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Abstract We propose a novel convex recovery model
for block-sparse signals whose block partitions are un-
known in advance. More precisely, we first introduce
a nonconvex penalty function as the minimum of the
mixed ℓ1,2 norm over all possible block partitions. Then,
by utilizing a variational representation of the mixed ℓ1,2
norm, we derive the proposed penalty function as a con-
vex relaxation of the nonconvex one. Numerical example
shows the effectiveness of the recovery model regularized
by the proposed penalty.

1 Introduction

Block-sparsity is a special kind of sparsity, which indi-
cates sparse signals whose nonzero components are clus-
tered in blocks. By assuming the knowledge on the block
partition over which the signal is sparse, extensive re-
searches, e.g., [1,2] demonstarate the effectiveness of the
mixed ℓ1,2 norm using the block partition. However,
the information of the block partition is not available in
many applications such as recovery of acoustic, image,
and radar signals. In such situations, a pre-fixed block
partition used in the mixed ℓ1,2 norm often limits the
recovery performance.
In this paper, we present a new convex penalty func-

tion where the block partition is automatically optimized
for the signal to be estimated. We consider an opti-
mal block partition as that yields the minimum of the
mixed ℓ1,2 norm using the block partition. Namely, we
introduce a nonconvex penalty function by minimizing
the mixed ℓ1,2 over all possible block partitions. Subse-
quently, we derive the proposed convex penalty as a con-
vex relaxation of the nonconvex penalty based on a vari-
ational representation of the ℓ2 norm. We demonstrate
the effectiveness of the proposed penalty for application
to regularized least squares recovery of block-sparse sig-
nals.

2 Preliminaries

2.1 Notations and Problem Setting

R and R+ denote the sets of all real numbers and
all nonnegative real numbers, respectively. For x =
(x1, . . . , xN )⊤ ∈ RN and an index set I ⊂ {1, . . . , N},
xI := (xn)n∈I denotes the subvector of x indexed by
I. We define the support of x ∈ RN by supp(x) :=
{n ∈ {1, . . . , N} |xn ̸= 0}. We denote the cardinal-
ity of a set S by |S|. The ℓ2 norm, ℓ1 norm, and
the ℓ0 pseudo-norm of x ∈ RN are respectively de-

noted by ∥x∥2 :=
√∑N

n=1 x
2
n, ∥x∥1 :=

∑N
n=1 |xn|, and

∥x∥0 := |supp(x)|.
We consider the estimation of x⋆ ∈ RN , which is sup-

posed to be block-sparse over an unknown block parti-
tion B⋆

1 , . . . ,B⋆
K⋆ . Namely, we suppose that x⋆

B⋆
k
con-

tain (approximately) zero components for many k ∈
{1, . . . ,K⋆}. We use the term block-sparse in a strict
sense, i.e., B⋆

k consists of consecutive indices as B⋆
k =

{n⋆k, n⋆
k + 1, . . . ,m⋆

k} for each k = 1, . . . ,K.

2.2 Existing Convex Penalties for
Block-Sparse Signals

To enhance the block-sparsity of x ∈ RN over the
known non-overlapping blocks B1, . . . ,BK ⊂ {1, . . . , N},
a commonly used penalty function is the mixed ℓ1,2
norm:

∥x∥1,2 :=

K∑
k=1

√
|Bk| ∥xBk

∥2,

where we use the weight
√

|Bk| by following the sug-
gestions in, e.g., [1,2]. A disadvantage of the mixed ℓ1,2
norm is that the performance degrades when B1, . . . ,BK

do not match with the ground-truth B⋆
1 , . . . ,B⋆

K⋆ .
To cope with such difficulty, several extensions have
been designed by using potentially overlapping blocks
B̄1, . . . , B̄K̄ ⊂ {1, . . . , N}. Among them, a most reason-
able extension is the so-called latent group lasso penalty
[3], which is defined as

min
(v1,...,vK̄)∈RN×K̄

K̄∑
k=1

√
|B̄k| ∥vk∥2

s.t.

K̄∑
k=1

vk = x and supp(vk) ⊂ B̄k (k = 1, . . . , K̄).

However, using all possible blocks as B̄1, . . . , B̄K̄ is com-
putationally intractable. Even if we restrict the blocks of
size d, the latent group lasso penalty is computationally
expensive for large d because the number of parameters

to be optimized is
∑K̄

k=1

∣∣B̄k

∣∣ = d(N − d+ 1).

