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Abstract We propose a novel convex recovery model
for block-sparse signals whose block partitions are un-
known in advance. More precisely, we first introduce
a nonconvex penalty function as the minimum of the
mixed ¢ » norm over all possible block partitions. Then,
by utilizing a variational representation of the mixed ¢; »
norm, we derive the proposed penalty function as a con-
vex relaxation of the nonconvex one. Numerical example
shows the effectiveness of the recovery model regularized
by the proposed penalty.

1 Introduction

Block-sparsity is a special kind of sparsity, which indi-
cates sparse signals whose nonzero components are clus-
tered in blocks. By assuming the knowledge on the block
partition over which the signal is sparse, extensive re-
searches, e.g., [1,2] demonstarate the effectiveness of the
mixed ¢; 2 norm using the block partition. However,
the information of the block partition is not available in
many applications such as recovery of acoustic, image,
and radar signals. In such situations, a pre-fixed block
partition used in the mixed ¢; o norm often limits the
recovery performance.

In this paper, we present a new convex penalty func-
tion where the block partition is automatically optimized
for the signal to be estimated. We consider an opti-
mal block partition as that yields the minimum of the
mixed £; 2 norm using the block partition. Namely, we
introduce a nonconvex penalty function by minimizing
the mixed ¢; o over all possible block partitions. Subse-
quently, we derive the proposed convex penalty as a con-
vex relaxation of the nonconvex penalty based on a vari-
ational representation of the £5 norm. We demonstrate
the effectiveness of the proposed penalty for application
to regularized least squares recovery of block-sparse sig-
nals.

2 Preliminaries
2.1 Notations and Problem Setting

R and R; denote the sets of all real numbers and
all nonnegative real numbers, respectively. For & =
(z1,...,2x)" € RN and an index set Z C {1,..., N},
x7 = (2, )nez denotes the subvector of x indexed by
Z. We define the support of x € RY by supp(z) =
{n € {1,...,N}|z, # 0}. We denote the cardinal-
ity of a set S by |S|. The ¢ norm, ¢; norm, and
the ¢y pseudo-norm of x € RN are respectively de-

noted by [|z[2 == /32,0, 22, el := 350, [aa], and

l[[lo == [supp(x)].

We consider the estimation of * € R, which is sup-
posed to be block-sparse over an unknown block parti-
tion BY,...,Bj.. Namely, we suppose that mfgz con-
tain (approximately) zero components for many k €
{1,...,K*}. We use the term block-sparse in a strict
sense, i.e., B} consists of consecutive indices as B} =
{n},n;+1,....m};} foreach k=1,... K.

2.2 Existing Convex Penalties for
Block-Sparse Signals

To enhance the block-sparsity of £ € RY over the
known non-overlapping blocks By, ..., Bx C {1,...,N},
a commonly used penalty function is the mixed ¢; 2
norm:

K
lzll2 =D VIBil s, 2.
k=1

where we use the weight +/|By| by following the sug-
gestions in, e.g., [1,2]. A disadvantage of the mixed ¢; o
norm is that the performance degrades when By, ..., Bx
do not match with the ground-truth Bj,...,Bk..
To cope with such difficulty, several extensions have
been designed by using potentially overlapping blocks
Bi,...,Bg C{1,...,N}. Among them, a most reason-
able extension is the so-called latent group lasso penalty
[3], which is defined as

K
3 1B ol
k=1

min
(v1,...,vg ) ERNX

K
s.t. ka =z and supp(vi) C By (k=1,...,K).
k=1
However, using all possible blocks as By, ..., Bz is com-

putationally intractable. Even if we restrict the blocks of
size d, the latent group lasso penalty is computationally
expensive for large d because the number of parameters

to be optimized is Y5, |Bx| = d(N — d + 1).
3 Proposed Penalty Function

We first introduce a nonconvex penalty function
Yne(x), from which the proposed convex penalty ¥ (x) is
derived as a certain convex relaxation.
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We define the nonconvex penalty function v, by tak-
ing the minimum of the mixed ¢; » norm over at-most
K block partitions:

Yne(x) = Z VIBk| |5, 2

Ni,

min
re{l,...K} (By,... Bg) Py

where P, contains all ¢ block partitions of {1,...,
i.e.,
(By,...,Be) € Py
‘
Uk:1Bk = {1, . ,N},
SABNBy =0 (k?ﬁk/),
I(ng, mg) s.t. B = {ng,ne +1...,mg}

Note that K can be set to an upper bound of the ground-
truth K*. To derive the proposed convex penalty func-
tion, we exploit the following variational representation
of the /5 norm:

V Bkl |5, |2 = Hlln > d@n,p

neB

where ¢: R x Ry — R4 U{oo} is defined as

2
252,50
2p 2
@, p) = 0, if 2 =0 and p = 0;
00, otherwise.

This relation readily implies the variational representa-
tion of () as

Yne(x) = min min d(Tn, pr)

c 56{1 K} (Bl7 Bg EPg, pERﬁ_ ; ngk n

By letting the latent vector o = (01,...,0n)" € Rf as
n=pr (NEBL) fork=1,...¢,

we see that o is characterized by the condition that

where D € RW=DxN ig the first discrete difference op-
erator. Thus, we have

N
Yne(®) = min > ¢z, 04) st. [Dollo < K -1

N
oeRY oyt

Finally, by replacing the ¢; pseudo norm with the ¢
norm in the constraint, we derive the proposed convex
penalty function:

N

x) = min Tn,0n) s.t. ||Do|l1 < a,
¥(o) = uin 3 6(anson) st Dl

where a > 0 is a tuning parameter related to the number
of blocks. Since ¢ is a lower semicontinuous convex func-
tion whose proximal operator is efficiently computed [4],
we can develop efficient proximal-splitting based solvers,
e.g., for the least squares model using the proposed
penalty function shown in (1).

—— Proposed with a =8

3 =— Proposed with o = 10

-5 "\*\ Proposed with a = 12
\ s —s— {15 norm with |By| =2
10+ ¢ R £y norm with |B;| =5

/; norm
Latent group lasso
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Fig. 1: Normalized mean square error between x* and & averaged
over 100 trials.

4 Numerical Example

We compare the proposed penalty function and exist-
ing penalty functions for the estimation of * € RY from
noisy linear measurements y := Ax* +¢e € RM, where
A € RMXN ig the measurement matrix, and € € RM is
the noise term. Nonzero components of * are randomly
divided into 4 blocks, which are randomly located under
the condition |supp(x*)| = 80, where we set N = 250.
Entries of A are drawn from i.i.d. Gaussian distribution
N(0,1), and € is set as the white Gaussian noise where
the SNR ||Az*||?/||e||* is set to 40dB. We use the pro-
posed penalty function in the regularized least squares
model

min [ly — Azl + () (1)

where A > 0 is the regularization parameter tuned to
give the best result. We obtain the estimate & by
terminating the iteration when the norm of the differ-
ence between successive iterates is below the thresh-
old 107%. In Fig. 1, we show the normalized mean
square error (NMSE) ||z* — 2|3 /||=*||3 against the num-
ber of measurements, where the results are averaged
over 100 independent trials. The result shows that the
proposed penalty function outperforms the existing con-
vex penalty functions including the latent group lasso
penalty.
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