calculators in a parallel way, the one parameter of
PAWR data can be reconstructed in real time. In this case, to
complete the reconstruction for all parameters of the PAWR
in real time, approximately 4.5 times acceleration is required.

V. CONCLUSION

This paper has proposed a fast reconstruction algorithm in
3D compressive sensing for the PAWR. First, we summarized
our 3D compressive sensing scheme combined with random
sampling in the troposphere and convex optimization. Then,
for shortening the reconstruction time, we proposed blockwise
optimization, where the measurements are divided into some
blocks, and each block is reconstructed separately. Since
reconstruction for each block can be performed in a parallel
way, our method can be further accelerated. Moreover, we
applied Nesterov’s technique to SDMM and the convergence
rate is improved in numerical simulations. By applying these
acceleration techniques, the proposed method reconstructed
the original 3D data with approximately 5.0 and 30.8 times
less computational time than 2D and 3D methods, respectively.
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(a) Original observed data (b) Magnification of red box in (a) (c) 25% random selected data

(d) Proposed method (10.14%) (e) Conventional 1 (13.64%) (f) Conventional 2 (17.58%)

(g) Magnification of red box in (d) (h) Magnification of red box in (e) (i) Magnification of red box in (f)

Fig. 2. Simulation results for the reflection intensity observed on June 19th, 2013.



(a) Original observed data (b) Magnification of red box in (a) (c) 25% random selected data

(d) Proposed method (9.07%) (e) Conventional 1 (11.88%) (f) Conventional 2 (16.36%)

(g) Magnification of red box in (d) (h) Magnification of red box in (e) (i) Magnification of red box in (f)

Fig. 3. Simulation results for the reflection intensity observed on March 30th, 2014.