3 Proposed Penalty Function

We first introduce a nonconvex penalty function
ψnc(x), from which the proposed convex penalty ψ(x) is
derived as a certain convex relaxation.
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We define the nonconvex penalty function ψnc by tak-
ing the minimum of the mixed ℓ1,2 norm over at-most
K block partitions:

ψnc(x) := min
ℓ∈{1,...,K}

min
(B1,...,Bℓ)∈Pℓ

ℓ∑
k=1

√
|Bk| ∥xBk

∥2,

where Pℓ contains all ℓ block partitions of {1, . . . , N},
i.e.,

(B1, . . . ,Bℓ) ∈ Pℓ

⇔


⋃ℓ

k=1Bk = {1, . . . , N},
Bk ∩ Bk′ = ∅ (k ̸= k′),

∃(nk,mk) s.t. Bk = {nk, nk + 1 . . . ,mk}

Note thatK can be set to an upper bound of the ground-
truth K⋆. To derive the proposed convex penalty func-
tion, we exploit the following variational representation
of the ℓ2 norm:√

|Bk| ∥xBk
∥2 = min

ρ∈R+

∑
n∈Bk

ϕ(xn, ρ)

where ϕ : R× R+ → R+ ∪ {∞} is defined as

ϕ(x, ρ) :=


|x|2

2ρ
+
ρ

2
, if ρ > 0;

0, if x = 0 and ρ = 0;

∞, otherwise.

This relation readily implies the variational representa-
tion of ψnc(x) as

ψnc(x) = min
ℓ∈{1,...,K}

min
(B1,...,Bℓ)∈Pℓ,ρ∈Rℓ

+

ℓ∑
k=1

∑
n∈Bk

ϕ(xn, ρk)

By letting the latent vector σ = (σ1, . . . , σN )⊤ ∈ RN
+ as

σn = ρk (n ∈ Bk) for k = 1, . . . , ℓ,

we see that σ is characterized by the condition that

∥Dσ∥0 ≤ ℓ− 1,

where D ∈ R(N−1)×N is the first discrete difference op-
erator. Thus, we have

ψnc(x) = min
σ∈RN

+

N∑
n=1

ϕ(xn, σn) s.t. ∥Dσ∥0 ≤ K − 1

Finally, by replacing the ℓ0 pseudo norm with the ℓ1
norm in the constraint, we derive the proposed convex
penalty function:

ψ(x) = min
σ∈RN

+

N∑
n=1

ϕ(xn, σn) s.t. ∥Dσ∥1 ≤ α,

where α > 0 is a tuning parameter related to the number
of blocks. Since ϕ is a lower semicontinuous convex func-
tion whose proximal operator is efficiently computed [4],
we can develop efficient proximal-splitting based solvers,
e.g., for the least squares model using the proposed
penalty function shown in (1).

Fig. 1: Normalized mean square error between x⋆ and x̂ averaged
over 100 trials.

4 Numerical Example

We compare the proposed penalty function and exist-
ing penalty functions for the estimation of x⋆ ∈ RN from
noisy linear measurements y := Ax⋆ + ε ∈ RM , where
A ∈ RM×N is the measurement matrix, and ε ∈ RM is
the noise term. Nonzero components of x⋆ are randomly
divided into 4 blocks, which are randomly located under
the condition |supp(x⋆)| = 80, where we set N = 250.
Entries of A are drawn from i.i.d. Gaussian distribution
N (0, 1), and ε is set as the white Gaussian noise where
the SNR ∥Ax⋆∥2/∥ε∥2 is set to 40dB. We use the pro-
posed penalty function in the regularized least squares
model

min
x∈RN

∥y −Ax∥22 + λψ(x) (1)

where λ > 0 is the regularization parameter tuned to
give the best result. We obtain the estimate x̂ by
terminating the iteration when the norm of the differ-
ence between successive iterates is below the thresh-
old 10−4. In Fig. 1, we show the normalized mean
square error (NMSE) ∥x⋆− x̂∥22/∥x⋆∥22 against the num-
ber of measurements, where the results are averaged
over 100 independent trials. The result shows that the
proposed penalty function outperforms the existing con-
vex penalty functions including the latent group lasso
penalty.
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